首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Internal fertilization and oviparity most likely are symplesiomorphies for modern reptiles, and viviparity has evolved independently numerous times in Sauria and Serpentes. Oviducal sperm storage is known in females of all taxa except Amphisbaenia. However, in Rhynchocephalia and Crocodilia, sperm storage is poorly studied, and specialized sperm storage tubules (Ssts) are unknown. We use the molecular phylogenetic hypothesis [(Chelonia+Archosauria) (Squamata)] to trace evolution of sperm storage characters. Ssts arose independently in Chelonia and Squamata. Turtles possess albumen-secreting glands in the anterior half of the oviduct (the tuba or isthmus), and the most distal of these glands also serve as Ssts; in addition, some turtles possess Ssts in the adjacent segment of the oviduct, the uterus. Squamates lack albumen-secreting glands, and the ancestral state is possession of Ssts in the posterior infundibulum (uterine tube). Secondarily, iguanids have evolved vaginal Ssts. In this paper, we present the first ultrastructural observations on vaginal Ssts in lizards, using Anolis sagrei (Polychrotidae). Proximally, the neck of these simple tubular glands continues the alternation of ciliated and secretory cells lining the lumen of the vagina. However, the epithelial cells of the distal sperm storage area are neither secretory nor ciliated. The Ssts of Anolis are more similar to those of birds more than to infundibular receptacles in snakes and lizards.  相似文献   

2.
The female rock lizard, Psammophilus dorsalis (Agamidae), lays multiple clutches of eggs over a period of 6 months (June–December). The later clutches of eggs are presumably fertilized by sperm stored from earlier matings, since testes and epididymides are regressed after August. Sperm storage is seen in pockets of the anterior vaginal region of the oviduct. Sperm recovered from the uterovaginal region are intact and motile. Discrete granules resembling the secretory granules present in the vas deferens also occur along with sperm in the vaginal sperm storage structures. The PAS-positive granules and acid phosphatase form important components of the secretions present along with sperm in the vaginal sperm storage pockets. The epithelium of the vaginal sperm storage pockets is PAS-positive and contains lipid. Several enzymes, including hydroxysteroid dehydrogenases and hydrolases, are localized histochemically in the epithelium of the vaginal sperm storage pockets. A possible role is suggested for the secretions from the male reproductive tract during sperm storage in the oviduct, in which physiological “dormancy” of the sperm during their storage may be maintained by the metabolic “milieu” in the vaginal sperm storage pockets by a mechanism similar to that effecting dormancy of the epididymal sperm in the male. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Oviductal functional morphology remains poorly understood in oviparous snakes, particularly in regard to oviductal formation of albumen and the eggshell and to sperm storage. The oviduct of Diadophis punctatus was examined using histology and scanning electron microscopy to determine oviductal functional morphology throughout the reproductive cycle. The oviduct is composed of four morphologically distinct regions: infundibulum, uterine tube, uterus, and vagina. The infundibulum is thin, flaccid, and lined with simple ciliated cuboidal epithelial cells. The tube contains ciliated and secretory epithelial cells, which reach a maximum height and hypertrophy during early gravidity and produce glycosaminoglycans. The posterior portion of the tube contains temporary sperm storage receptacles. The uterus retains eggs throughout gestation and secretes the eggshell constituents. The endometrial glands of the uterus hypertrophy during vitellogenesis and become depleted of the secretory granules during gravidity. The functional morphology of the oviduct therefore shows cyclical changes that are correlated with eggshell formation. The vagina consists of thick longitudinal and circular smooth muscle layers, which may serve in retention of eggs during gestation. Furthermore, the vagina contains long furrows in the mucosa that serve as sperm storage receptacles. These receptacles store sperm following fall mating and overwintering, whereas the receptacles in the tube are utilized briefly during vitellogenesis just prior to ovulation. © 1996 Wiley-Liss, Inc.  相似文献   

4.
We studied the structural and cellular organisation of the oviduct of Erythrolamprus miliaris including its morphological variation during the reproductive cycle using light microscopy, scanning electron microscopy and transmission electron microscopy. Four anatomically distinct regions compose the oviduct of E. miliaris including the anterior and posterior infundibulum, glandular uterus, non-glandular uterus and pouch. The cells of the oviductal epithelium secrete material by apocrine and merocrine processes, which vary between the anatomical regions and according to each phase of the reproductive cycle. The infundibular epithelium secretes electron dense vacuoles, which suggests the production of lipids, whereas the epithelial secretion of the glandular uterus, non-glandular uterus and pouch creates lucent and slightly electron dense vacuoles, indicating the production of glycoproteins. The timing of mating, vitellogenesis and sperm storage directly influences the morphofunctional alterations in the oviducts of E. miliaris. Sperm storage occurs only in the infundibular receptacles with increased production of the neutral carbohydrates in the presence of male gametes. Sperm storage happens in vitellogenic, non-vitellogenic and pregnant females of E. miliaris. Thus, females may be able to produce multiple clutches at different seasons of the year regardless of mating during autumn.  相似文献   

5.
6.
Rudolf  Diesel 《Journal of Zoology》1990,220(2):213-223
Parker's (1970a) hypothesis that the overlap of multiple mating sperm in the female's storage organs promotes sperm competition is tested here for the first time in Crustacea: specifically, the mechanisms and consequences of sperm competition are detailed for the spider crab Inachus phalangium . Females of this species store ejaculates from successive copulations with different males discretely and consecutively in sac-like twin seminal receptacles. During copulation males transfer a large quantity of a sperm-free seminal plasma, followed by the sperm which is stored in small spermatophores and forms a densely-packed sperm packet. It was shown, using 3H-thymidine-labelled ejaculate, that the last male to mate displaces the ejaculate of his predecessors dorsally into the apex of the receptacle. Sperm of previous matings are sealed in with the hardening seminal plasma (sperm gel) and are thus prevented from being used to fertilize eggs, while the last male to mate places his sperm closest to the oviduct and vaginal openings. In experiments using the 'sterile-male' method, sperm from the last male to mate gained all fertilizations in subsequent broods. The seminal plasma forms the sperm gel in ghost spider crabs which is used for displacement of previously stored sperm, whereas various other brachyuran taxa use seminal plasma to produce the sperm plug, which prevents a male's sperm from being displaced.  相似文献   

7.
8.
《Journal of morphology》2017,278(7):919-935
We studied the functional morphology of the female reproductive system of the purple stone crab Danielethus crenulatus . The most remarkable feature is the relative storage capacity and extensibility of the seminal receptacles. These receptacles are a pair of simple sacs that lack internal structures dividing the internal lumen. Differences in seminal receptacle size and contents are accompanied by conspicuous changes in receptacle lining at a tissue level. Full seminal receptacles contain discrete sperm masses formed by hardened fluid and densely packed spermatophores. Different sperm masses are likely from different mates and their stratified disposition within the seminal receptacles is compatible with rival sperm displacement and last sperm precedence. Additionally, the anatomical structure of the vulva and vagina suggest active female control over copula. We discuss our results in the general context of sperm storage in brachyurans and the implications for the mating system of this species.  相似文献   

9.
The origins and evolution of sperm storage in Brachyura are enigmatic: sperm is either stored in seminal receptacles, accessible via the vulvae on the sixth thoracic sternite, or in spermathecae at the border between the seventh and eighth sternites. Crabs with spermathecae are collectively referred to as “podotremes” while crabs with seminal receptacles belong to the Eubrachyura. The position of gonopores is the primary basis for subdividing the Eurachyura into the Heterotremata (female vulvae + males with coxal gonopores) and Thoracotremata (female vulvae + males with sternal gonopores). We present a hypothesis about the evolution of seminal receptacles in eubrachyuran female crabs and argue that the sternal gonopore has been internalized into chitin-lined seminal receptacles and the vulva is in fact a secondary aperture. The loss of some or all of the ancestral chitinous seminal receptacle lining was linked to ventral migration of the oviduct connection. Male and female strategies are to maximize gamete fertilization. The most important variable for females is sperm supply, enhanced by long-term storage made possible by the seminal receptacle. To maximize their fertilization rates males must adapt to the structure of the seminal receptacle to ensure that their sperm are close to the oviduct entrance. The major evolutionary impetus for female mating strategies was derived from the consequences of better sperm conservation and the structure of the seminal receptacle. The advantages were all to the females because their promiscuity and sperm storage allowed them to produce more genetically variable offspring, thereby enhancing variation upon which natural selection could act. We extend our arguments to Brachyura as a whole and offer a unifying explanation of the evolution of seminal receptacles, comparing them with the spermathecae found in “Podotremata”: they were independent solutions to the same problem: maintaining sperm supply during evolutionary carcinization.Explanation of eubrachyuran mating strategies requires analysis of the mating–moulting link, indeterminate vs. determinate growth format and seminal receptacle structure. Two alternatives for each of these characters means that there are eight possible outcomes. Six of these outcomes have been realized, which we term Portunoid, Majoid, Eriphoid, Xanthoid, Cancroid, and Grapsoid–Ocypodoid strategies, respectively. Mapping these characters on to a workable phylogeny (wherein some changes to the seminal receptacle + moulting–mating links are assumed to have occurred more than once) produces the following relationships: Portunoids + Majoids are a sister group to the rest of the Eubrachyura, which fall into two sister groups, Eriphoids + Xanthoids and Cancroids + Grapsoid–Ocypodoids and the “Podotremata” is sister group to all the Eubrachyura. We conclude that what began as a race to be the first to mate was turned on its head to become a race to be last, by the evolutionary changes to the seminal receptacle. Eubrachyuran females were advantaged by greater reproductive autonomy, more opportunity to mate with other males, resulting in more genetically variable progeny and leading to the evolution of much greater taxonomic diversity compared to “podotremes”.  相似文献   

10.
Times of sperm entry into the oviduct from the uterus, into the ampulla from the isthmus; of sperm penetration into oocytes, and of cleavage, were determined using three mating regions. Time intervals and their errors of estimation were calculated. Spermatozoa were first found in the isthmus of the oviduct no earlier than 15 minutes after coitus, but required four hours to ascend the oviduct to the ampulla. The rate of sperm arrival was equal to the rate of sperm penetration, i.e., about 3 sperms/hour. Time of cleavage in vivo was 20.6 hours after sperm penetration in ad libitum mated animals. In culture, oocytes cleaved at exactly the same time as in vivo. Delaying sperm arrival to the site of fertilization (by delaying mating) shortened the time interval between median time of sperm penetration and median time of cleavage. It was concluded that the time of cleavage of the oocyte reflects primarily the time of sperm penetration, but is also influenced by the postovulatory age of the oocyte.  相似文献   

11.
In species where females store sperm from their mates prior to fertilization, sperm competition is particularly probable. Female Sepia apama are polyandrous and have access to sperm from packages (spermatangia) deposited by males onto their buccal area during mating and to sperm stored in internal sperm-storage organs (receptacles) located below the beak. Here, we describe the structure of the sperm stores in the female's buccal area, use microsatellite DNA analyses to determine the genetic diversity of stored sperm and combine these data with offspring genotypes to determine the storage location of paternal sperm. The number of male genotypes represented in the sperm receptacles was significantly lower than that found among the spermatangia. Estimation of the volumes of sperm contained in the receptacles and the spermatangia were statistically comparable; however, paternal sperm were more likely to have come from spermatangia than from the sperm receptacles. These results confirm a genetic polyandrous mating system in this species and suggest that fertilization pattern with respect to the sperm stores used is not random.  相似文献   

12.
The reproductive biology of the spider crab Maja squinado was analyzed based on monthly samples from an 18-month study carried out in Galicia (NW Spain) and laboratory experiments holding primiparous and multiparous females in captivity with and without males. The seminal receptacles of adult females were analyzed and their relationship with the presence and developmental stage of the eggs and the gonad maturity stage was determined. Gonad maturation in primiparous females began one or two months after the pubertal moult. Females having gonads in an advanced stage of development made their appearance in December and the first spawning took place in mid-winter or early spring. The percentage of ovigerous females from March to September was ∼75%. As the incubation period progressed, the ovaries became mature again in order to carry out the next spawning. Under experimental conditions the breeding cycle started earlier in multiparous females, during their second yearly cycle, than in primiparous ones. After mating, female spider crabs store sperm in seminal receptacles and this sperm is used in the fertilization of eggs immediately prior to spawning. The analyses of seminal receptacles consisted of the estimation of fullness and the number of differentiated sperm masses. The number of masses ranged between 0 and 6 in field samples (median for females with stored sperm=1) and was positively correlated with fullness. Differences in colour and volume of individual masses showed that, at least in some cases, females carried out successive matings with long intervals in between. This storage mechanism allowed females to fertilize successive broods without remating (as was also shown under experimental conditions). Juvenile females from shallow waters did not have developed seminal receptacles which indicated that mating was not possible until the onset of maturity. Postpubertal females in shallow waters (August to October), including animals participating in aggregations, always showed empty receptacles. The seasonality of receptacle fullness showed that mating involved hard-shelled females and occurred in deep water during the autumn migration from juvenile habitats or in the wintering habitats, during the last stages of gonad maturation (November to February). After fertilization ovigerous females continued to store sperm, but the volume was lower than in non-ovigerous females. Mating may occur in ovigerous females, particularly in the final period of incubation, because in females with broods almost ready to hatch, both new and older sperm masses were seen in the receptacles (distinguished by colour and size). The fullness of the receptacles decreased both in ovigerous and non-ovigerous females in the final phase of the annual breeding cycle (August–October), however, some sperm was still available. In the laboratory, mating was observed, and no courtship nor postcopulatory guarding was recorded. The analysis of receptacles from laboratory experiments indicated that primiparous and multiparous females showed differences in the seasonality of mating in the first phase of the breeding cycle (September–January), related to differences in the timing of gonad maturation and hatching. Mating occurred in the final stages of gonad maturation, a short time before hatching, and matings were detected in ovigerous females. Multiple matings were also evident, to a greater extent than in the field, probably due to the higher availability of males. Females underwent over four successive spawnings in the laboratory without having to recopulate, and the incubation lasted on the average from 40 to 58 days (∼18 and 16°C respectively) and the mean duration between hatching and the next spawning was 3.4 days. It is estimated that most females carry out three successive spawnings during the annual cycle.  相似文献   

13.
Takami Y 《Zoological science》2002,19(9):1067-1073
Mating behavior and the processes of insemination and sperm transfer in the ground beetle Carabus insulicola were analyzed. C. insulicola has elaborate genitalia, in which the strongly sclerotized male copulatory piece is inserted into the female vaginal appendix in copula. During mating, I observed pre-copulatory struggles of males and females, as well as delays in ejaculation, suggesting the presence of intersexual conflicts. Insemination was achieved with a spermatophore, which strongly adhered to the openings of the spermatheca, common oviduct, and vaginal appendix. The spermatophore dissolved after copulation, and sperm were transferred into the spermatheca within three hours after copulation. Sperm bundles were contained within the testes and spermatophores, but free spermatozoa were found in the spermatheca.  相似文献   

14.
The relationship of the hemipenis to the cloaca in copula and sperm storage and transport in the female oviduct were studied in Anolis carolinensis using light and scanning electron microscopy. During copulation, the hemipenis does not penetrate beyond the cloaca, but the two apical openings of the bifurcate sulcus spermaticus appose the openings of the oviducts from the cloaca. Sperm enter the sperm storage tubules between 2 and 6 hr after insemination and small amounts of sperm reach the infundibulum 6 to 24 hr following mating. Sperm storage tubules are embedded in the wall of the utero-vaginal transition, and are formed by the folding and fusion of the oviducal epithelium. The importance of the hemipenile-cloacal relationship and the role of sperm storage in the life history of A. carolinensis are discussed.  相似文献   

15.
Upon copulation in female Agkistrodon piscivorus, sperm migrate up the oviduct to sperm storage tubules (SSTs) in the posterior infundibulum. The epithelium of the SSTs is composed of ciliated and secretory cells and differs ultrastructurally from that of the epithelium lining the lumen of the posterior infundibulum. Sperm pass through an area composed primarily of ciliated cells at the opening of each gland before aligning themselves in parallel arrays with their nuclei facing an area composed primarily of secretory cells at the base of the tubules. Sperm are also found embedded inter- and intracellularly in the SSTs. The secretory vacuoles in the SSTs become highly electron dense after the start of the fall mating season along with the synthesis of lipid droplets. Histochemical analysis reveals that the alteration in secretory material density is caused by the production of neutral carbohydrates. Some sperm remain in aggregates in the nonglandular section of the posterior uterus until the time of ovulation. However, ultrastructural evidence indicates these sperm degrade before ovulation. Therefore, sperm in posterior aggregates have no role in fertilization of ovulated ova. The data presented here support the hypothesis that infundibular sperm storage is the mode that snakes utilize to sequester viable sperm until ovulation.  相似文献   

16.
At mating, female insects generally receive and store sperm in specific organs of their reproductive tract called spermathecae. Some Heteroptera, such as Cimicomorpha, lack a true spermatheca; some have receptacles of novel formation where sperm cells can transit or be stored. In Tingidae, there are two sac‐like diverticula, the “pseudospermathecae,” each at the base of a lateral oviduct, which previously were considered to function as spermathecae. However, this role has never been documented, either by ultrastructural studies or by observations of sperm transit in the female reproductive tract. In this article, we investigate the morphology and the ultrastructure of the female reproductive apparatus in the economically important tingid species Stephanitis pyrioides, focusing our attention on the functional role of the pseudospermathecae in an evolutionary perspective. Each ovary consists of seven telotrophic meroistic ovarioles, the long pedicels of which enlarge into a bulb‐like structure near the terminal oocyte. The ovarioles flow into two long lateral oviducts, which join to form a very short common oviduct. Basally, each lateral oviduct is connected through a short duct to one of two pseudospermathecae. The ultrastructure of the ectodermal epithelium of the pseudospermathecae is dramatically different in sexually immature or mated females. In virgin females, cells delimit a very irregular lumen, filled with a moderately electron‐dense granular material. The large nucleus adapts to their irregular shape, which can have long projections in some regions and be flattened in others. After mating, epithelial cells generally elongate and display an apical layer of microvilli extending beneath the cuticle, often containing mitochondria. In the lumen of the pseudospermathecae there is a dense brownish secretion. No sperm cells were ever found inside this organ. After mating, sperm move upward along the lateral oviducts and the ovarioles, accumulating in the bulb‐like structure of the pedicels, and proceeding into the distal region between the follicle cells surrounding the oocyte and the ovariole wall. The egg, most likely fertilized in the bulb‐like region of the ovariole, moves through the lateral oviduct, entirely enters the pseudospermatheca and is smeared with its secretion just before oviposition. We exclude a function of sperm storage for the pseudospermathecae, and instead suggest a novel role for these organs as reproductive accessory glands. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The journey of squid sperm   总被引:1,自引:0,他引:1  
Sperm storage is common in internally fertilizing animals, but is also present in several external fertilizers, such as many cephalopods. Cephalopod males attach sperm packets (spermatangia) to female conspecifics during mating. Females of eight externally fertilizing families comprising 25% of cephalopod biodiversity have sperm-storage organs (seminal receptacles) in their buccal area, which are not in direct physical contact with the deposited spermatangia. The mechanism of sperm transmission between the implantation site and the storage organ has remained a major mystery in cephalopod reproductive biology. Here, jumbo squid females covering almost the entire life cycle, from immature to a laboratory spawned female, were used to describe the internal structure of the seminal receptacles and the process of sperm storage. Seminal fluid was present between the spermatangia and seminal receptacles, but absent in regions devoid of seminal receptacles. The sperm cellular component was formed by spermatozoa and round cells. Although spermatozoa were tracked over the buccal membrane of the females to the inner chambers of the seminal receptacles, round cells were not found inside the seminal receptacles, suggesting that spermatozoa are not sucked up by the muscular action of the seminal receptacles. This finding supports the hypothesis that spermatozoa are able to actively migrate over the female skin. Although further experimental support is needed to fully confirm this hypothesis, our findings shed light on the elusive process of sperm storage in many cephalopods, a process that is fundamental for understanding sexual selection in the sea.  相似文献   

18.
This article is the first ultrastructural study on the annual oviducal cycle in a snake. The ultrastructure of the oviduct was studied in 21 females of the viviparous natricine snake Seminatrix pygaea. Specimens were collected and sacrificed in March, May, June, July, and October from one locale in South Carolina during 1998-1999. The sample included individuals: 1) in an inactive reproductive condition, 2) mated but prior to ovulation, and 3) from early and late periods of gravidity. The oviduct possesses four distinct regions from cranial to caudal: the anterior infundibulum, the posterior infundibulum containing sperm storage tubules (SSTs), the uterus, and the vagina. The epithelium is simple throughout the oviduct and invaginations of the lining form tubular glands in all regions except the anterior infundibulum and the posterior vagina. The tubular glands are not alveolar, as reported in some other snakes, and simply represent a continuation of the oviducal lining with no additional specializations. The anterior infundibulum and vagina show the least amount of variation in relation to season or reproductive condition. In these regions, the epithelium is irregular, varying from squamous to columnar, and cells with elongate cilia alternate with secretory cells. The secretory product of the infundibulum consists largely of lipids, whereas a glycoprotein predominates in the vagina; however, both products are found in these regions and elsewhere in the oviduct. In the SST area and the anterior vagina, tubular glands are compound as well as simple. The epithelium of the SST is most active after mating, and glycoprotein vacuoles and lipid droplets are equally abundant. When present, sperm form tangled masses in the oviducal lumen and glands of the SST area. The glands of the uterus are always simple. During sperm migration, a carrier matrix composed of sloughed epithelial cells, a glycoprotein colloid, lipids, and membranous structures surround sperm in the posterior uterus. During gravidity, tubular glands, cilia, and secretory products diminish with increasing development of the fetus, and numerous capillaries abut the basal lamina of the attenuated epithelial lining of the uterus.  相似文献   

19.
20.
In the bovine, as in many mammalian species, sperm are temporarily stored in the oviduct before fertilization by binding to the oviduct epithelial cell apical plasma membranes. As the oviduct is able to maintain motility and viability of sperm and modulate capacitation, we propose that proteins present on the apical plasma membrane of oviduct epithelial cells contribute to these effects. To verify this hypothesis, the motility of frozen-thawed sperm was determined after incubation for 6 h with purified apical plasma membranes from fresh or cultured oviduct epithelial cells or from bovine mammary gland cells as a control. Analysis of intracellular calcium levels was performed by flow cytometry on sperm incubated with fresh membranes using Indo-1 to assess the membrane effect on intracellular calcium concentration. The coculture of sperm with fresh and cultured apical membranes maintained initial motility for 6 h (65% and 84%, respectively). This effect was significantly different from control sperm incubated without oviduct epithelial cell apical membranes (23%), with mammary gland cell apical membranes (23%), or with boiled epithelial cell apical membranes (21%). Apical membranes from oviduct epithelial cells diminished the percentage of sperm that reached a lethal calcium concentration over a 4-h period (18.7%) compared with the control (53.8%) and maintained lower intracellular calcium levels in viable sperm. These results show that the apical plasma membrane of bovine oviduct epithelial cells contains anchored proteinic factors that contribute to maintaining motility and viability and possibly to modulating capacitation of bovine sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号