首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid uptake by the human placenta is known to occur via several transport mechanisms. However, regulation by extracellular factors has received relatively little attention. A recent report by this laboratory characterized the uptake of α-aminoisobutyric acid (AIB) stimulated by insulin in the cultured human placental trophoblast The current study evaluated the effect of insulin-like growth factor-1 (IGF-1) on AIB uptake in cultured human placental trophoblasts. Na+-dependent AIB uptake was significantly stimulated by IGF-l in a time-dependent manner, as early as 30 min after hormone exposure. The maximum effect was at 2–4 hr of continuous exposure to IGF-l and the stimulation was dependent upon IGF-1 concentration approaching maximal stimulation at 50 ng.ml?1. AIB uptake was inhibited by increasing concentrations of α-(methylamino)isobtyric acid (MeAIB). Approximately 75% of basal (unstimulated) Na+-dependent AIB uptake was inhibited by MeAIB. The IGF-1-stimulated increment above basal AIB uptake was completely inhibited by MeAIB. IGF-1 increased the maximum uptake yelocity but not Km. Using equimolar concentrations, stimulation was greater with IGF-1 then with IGF-2. Stimulation by IGF-1, but not insulin, was inhibited by anit-IGF-1 receptor antibody, indicating mediation via the IGF-1 receptor. H7, a nonspecific inhibitor of serine-threonine kinase, inhibited IGF-1-dependent stimulation of AIB uptake. In addition, calphostin C (a specific inhibitor of protein kinase C), but not H89 (a specific inhibitor of protein kinase A), inhibited the IGF-1 action. This study further characterizes regulated amino acid uptake by the human placental trophoblasts and demonstrates that the Na+-dependent component of AIB uptake is stimulated by physiologic concentrations of IGF-1. © 1995 Wiley-Liss Inc.  相似文献   

2.
The effects of glucagon on amino acid transport in rat hepatocytes are not fully understood. We examined the effect of this hormone on alanine, serine and cysteine preferring system (system ASC)-mediated amino acid transport in rat hepatocyte monolayers using 2-aminoisobutyric acid (AIB) and L -cysteine. Glucagon induced a time and protein synthesis-dependent stimulation of Na+-dependent alanine preferring system (system A)-independent AIB transport. The glucagon-induced increase in transport activity was not modified by substrate starvation and not related to changes in the intracellular pool of amino acids. Glucagon did not modify system ASC activity measured by L -cysteine. Therefore the transport activity of AIB independent of system A stimulated by glucagon cannot be attributed to system ASC. This suggests a Na+-dependent transport system in rat hepatocytes not identified until now.  相似文献   

3.
The transport of 2-aminoisobutyric acid (AIB) into liver tissue was increased by both insulin and glucagon. We have now shown that these hormones do not stimulate the same transport system. Glucagon, possibly via cAMP, increased the hepatic uptake of AIB by a mechanism which resembled system A. This glucagon-sensitive system could be monitored by the use of the model amino acid MeAIB. In contrast, the insulin-stimulated system exhibited little or no affinity for MeAIB and will be referred to as system B. On the basis of other reports that the hepatic transport of AIB is almost entirely Na+ dependent and the present finding that the uptake of 2-aminobicyclo [2,2,1] heptane-2-carboxylic acid (BCH) was not stimulated by either hormone, we conclude that system B is Na+ dependent. Furthermore, insulin added to the perfusate of livers from glucagon-pretreated donors suppressed the increase in AIB or MeAIB uptake. Depending upon the specificities of systems A and B, both of which are unknown for liver tissue, the insulin/glucagon ratio may alter the composition of the intracellular pool of amino acids.  相似文献   

4.
  • 1.1. Weekly injections of bovine growth hormone (bGH) increased the maximal transport rate of both Na+-dependent and Na+ -independent l-leucine transport with little effect on the affinity constants in the intestine of striped bass hybrids.
  • 2.2. The Na+-dependent and the Na+-independent transport of the non-metabolizable analog cycloleucine was also stimulated by bGH.
  • 3.3. The Na+ -dependent active transport was stimulated 2 days after the hormone treatment, while the stimulation of the Na+-independent diffusional transport was not observed until after 2 weeks of treatment.
  • 4.4. Studies of intestinal morphometry and l-leucine transport using brush border membrane vesicles suggested that bGH affects intestinal amino acid absorption initially by increasing the number of transporters per cell.
  • 5.5. This phase is followed by a general increase of the intestinal mass after long-term treatment with the hormone.
  相似文献   

5.
Amino acid transport in Madin-Darby canine kidney (MDCK) cells, grown in a defined medium, was investigated as a function of cell density, exposure to specific growth factors, and transformation. MDCK cells were found to transport neutral amino acids by systems similar to the A, ASC, L, and N systems which have been characterized using other cell lines. Experimental conditions were developed for MDCK cells which allowed independent measurement of A, ASC, and L transport activities. The activity of the L system was measured as Na+-independent leucine or methionine uptake at pH 7.4. The activity of the A system was measured as Na+-dependent α(methylamino)isobutyric acid (mAIB) uptake at pH 7.4, the activity of the ASC system was measured as Na+-dependent alanine uptake in the presence of 0.1 mM mAIB at pH 6.0, and the activity of system N was observed by measuring Na+-dependent glutamine uptake at pH 7.4 in the presence of high concentrations of A and ASC system substrates. The L transport system responded minimally to changes in growth state, but Na+-dependent amino add transport responded to regulation by growth factors, cell density, and transformation. The activities of the A and ASC systems both decreased at high cell density, but these activities responded dissimilarly under other conditions. The activity of the A system was stimulated by insulin, was inhibited by PGE1, and was elevated 3–7 fold in the transformed cell line, MDCK-T1. The activity of the ASC system was slightly stimulated by insulin and by PGE1, but was unchanged after chemical transformation. Changes in cellular growth were monitored and were found to correlate best with the activity of the A system. These results suggested that MDCK cell growth may be more closely related to the activity of the A than of the ASC system.  相似文献   

6.
The regulation of amino acid transport in L6 muscle cells by amino acid deprivation was investigated. Proline uptake was Na+-dependent, saturable and concentrative, and was predominantly through system A. Proline uptake was inhibited by alanine, α-amino isobutyric acid (AIB), and by α-methylamino isobutyric acid, but not by lysine or valine. At 25°C, Km of proline uptake was 0.5 mM. Amino acid-deprivation resulted in a progressive increase in the rate of proline uptake, reaching up to 6-fold stimulation after 6 hours. The basal and stimulated transport were equally Na+-dependent, and both were inhibited by competition with the same amino acids. Kinetic analysis showed that Km decreased by a factor of 2.4 and Vmax increased 1.9-fold in deprived cells. Amino acid-deprivation did not stimulate amino acid uptake through systems other than system A. This suggests that the higher Km in proline-supplemented cells is not due to release of intracellular amino acids into unstirred layers surrounding the cells. The presence of amino acids which are substrates of system A (including AIB) during proline-deprivation, prevented stimulation of proline uptake, whereas those transported by systems Ly+ or L exclusively were ineffective. The stimulation of the transport-rate in deprived cells could be reversed by subsequent exposure to proline or other substrates of system A. L6 cells, deprived of proline for 6 hours, retained the stimulation of transport after detachment from the monolayers with trypsin. Uptake rates were comparable in suspended and attached cells in monolayer culture. Thus, amino acid-depreivation of L6 cells results in an adaptive increase in proline uptake, which is not due to unstirred layers but appears to be mediated by other mechanisms of selective transport regulation.  相似文献   

7.
The effects of H+ on the kinetics of α-aminoisobutyric acid (AIB) influx in Ehrlich ascites tumor cells have been investigated at different external Na+ concentrations. Elevation of [H+] in the presence of both high (154 mEq/l) and low (10 mEq/l) external Na+ leads to decreases in the maximum influx (J) and increases in the apparent Michaleis-Menten constant (K) for influx of AIB. In the virtual absence of external Na+ (0.96 ± 0.04 mEq/l), alterations in [H+] are without measurable effect on AIB flux. Furthermore, addition of AIB (10 mM) to cell suspensions (pH 5.90) stimulates H+ uptake by the cells in either the presence or absence of Na+. The data are consistent with two kinetic models for Na+-dependent amino acid transport: an order bireactant (Na+-binding necessary before AIB binding) system or a random bireactant system. Both models require that H+ serve as an alternative substrate for Na+. The consistency of the models was tested by fit to data from the present study (not used to evaluate the kinetic parameters) and by prediction of the pH dependence of Na+-dependent amino acid transport compared to earlier studies.  相似文献   

8.
The activation of Ca2+-dependent K+ channel by propranolol or by ascorbate-phenazine methosulphate stimulates Na+-dependent transport of α-aminoisobutyric acid. This stimulation arises from a membrane hyperpolarization due to the specific increase of membrane K+ conductance. The same treatment does not modify the Na+-independent uptake of the norbornane amino acid.  相似文献   

9.
Summary The functionality of isolated brain microvessels — used as anin vitro model of the blood-brain barrier — can be influenced by interaction with cationic proteins. The various polylysines (Mr ranging from 0.9 to 180 kDa) tested affected the activity of both the Na+-dependent (A) and the Na+-independent (L) systems for neutral amino acid transport. Exposure to the 180 kDa polylysine caused a conspicuous inhibition of both transport systems, associated to an increased passive permeability. There was a constant, Mr-dependent, inhibition of the the L-system-mediated uptake of hydrophobic neutral amino acids. The activity of the A-system was enhanced, upon exposure to polymers larger than 22 kDa reaching its peak at 68 kDa and and declining at higher Mr values. The effect which was Na+-ions dependent and abolished by phloretine, could be essentially ascribed to an increased affinity of the MeAIB for its carrier (Km value decreasing from 265 to 169µM in presence of 68 kDa polylysine).  相似文献   

10.
Summary A model with a carrier having sites for both amino acid and Na+ can account for AIB (-aminoisobutyric acid) transport kinetics observed in membrane vesicles from SV3T3 (simian virus 40-tranformed Balb/c3T3 cells) and 3T3 (the parent cell line). The main feature of this cotransport model is that Na+ binding to carrier decreases the effectiveK m for AIB transport, Na+ transport kinetics observed in both vesicle systems can be described by passive (possibly facilitated) diffusion. The lag of Na+ transport across the membrane compared to that for AIB, coupled to the Na+-dependent decrease in theK m for AIB, accounts for the overshoot in intravesicular AIB observed for SV3T3 in the presence of an initial Na+ gradient. Extra-vesicular Na+ maintains a derease in theK m for AIB influx before intra-vesicular Na+ has accumulated to balance it with a comparable decrease in theK m for AIB efflux. 3T3 vesicles display little overshoot, and this finding can be explained mostly by a lower carrier affinity for Na+.  相似文献   

11.
Uptake of alanine and its nonmetabolizable analog α-aminoisobutyric acid (AIB) by the photosynthetic purple sulfur bacterium Chromatium vinosum is stimulated fivefold by Na+. Neither Li+ nor K+ have any stimulatory effect. AIB uptake can be supported by a Na+ gradient in the absence of other energy sources. AIB uptake is also accompanied by Na+ uptake. These results suggest that AIB is taken up by C. vinosum via a sodium symport. Cells of C. vinosum and the purple nonsulfur bacterium Rhodospirillum rubrum show energy-dependent Na+ efflux and Na+ uptake can be demonstrated with chromatophores prepared from these bacteria.  相似文献   

12.
The findings that the equilibrium uptake of β-alanine decreased with increasing medium osmolarity and preincubation with β-alanine increased uptake of the amino acid indicate that the uptake of β-alanine by rabbit renal brush border membranes represents transport into membrane vesicles. A Na+ electrochemical gradient (extravesicular > intravesicular) stimulated the initial rate of β-alanine uptake about three times and effected a transient accumulation of the amino acid twice the equilibrium value. Stimulation of the uptake was specific for Na+. Gramicidin abolished the overshoot, presumably by dissipating the gradient by accelerating the electrogenic entrance of Na+ into the vesicle via a pathway not coupled to uptake of β-alanine. In K+-loaded vesicle, valinomycin enhanced the Na+ gradient-dependent uptake of β-alanine. These findings indicate that the Na+ gradient-dependent transport of β-alanine is an electrogenic process and suggest that the membrane potential is a determinant of β-analine transport. Uptake of β-aniline, at a given concentration, reflected the sum of contributions from Na+ gradient-dependent and -independent transport systems. The dependent system saturated at 100 μM. The independent system did not saturate. At physiological concentrations the rate of the Na+ gradient-dependent uptake was four times that in the absence of the gradient. The Na+ gradient-dependent rate of β-alanine uptake was strongly inhibited by taurine, suggesting that β-amino acids have a common transport system, α-Amino acids, i.e. l-arginine, l-glutamate, l-proline, and glycine, representing previously reported specific α-amino acid transport systems in the brush border membrane, did not inhibit the uptake of β-alanine. These findings indicate that the brush border membrane has a distinct transport system for β-amino acids.  相似文献   

13.
Enhanced amino acid transport is observed when quiescent cultures of chicken embryo fibroblasts are stimulated to proliferate by the addition of purified multiplication-stimulating activity (MSA). This increase in amino acid transport is an early event occuring prior to the onset of DNA synthesis in stimulated cells. Results indicate that the changes in transport activity, as measured by α-aminoisobutyric acid (AIB) uptake, are due to stimulation of only the Na+-dependent A transport system. There is little or no change in the activities of transport systems ASC, L, or Ly+ upon exposure to MSA. A kinetic analysis shows this increased activity is due to a change in Vmax while Km remains unaltered. Continuous exposure to the stimulus is required to maintain the increased level of transport activity and the presence of inhibitors of RNA and protein synthesis significantly inhibits the response. Results also indicate that a similar specific increase in the A transport system is initiated when RSV tsNY68 infected cells are shifted to the permissive temperature. It appears that the A system of mediation is emerging as a strategic regulatory site for cell function.  相似文献   

14.
We report here on the cloning and functional characterization of the third subtype of amino acid transport system A, designated ATA3 (amino acid transporter A3), from a human liver cell line. This transporter consists of 547 amino acids and is structurally related to the members of the glutamine transporter family. The human ATA3 (hATA3) exhibits 88% identity in amino acid sequence with rat ATA3. The gene coding for hATA3 contains 16 exons and is located on human chromosome 12q13. It is expressed almost exclusively in the liver. hATA3 mediates the transport of neutral amino acids including α-(methylamino)isobutyric acid (MeAIB), the model substrate for system A, in a Na+-coupled manner and the transport of cationic amino acids in a Na+-independent manner. The affinity of hATA3 for cationic amino acids is higher than for neutral amino acids. The transport function of hATA3 is thus similar to that of system y+L. The ability of hATA3 to transport cationic amino acids with high affinity is unique among the members of the glutamine transporter family. hATA1 and hATA2, the other two known members of the system A subfamily, show little affinity toward cationic amino acids. hATA3 also differs from hATA1 and hATA2 in exhibiting low affinity for MeAIB. Since liver does not express any of the previously known high-affinity cationic amino acid transporters, ATA3 is likely to provide the major route for the uptake of arginine in this tissue.  相似文献   

15.
Amino acid transport is facilitated by specific transporters within the plasma membrane of the cell. In mouse oocytes and cleavage-stage conceptus Na+-dependent L-alanine and L-leucine transport are nearly undetectable. Sodium-dependent transport via system BO,+ in the mouse conceptus increases greatly between the 8-cell and blastocyst stages. By contrast, data presented here for the pig show that L-alanine and L-leucine transport is mainly Na+-dependent in the oocyte; this Na+-dependent component of transport becomes undetectable by the blastocyst stage. The Na+-dependent component of transport in oocytes is inhibited by BCH (2-aminoendo-bicyclo[2.2.1] hexane-2-carboxylic acid) and L-lysine and thus could be a form of system BO,+. In both oocytes and blastocysts Na+-independent L-leucine transport is inhibited by BCH, which is consistent with the presence of system L. The dramatic decrease in Na+-dependent amino acid transport activity could occur in pig conceptuses in association with the onset of RNA synthesis during the 4-cell stage. Regardless of the precise time during development at which it occurs, however, this dramatic, developmentally regulated decrease in Na+-dependent alanine and leucine transport activity contrasts sharply with the large increase in Na+-dependent system BO,+ activity that occurs during preimplantation development of murine conceptuses. Elucidation of the molecular mechanisms by which these changes occur should contribute to an understanding of regulation of gene expression during early development. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Ascorbic acid (AA) is an essential cofactor for osteoblast differentiation both in vivo and in vitro. Before it can function, this vitamin must be transported into cells via a specific Na+-dependent AA transporter. In this study, we examine the regulation of this transport activity by glucocorticoids, a class of steroid hormones known to stimulate in vitro osteoblast differentiation. Dexamethasone stimulated Na+-dependent AA transport activity approximately twofold in primary rat calvarial osteoblasts. Effects of hormone on ascorbic acid transport were rapid (detected within 24 h) and were maximally stimulated by 25–50 nM dexamethasone. Similar effects of dexamethasone on transport activity were also observed in murine MC3T3-E1 cells. This preosteoblast cell line was used for a more detailed characterization of the glucocorticoid response. Transport activity was stimulated selectively by glucocorticoids (dexamethasone > corticosterone) relative to other steroid hormones (progesterone and 17-β-estradiol) and was blocked when cells were cultured in the presence of cycloheximide, a protein synthesis inhibitor. Kinetic analysis of AA transporter activity in control and dexamethasone-treated cells indicated a Km of approximately 17 μM for both groups. In contrast, dexamethasone increased Vmax by approximately 2.5-fold. Cells also contained an Na+-independent glucose transport activity that has been reported in other systems to transport vitamin C as oxidized dehydroascorbic acid. In marked contrast to Na+-dependent AA transport, this activity was inhibited by dexamethasone. Thus, glucocorticoids increase Na+-dependent AA transport in osteoblasts, possibly via up-regulation of transporter synthesis, and this response can be resolved from actions of glucocorticoids on glucose transport. J. Cell. Physiol. 176:85–91, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Summary Taurine transport was investigated in brush border membrane vesicles isolated from renal tubules of the winter flounder (Pseudopleuronectes americanus). Taurine uptake by the vesicles was greater in the presence of NaCl as compared to uptake in KCl. The Na+-dependent taurine transport was electrogenic and demonstrated tracer replacement and inhibition by -alanine and HgCl2, indicating the presence of Na+-dependent, carrier-mediated taurine transport. In contrast to Na+-dependent taurine transport across the basolateral membrane, there was not a specific Cl dependency for transport in the brush border membrane. No evidence was obtained for Na+-independent carrier-mediated taurine transport. The possible involvement of the brush border Na+-dependent transport system in the net secretion of taurine from blood to tubular lumen in vivo (Schrock et al. 1982) is discussed.  相似文献   

18.
Resting cells ofFusobacterium nucleatum ATCC 10953, when provided with glutamic acid (Na+ salt) as fermentable energy source, rapidly accumulated [14C]glucose, from the medium. Sugar accumulation was not observed when Na+ glutamate was replaced by ammonium glutamate. However, addition of Na+ (chloride) to the latter system elicited uptake of [14C]glucose by the organism. Of other monovalent cations tested, only Li+ was found to be slightly stimulatory, but K+, Rb+, and Cs+ ions were ineffective. For determination of the role(s) of Na+ in sugar accumulation, the transport of [14C]glucose and [14C]glutamic acid by the cells was studied independently, with lysine as an alternate (and Na+-independent) energy source. In the presence of lysine, cells ofF. nucleatum 10953 accumulated [14C]glucose from a Na+-free medium, but, in contrast, uptake and fermentation of [14C]glutamic acid was Na+-dependent. The glucose transport system is Na+-independent. However, our data indicate dual role(s) for Na+ in the transport and intracellular metabolism of glutamic acid. The Na+-dependent glutamate fermentation pathway provides the necessary energy for active transport of glucose by the resting cell.  相似文献   

19.
Na+-independent l-arginine uptake was studied in rabbit renal brush border membrane vesicles. The finding that steady-state uptake of l-arginine decreased with increasing extravesicular osmolality and the demonstration of accelerative exchange diffusion after preincubation of vesicles with l-arginine, but not d-arginine, indicated that the uptake of l-arginine in brush border vesicles was reflective of carrier-mediated transport into an intravesicular space. Accelerative exchange diffusion of l-arginine was demonstrated in vesicles preincubated with l-lysine and l-ornithine, but not l-alanine or l-proline, suggesting the presence of a dibasic amino acid transporter in the renal brush border membrane. Partial saturation of initial rates of l-arginine transport was found with extravesicular [arginine] varied from 0.005 to 1.0 mM. l-Arginine uptake was inhibited by extravesicular dibasic amino acids unlike the Na+-independent uptake of l-alanine, l-glutamate, glycine or l-proline in the presence of extravesicular amino acids of similar structure. l-Arginine uptake was increased by the imposition of an H+ gradient (intravesicular pH<extravesicular pH) and H+ gradient stimulated uptake was further increased by FCCP. These findings demonstrate membrane-potential-sensitive, Na+-independent transport of l-arginine in brush border membrane vesicles which differs from Na+-independent uptake of neutral and acidic amino acids. Na+-independent dibasic amino acid transport in membrane vesicles is likely reflective of Na+-independent transport of dibasic amino acids across the renal brush border membrane.  相似文献   

20.
Pretreatment of Chang liver cells with N-ethylmaleimide (0.5 or 1 mM) stimulated Na+-independent uptake of leucine at low concentrations (?1 mM). The stimulatory effect of N-ethylmaleimide on the uptake of leucine measured in Na+-replete medium was completely blocked by the addition of b-2-aminobicyclo[2,2,1]heptane-2-carboxylate (5 mM), which shows that the L system participates in the stimulation. The Na+-dependent uptake of glycine was depressed by N-ethylmaleimide pretreatment. The stimulation of the Na+-independent component of leucine uptake continued for at least 30 min after N-ethylmaleimide treatment, while the inhibition of glycine uptake was progressive with time and the Na+-dependent uptake of leucine became depressed later, after the treatment. It has been demonstrated that treatment of cells with N-ethylmaleimide is capable of increasing the Na+-independent influx of leucine and at the same time slightly decreasing the efflux of it. These results suggest that N-ethylmaleimide attacks the Na+-independent system of amino acid transport at the reactive SH groups(s) of relevant protein(s) in favor of specific activation of that system in this cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号