首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Summary The murine peritoneal cavity contains factors that inhibit the in vitro growth and colony formation of macrophages. The inhibition of macrophage growth is not due to cell death. In the presence of inhibitors, the growth of colony-forming macrophages is suppressed, and small clusters are formed as a result of limited proliferation. The more mature mono-nuclear phagocytes (blood monocytes and peritoneal exudate macrophages) are more sensitive to the overall inhibitory effect of the peritoneal inhibitors than the less mature bone marrow mononuclear phagocytes. Furthermore, using dialysis and Amicon ultrafiltration, at least two inhibitors with differential inhibitory effects can be demonstrated. The colony formation of bone marrow mononuclear phagocytes is suppressed mainly by a protease-resistant, small molecular weight (<1,000) dialyzable inhibitor. In contrast, peritoneal exudate macrophages are sensitive to both the small molecular weight inhibitor and a protease-sensitive, large molecular weight (>12,000), nondialyzable inhibitor. The data suggest a possible existence of a dual inhibitor control on the proliferation of mononuclear phagocytes in vivo. In addition, the in vitro cultured peritoneal exudate cells are capable of producing inhibitors that mimic the activity of the in vivo inhibitors. This investigation was supported by Grants CA 09 11(SY) and AI15563(CCS) from the National Institutes of Health, Bethesda, MD  相似文献   

2.
This study extends our previous observation that surface mannose receptor expression by pure populations of CSF-1-dependent bone marrow-derived macrophages increases with time (Clohisy, D. R., Bar-Shavit, Z., Chappel, J. C., and Teitelbaum, S. L. (1987) J. Biol. Chem. 262, 15922-15929). We presently find, however, that the progressive enhancement of 125I-mannose-bovine serum albumin (125I-Man-BSA) binding per cell reflects cell number rather than duration of culture. In fact, macrophages plated at high density bind 8-fold more 125I-Man-BSA than do their low density counterparts, with no difference in receptor-ligand affinity. Furthermore, cells cultured at high density are ultimately subjected to lower levels of exogenously provided macrophage growth factor, and fewer are in interphase. By obtaining synchronous populations of quiescent bone marrow macrophages, however, we demonstrate that neither cell cycling nor attendant levels of colony stimulating factor-1 influence mannose receptor expression. Our next series of experiments established that density-related mannose receptor expression reflects removal, by marrow macrophages, of a "down-regulating" factor contained in culture medium. To this end, we treated mononuclear phagocytes with either macrophage- or control-conditioned medium and found that, via a fetal calf serum-residing protein(s), only control medium is capable of noncompetitively reducing 125I-Man-BSA binding in a dose-dependent manner. Moreover, reconstituted 20-40% (NH4)2SO4-precipitable fractions derived from either sham-conditioned medium or fetal calf serum are capable of down-regulating mannose receptor expression. Alternatively, the same fraction obtained from macrophage-conditioned medium contains no such activity. Finally, initial characterization of the down-regulating factor reveals it to be acid-activable and trypsin-sensitive, yet resistant to heating to at least 80 degrees C, ribonuclease A, or freezing and thawing. We conclude that bone marrow macrophages up-regulate expression of their own plasma membrane mannose receptor by inactivating a noncompetitive, serum-residing inhibitory protein(s).  相似文献   

3.
The colony formation in spleen of lethally irradiated syngeneic or hybrid recipients was studied after transplantation of bone marrow cells, with or without macrophages from lymph nodules or from peritoneal cavity of mice, cells of macrophage-like cell line J-774, and monocytes from peripheral blood of healthy donors. The direction of stem cell differentiations in the presence of all the types of mononuclear phagocytes was seen to change from mainly erythroid to mainly myeloid one. The ratio of erythroid to myeloid colonies became equal to 0.5-0.9 instead of 2.0, when bone marrow cells were injected with equivalent quantity of mononuclear phagocytes. This new regulatory function of mononuclear phagocytes is discussed.  相似文献   

4.
Using a modification of the agar gel method for bone marrow culture, serum from various strains of mice has been tested for colony stimulating activity. Ninety percent of sera from AKR mice with spontaneous or transplanted lymphoid leukemia and 40–50% of sera from normal or preleukemic AKR mice stimulated colony formation by C57B1 bone marrow cells. Sera from 6% of C3H and 30% of C57B1 mice stimulated similar colony formation. The incidence of sera with colony stimulating activity rose with increasing age. All colonies were initially mainly granulocytic in nature but later became pure populations of mononuclear cells. Bone marrow cells exhibited considerable variation in their responsiveness to stimulation by mouse serum. Increasing the serum dose increased the number and size of bone marrow cell colonies and with optimal serum doses, 1 in 1000 bone marrow cells formed a cell colony. Preincubation of cells with active serum did not stimulate colony formation by washed bone marrow cells. The active factor in serum was filterable, non-dialysable and heat and ether labile.  相似文献   

5.
Cellular and humoral influences of T lymphocytes on human megakaryocyte colony formation in vitro were assessed by using a microagar system. Megakaryocyte colony formation from nonadherent low density T lymphocyte-depleted (NALDT-) bone marrow cells was increased significantly after the addition of aplastic anemia serum (AAS) or purified megakaryocyte colony-stimulating factor (Meg-CSF). The addition of conditioned medium obtained from phytohemagglutinin-stimulated T lymphocytes replaced, at least partially, the requirement for AAS or purified Meg-CSF for the growth of megakaryocyte colonies. The cellular influence of T lymphocytes and T lymphocyte subsets on megakaryocyte colony formation was assessed by removing either T cells from nonadherent peripheral blood mononuclear cells with monoclonal OKT4, OKT8, or OKT3 antibodies plus complement, or by adding back populations of bone marrow or blood T4+ or T8+ lymphocytes, isolated by means of fluorescence-activated cell sorting, respectively, to NALDT--bone marrow or -blood cells. When sorted T cell subpopulations were added to a fixed number of NALDT--bone marrow or -peripheral blood cells in the presence of AAS or Meg-CSF, T4+ cells enhanced megakaryocyte colony formation and T8+ cells decreased it. These studies demonstrate that although the stimulation of megakaryocytic progenitor cells by Meg-CSF may not require the presence of monocytes or T lymphocytes, T4+ lymphocytes enhance and T8+ lymphocytes down-regulate megakaryocyte colony formation induced by Meg-CSF. These observations suggest that the immune system is capable of modulating the proliferative response of human megakaryocytic progenitor cells to Meg-CSF.  相似文献   

6.
Colony formation and growth in vitro by C57B1 mouse bone marrow cells were analysed following stimulation by a standard dose of serum colony stimulating factor. Under restricted conditions, colony crowding was observed to potentiate colony growth rates. The addition of thymic or lymph node lymphoid cells or nonviable bone marrow cells also potentiated colony growth. Extensive reutilisation of nuclear material by bone marrow colony cells was observed when labeled lymphoid and bone marrow cells were added to the culture system. The results provide evidence that lymphocytes can exert trephocytic effects on proliferating hematopoietic cells.  相似文献   

7.
Antisera to mouse brain reacts with hematopoietic stem cells in the mouse bone marrow. We have examined the effect of anti-mouse brain serum (AMBS) on the development of in vitro colonies from mouse bone marrow cells. The addition of 5% AMBS to the cultures markedly decreased the numbers of colonies formed to an average of 10% of the number obtained with normal rabbit serum. AMBS suppressed formation induced by colony stimulating factors (CSF) derived from three different sources; serum from endotoxin treated mice, mouse L-cell conditioned media, and human peripheral mononuclear cell conditioned media. The suppressive activity was quantitatively recovered in the IgG fraction of AMBS. Divalent F(ab')2 fragments were as effective as the intact IgG in decreasing colony formation. Fab fragments were not suppressive. These results suggest that colony formation is induced via a dynamic interaction between CSF and the progenitor cell membrane, and that antibody directed at cell membrane antigen(s) interferes with the generation of the induction signal.  相似文献   

8.
The tumor-promoting phorbol diester, 12-O-tetradecanoylphorbol-13-acetate (TPA) was found to act both independently of and synergistically with the mononuclear phagocyte specific colony stimulating factor (CSF-1) to stimulate the formation of macrophage colonies in cultures of mouse bone marrow cells. In contrast, TPA did not synergize with other CSF subclasses that stimulate the formation of eosinophil, eosinophil-neutrophil, neutrophil, neutrophil-macrophage, and macrophage colonies, nor with either of the two factors required for megakaryocyte colony formation, megakaryocyte CSF, and megakaryocyte colony potentiator. In serum-free mouse bone marrow cell cultures TPA retained the ability to independently stimulate macrophage colony formation. However, TPA-stimulated colony formation was suboptimal and delayed in serum-free cultures that could support optimal colony formation in the presence of CSF-1. In addition, TPA did not directly compete with [125I]CSF-1 at 4 degrees C for its specific, high-affinity receptor on mouse peritoneal exudate macrophages. However, a 2-hour preincubation of the cells with TPA at 37 degrees caused almost complete loss of the receptor. Thus, TPA is able to mimic CSF-1 in its effects on CSF-1 responsive cells in some aspects (the spectrum of target cells, the morphology of resulting colonies, and the ability to down-regulate the CSF-1 receptor) but it is not able to mimic CSF-1 in other ways (TPA alone cannot stimulate the full CSF-1 response, TPA does not stimulate the most primitive CSF-1 responsive cells, and TPA does not bind to the CSF-1 receptor).  相似文献   

9.
A culture system that identifies the precursor of murine bone marrow fibroblastic stromal cells (stroma-initiating cells, SIC) has been developed. In this system, mature fibroblasts are depleted by adherence to plastic dishes and the nonadherent cells are seeded at a low density, which results in the formation of colonies composed of fibroblastic cells. Macrophage colony-stimulating factor (M-CSF) has been shown to accelerate the colony formation in the system. In this study, we examined the stroma-inducing activity of a number of cytokines. Neither granulocyte-CSF, stem cell factor, interleukin (IL)-1, IL-6, transforming growth factor, epidermal growth factor, insulin-like growth factor, platelet-derived growth factor, nor fibroblast growth factor showed the activity. Similarly, tumor necrosis factor (TNF) did not show any stroma-inducing activity, but the factor inhibited the stromal colony formation induced by M-CSF. In this study, we found that granulocyte/macrophage-CSF (GM-CSF) and IL-3, as well as M-CSF had the stroma-inducing activity. Neither an additive nor synergistic effect was observed when the three factors were assayed in various combinations. The stroma-inducing activity of M-CSF, GM-CSF and IL-3 was observed even if lineage-negative bone marrow cells were used as target cells, suggesting that mature hematopoietic cells such as macrophages and granulocytes were not involved in the induction of stromal colony formation by these factors. Our results raise the possibility that GM-CSF and IL-3 as well as M-CSF stimulate the proliferation or differentiation of the precursor of bone marrow fibroblastic stromal cells.  相似文献   

10.
G C Bagby 《Blood cells》1987,13(1-2):147-159
In the past 8 years, our group has carried out a series of in-vitro studies designed to characterize the role of mononuclear phagocytes as regulators of human hematopoiesis. The results of this program of investigation, some of which are reviewed below, led to the discovery that mononuclear phagocytes are more efficient recruitors of growth factor release by other cells than they are direct stimulators of progenitor cell growth. Specifically, mononuclear phagocytes release soluble factors (MRA) that stimulate other cells, including vascular endothelial cells, skin fibroblasts, and marrow fibroblasts, to release multilineage hematopoietic growth factors. Experiments designed to purify and characterize these monokines indicated unambiguously that the MRA that stimulates granulocyte/macrophage colony stimulating factor (GM-CSF) release is interleukin-1 (IL-1). Based on these observations and recent observations by other groups on the hematopoietic effects of other monokines including tumor necrosis factor alpha, we argue that mononuclear phagocytes serve as important regulators of hematopoiesis by producing monokines that, in turn, induce the expression of multiple hematopoietic growth factor genes in stromal cells of the hematopoietic microenvironment. Because IL-1 molecules and the mononuclear phagocytes producing them are evolutionarily conserved, and in view of the heterogeneous nonhematopoietic effects of these monokines, studies on their role in hematopoiesis may also provide new understanding of the molecular evolution of multicellular organisms.  相似文献   

11.
The growth requirements of bone marrow-resident cells that are able to differentiate along the T cell lineage (pre-T cells) have not been well established. We recently have shown that the T cell-derived lymphokine IL-3 is able to maintain pre-T cells in vitro for at least 2 weeks. However, in our initial studies, we were not able to ascertain whether IL-3 induced pre-T cell growth during culture, or whether IL-3 simply maintained the viability of these progenitors. To address this issue, we used a multiple dose assay system to assess the level of pre-T cell activity (thymic repopulation) in a selected population of bone marrow cells (CD3-, Thy-1.2+) both before and after culture in IL-3. In addition, we tested the potential role of mast cell growth factor (MGF) in the growth and maintenance of pre-T cells in vitro. The results of these studies showed that IL-3 produced a modest, but consistent increase in the pre-T cell activity during culture. Culture of CD3-, Thy-1.2+ bone marrow cells in MGF also resulted in an increase in the total amount of detectable pre-T cell activity among the cultured cells. The most dramatic increases in pre-T cell activity, however, were induced by the culture of the selected marrow cells in both MGF and IL-3. Cultures supplemented with both cytokines produced net increases in pre-T cell activity of 40- to 75-fold after 10 days of culture. Because the increases in pre-T cell activity were not accompanied by observable increases in the size of thymic colonies produced by the pre-T cells, the increased levels of pre-T cell activity appeared to result from increases in pre-T cell numbers during culture. Thus, in addition to the other activities ascribed to MGF, this cytokine displays pre-T cell growth factor activity and can synergize with IL-3 in that capacity. The use of MGF in conjunction with IL-3 provides the best system described to date for the propagation of pre-T cells in primary bone marrow cell cultures.  相似文献   

12.
It was established by previous works that thymocytes treated with antilymphocyte serum secrete soluble factor capable of inhibiting exogenous colony formation in the spleen of lethally irradiated mice injected with bone marrow cells treated with the stem cell inhibition factor (SCIF). The purpose of the present investigation was to explore possible mechanisms of SCIF action. Regeneration of erythropoiesis (measured by 59Fe incorporation) in the spleen and bone marrow of mice injected with SCIF-treated bone marrow cells was inhibited as compared with control, while CFUs started proliferating with a 3-day delay. Two hours after SCIF treatment 60% of CFUs entered S phase as judged by hydroxyurea cell kill. The CFUs fraction treated with the SCIF was found to be diminished 3-4-fold as compared with control. The data obtained suggest that SCIF treatment makes CFUs enter 3 phase, which may account for the reduced capacity of CFUs to populate the spleen and to proliferate with a 3-day delay.  相似文献   

13.
Blast colony-forming cells (CFU-BL) represent a specific subpopulation of special primitive progenitors characterized by colony formation only in close contact with a preformed stromal layer. CFU-BL derived from bone marrow of chronic myeloid leukaemia (CML) patients have been proved to adhere poorly to bone marrow derived stromal layers suggesting that the appearance of progenitors and precursors in the circulation is due to a defective adhesion of these cells to the bone marrow microenvironment. In the present experiments the effect of short-term incubation of preformed normal bone marrow stroma on the adherence of CML derived CFU-BL was studied. For stroma cultures bone marrow cells were cultured in microplates in the presence of hydrocortisone. Cultures were used when stromal layers became confluent and no sign of haemopoiesis could be observed. CFU-BL were studied by panning plastic non-adherent mononuclear (PNAMNC) bone marrow or blood cells. 8.9 +/- 2.4 colonies/103 PNAMNC (six experiments) were formed from normal bone marrow on stromal layers and 4.8 +/- 2.1 colonies/103 PNAMNC (five experiments) from CML bone marrow. Colony formation from normal bone marrow was not increased if stromal layers were incubated with 100 ng/mL granulocyte colony-stimulating factor (G-CSF) or stem cell factor (SCF). Incubation of stroma with G-CSF or SCF, however, increased the colony formation of PNAMNC from CML bone marrow or blood significantly. These findings suggest that local concentration of haemopoietic growth factors at the time of panning may influence the attachment of CML progenitors to the stroma.  相似文献   

14.
Dexamethasone, a synthetic glucocorticosteroid, was shown to modulate the colony-stimulating factor-dependent clonal growth of myeloid progenitor cells in semisolid agar cultures, enhancing the formation of granulocyte colonies (50–100%) and suppressing the formation of macrophage colonies (75–97%). Modulation of the pattern of myeloid colony formation by dexamethasone (12–125 nM) was brought about when the steroid was administered to 6-day cultures at the time of culture initiation and up to 72 hr later. Dexamethasone inhibited myeloid cell proliferation when administered to 5-day liquid cultures at culture initiation and up to 96 hr later. Dexamethasone (12–250 nM) also enhanced the phagocytic activity of bone marrow-derived mononuclear phagocytes toward heat-killed (HK) yeast cells (up to 100%) and IgG-coated sheep red blood cells (up to 60%). Enhancement of the phagocytic capability depended critically on the stage in culture at which dexamethasone was administered. Exposure to dexamethasone for 28 hr up to 96 hr of 96-hr cultures of bone marrow cells did not lead to a modulation of phagocytic activity of the developing mononuclear phagocytes. The presence of dexamethasone during the critical period of 96 hr to 120 hr after culture initiation led to an enhanced phagocytic capability, which was statistically significant already 12 hr after the administration of the glucocorticoid. Dexamethasone induced an enhanced phagocytic activity when administered at any time after culture initiation provided that it was in culture during this critical period. When added at 120 hr of culture, dexamethasone no longer enhanced the phagocytic capability of mononuclear phagocytes and when added later than 156 hr of culture suppressed it. Dexamethasone also suppressed (up to 68%) the phagocytic capability of resident and elicited peritoneal macrophages. The results suggest that glucocorticoids shift the balance of granulocyte vs. macrophage formation at early stages of precursor cell differentiation. Reduction in mononuclear phagocyte growth and enhancement of its phagocytic capability might reflect accelerated differentiation/maturation steps. The inhibitory effect of dexamethasone on macrophage formation and on the phagocytic capability of mature mononuclear phagocytes and peritoneal macrophages might be a relevant aspect of the in vivo immune suppression encountered after glucocorticoid administration.  相似文献   

15.
In examining the effects of corticosteroids on hematopoiesis in vitro, we observed that results were highly dependent on the lot of commercial fetal calf serum (FCS) utilized. We hypothesized that this variability correlated with the picogram (pg) level of endotoxin contaminating the FCS. Randomly obtained commercial lots of FCS contained 0.39 to 187 pg/ml of lipopolysaccharide (LPS). Standard FCS concentrations in hematopoietic precursor proliferation assays (granulocyte-marcrophage colony forming units [CFU-GM]) resulted in final LPS levels as high as 40 pg/ml. LPS (2–5 pg/ml) added to essentially endotoxin-free cultures, induced human mononuclear cell release of interleukin (IL)-1, IL-6 and granulocyte colony stimulating factor (G-CSF). Lots of FCS induced the release of IL-1, IL-6, and G-CSF from human mononuclear cells and the release of these factors correlated with the level of contaminating LPS. Human bone marrow CFU-GM proliferation, in response to granulocyte-macrophage colony stimulating factor (GM-CSF), positively correlated with the level of LPS contaminating the FCS and the FCS-induced release of IL-6 from mononuclear cells. CFU-GM proliferation of human bone marrow cluster of differentiation (CD) 34+CD14-cells were not affected by the presence of endotoxin. These data suggest that LPS at 2–5 pg/ml may induce bone marrow accessory cell release of hematopoietic growth factors, thus altering proliferative response of hematopoietic precursors and confounding the study of exogenously added cytokines to culture systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The authors analysed the capacity of various temperature fractions of RNA isolated from the spleen of donors of the bone marrow cells (of mice C57BL/6I) and recipients--hybrids (CBA X C57BL/6I) F1 to abolish the depression of colony formation in the nonsyngenous organism. In the administration of bone marrow cells of mice of parental genotype C57BL/6I of the irradiated recipients F1 there is observed a sharp depression of the number of colony forming units in the spleen F1. This depression can be eliminated by preliminary incubation of the bone marrow cells of mice of parental genotype with a 63 degrees fraction of the recipient's RNA. Preliminary inculation of the bone marrow cells of mice of parental genotype with 85 degrees and cytoplasmic fractions of recipient's RNA led to a partial restoration of colony formation only. The 45 degrees and 55 degrees RNA fractions of the recipient's RNA produced no restoring action. None of the temperature RNA fractions of the RNA of donor bone marrow cells were capable of abolishment of the colony formation depression in the nonsyngenous organism. It is supposed that restoration of the colony forming capacity in the nonsyngenous organism was connected with the activity of matrix RNA of the 63 degrees fraction obtained from the recipient's spleen.  相似文献   

17.
It is apparent that multiple cellular stages and biologic processes can be identified during megakaryocytopoiesis that are potentially subject to control by hematopoietic growth factors and marrow accessory cell populations. Two classes of megakaryocyte progenitor cells, the colony forming unit-megakaryocyte (CFU-MK) and the burst forming unit-megakaryocyte (BFU-MK), have now been detected in normal human bone marrow cells. The BFU-MK by virtue of the greater cellular content of its resultant colonies and the delayed time of appearance of these colonies appears to be a more primitive progenitor cell with a greater proliferative potential than the CFU-MK. A number of hematopoietic growth factors including megakaryocyte colony stimulating factor, (MK-CSF), recombinant erythropoietin (EPO) and granulocyte macrophage colony stimulating factor (GM-CSF) are each capable of increasing cloning efficiency of human megakaryocyte progenitor cells. It is presently unknown whether these factors act directly on the CFU-MK or whether they stimulate marrow accessory cells to elaborate growth factors that influence CFU-MK proliferation. In order to answer this question, the effect of these growth factors on the cloning efficiency of a human megakaryocytic cell line, EST-IU, was examined. Each of these factors was capable of increasing leukemia cell colony formation. One can conclude from these studies that MK-CSF, EPO, and GM-CSF act directly on cells of the megakaryocytic lineage. The physiologic significance of the lineage nonspecific effects of EPO and GM-CSF on megakaryocytopoiesis is yet to be determined. On the basis of these observations, a model of human megakaryocytopoiesis was suggested. Several factors appear able to influence multiple steps in megakaryocytic development, whereas others influence only specific stages or cellular events occurring during megakaryocytopoiesis.  相似文献   

18.
The human macrophage-like cell line U937 spontaneously produced a nondialyzable factor that inhibited interleukin 1 (IL 1), interleukin 2 (IL 2), and phytohemagglutinin (PHA)-induced blastogenesis in mouse thymocytes. The suppression by U937 supernatant factor occurred independently of the concentration of IL 1 or PHA, indicating that it was noncompetitive. The U937 suppressor factor was not cytotoxic for thymocytes, nor did it affect the spontaneous proliferation of T lymphoblastoid cell lines and U937. Physicochemical characterization showed that the U937 suppressor factor was nondialyzable, partially inactivated by heat treatment (56 degrees C), ammonium sulfate (67% saturation) precipitable, sensitive to pH 2.5, and resistant to freeze-thawing. Molecular weight of the factor inhibiting co-mitogenic IL 1 activity was approximately 85,000, as estimated by gel filtration. The U937 cell line may provide a model for the study of mechanisms and mediators of immunosuppression by mononuclear phagocytes.  相似文献   

19.
本实验对基质细胞造血刺激因子-1(SHF-1)的体外生物活性进行了研究。结果表明,SHF-1可刺激小鼠骨髓CFU-E、BFU-E、CFU-GM、CFU-Mix集落的形成,它产生的这些广泛造血刺激作用是其自身所具活性的直接影响。正常小鼠骨髓细胞与SHF-1在体外孵育4h,其中CFU-S的自杀率可提高约10%,显示它对造血干细胞也有诱导增殖作用。  相似文献   

20.
To learn the biochemical mechanisms controlling the distribution of indigenous lactobacilli in the gastrointestinal tracts of rats, the effect of pH and stomach and cecal contents on lactobacillus distribution was investigated in vitro with a mixed culture of three lactobacillus strains isolated from the rat intestine. The pH of the growth medium affected the growth of lactobacilli strongly, irrespective of the lumenal contents. Lactobacillus fermentum outnumbered L. acidophilus and L. murini at low pH (PH 4.5; average pH of stomach contents of conventional rats) but at near neutral pH (pH 6.5; average pH of cecal contents of conventional rats), the growth of L. murini was predominant with all strains. More lactic acid was formed by lactobacilli in medium consisting of stomach contents than in cecal contents medium. L. murini grew in the nondialyzable fraction of the stomach contents and L. fermentum grew in the dialyzable fraction, but L. acidophilus did not grow in either fraction. L. murini grew in the nondialyzable fraction treated with hyaluronidase. In contrast, the nondialyzable fraction treated with pronase or chondroitinase did not allow L. murini to grow at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号