首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the-49 lymphoma variant (cyc?) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc? cells. DNA synthesis is inhibited 42% by dmPGA1 (50 μM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the α,β unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc? cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30–50 μm) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc? cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block. The S-49 cyc? cells are known to have a G1/S boundary through M phase transition time of 14.8 h, making the location of the prostaglandin cell cycle arrest at or very near the G1/S interface. The oncogenes, c-fos and c-myc which are normally expressed during G1 in proliferating cells have a 2–3 fold enhanced expression in prostaglandin G1 arrested cells. These data using the S-49 variants demonstrate that dmPGA1 inhibits DNA synthesis and arrests the cell cycle independent of cAMP-mediated effects. The prostaglandin arrested cells maintain the gene expression of a G1 synchronous cell which suggests a unique molecular mechanism for prostaglandin action in arresting cell growth. These properties indicate that this compound may be an effective tool to study molecular mechanisms of regulation of the cell cycle.  相似文献   

2.
Summary The somatomedin-like growth factors cartilage-derived factor (CDF) and multiplication-stimulating activity (MSA) stimulate DNA synthesis and proliferation of rabbit costal chondrocytes under serum-free conditions. Previously, we suggeted that CDF and MSA act on chondrocytes in an early G1 phase to stimulate DNA synthesis. CDF and MSA have synergistic effects with epidermal growth factor (EGF) or fibroblast growth factor (FGF) in stimulating DNA synthesis of the cells. The mode of combined action of CDF or MSA with EGF or FGF in chondrocytes was studied by sequential treatments with these agents. EGF or FGF had synergistic effects with CDF or MSA in stimulating DNA synthesis, even when added 10 h after the latter. Synergism was also observed in cells pretreated with CDF or MSA; That is, the cultures were treated for 5 h with CDF or MSA and then washed, and treated with FGF or EGF. However, when CDF or MSA was added more than 5 h after EGF or FGF, no synergism of effects was observed. These findings suggest that the cultured chondrocytes become activated to interact with FGF or EGF for commitment to DNA synthesis when they are exposed to somatomedin-like growth factors at an early stage in the G1 phase. Thus chondrocytes are under a different mechanism of growth control from fibroblastic cells.Abbreviations CDF cartilage-derived factor - MSA multiplication-stimulating activity - EGF epidermal growth factor - FGF fibroblast growth factor  相似文献   

3.
Mechanisms of activation of alloimmune memory cells by immunologically nonspecific signals were investigated utilizing the mitogenic oxidizing agents, neuraminidase and galactose oxidase (NAGO) and sodium periodate (IO4?). Direct activation of primary long-term human mixed-lymphocyte culture (MLC) cells (memory cells) with either NAGO or IO4? resulted in increased specific secondary cytolytic activity. Kinetics of the proliferative and cytotoxic responses resulting from such treatment of memory cells paralleled those resulting from treatment of memory cells with irradiated cells that were the stimulators in the primary MLC. Indirect activation of memory cells by NAGO or IO4?-treated and irradiated syngeneic cells also resulted in increased specific secondary cytolytic activity. In contrast, peripheral blood mononuclear cells (PBM) activated by the mitogenic oxidizing agents did not develop cytolytic activity toward syngeneic or multiple allogeneic target cells, despite extensive proliferative responses. Cytotoxicity generated by either direct or indirect activation of memory cells by IO4? was prevented by treatment of the oxidized cells with the reducing agent, sodium borohydride. Incubation of memory cells in supernatants from 24-hr cultures of PBM activated with either NAGO or IO4? resulted in proliferation and in an increase in cytolytic activity in memory cells, but not in PBM. These findings indicate that alloimmune memory cells can be activated by immunologically nonspecific lymphocyte-derived signals that do not depend on alloantigen or lectin.  相似文献   

4.
Previous studies have shown that the nontransformed AKR-2B mouse embryo derived cell line may growth arrest by two separate mechanisms in the G1 phase of the cell cycle-growth factor deficiency arrest (G0) and low molecular weight nutrient deficiency arrest. An examination of epidermal growth factor (EGF) receptors under the different resting or growth conditions has shown that rapidly growing cells or cells arrested due to growth factor deficiency have the expected amount of 125I-EGF binding with approximately 105 receptors per cell being present in G0 arrested cells. In contrast, cells arrested due to nutrient deficiency show a reduction in 125I-EGF binding to 10--20% of that observed under the other conditions. This effect appears to be due to decreased receptor number and not to a change in the affinity of the receptor. Stimulation of DNA synthesis by nutrient replenishment causes a tenfold increase in EGF binding 20 hours later, with some increase in binding being detectable as early as six hours. The increase in binding is inhibited by cycloheximide and actinomycin D. This suggests that new mRNA synthesis as well as increased protein synthesis is required for the increase in EGF binding.  相似文献   

5.
Activation of sodium/proton (Na+/H+) antiport activity has been shown to occur as an early event in mitogenesis. Because amiloride inhibits Na+/H+ antiport activity, it is hypothesized that mitogenesis may be inhibited by amiloride. In this work, we examined the effect of amiloride on DNA synthesis as measured by [3H]thymidine uptake and immunoglobulin (Ig) production as measured by an ELISA system in human peripheral blood mononuclear cells (PBM). Amiloride at 100 microM concentration inhibited irradiated Raji cell (*R)-activated and phytohemagglutinin-P (PHA-P)-stimulated DNA synthesis by 50 +/- 11% and 72 +/- 12%, respectively. IgG production was inhibited by 71% at 100 microM amiloride concentration in *R-activated PBM. This concentration of amiloride inhibited Na+/H+ antiport activity by 92%. Because amiloride is known to inhibit other pre-replicative cellular functions such as protein synthesis, we used an amiloride analogue, dimethylamiloride, which inhibited Na+/H+ antiport activity by 90% at a concentration of 1 microM without inhibition of PBM Ig or DNA synthesis. Furthermore, neither PHA-P nor *R-stimulated PBM demonstrated an intracellular alkalinization even after 6 hr of stimulation. Similarly, T cell-enriched or B cell-enriched populations did not show intracellular alkalinization after PHA-P or *R activation. Thus, it appears that Na+/H+ antiport activation is not an early event in PBM mitogenesis. The inhibition of mitogenesis by amiloride may be due to abrogation of premitotic events such as protein synthesis.  相似文献   

6.
Summary Mammary and adipose explants from eight mid-lactation Holstein cows were co-cultured for 24 h in the presence or absence of liver explants, 1 μg/ml pituitary bovine somatotrophin, or 100 ng/ml insulinlike growth factor-I. Liver explants in the media significantly depressed DNA and protein synthesis by mammary tissue as measured by [14C]-thymidine and amino acid incorporation. As measured by flow cytometry, the concentration of DNA in the G0G1 and G2M cells and the percentage of cells in the G0G1 population of mammary tissue was also significantly depressed by liver tissue. Changes in the percentage of cells in the S and G2M phases were not significant. Insulinlike growth factor-I in the presence of liver explants depressed protein synthesis, thymidine incorporation, and the concentration of DNA in the G0G1 and G2M cells compared to control but did not affect the percentage of cells in the G0G1, S, or G2M phases. Previously it was assumed that changes in [14C]thymidine incorporation indicated that changes in cell division were occurring. Flow cytometry revealed that changes in DNA content of mammary cells as a result of liver or hormonal stimulation were not due to changes in cell division. Indications are that differences in cellular DNA content result from changes in the rate of amplification of individual genes responsible for milk protein synthesis.  相似文献   

7.
An earlier report indicated that a 26-amino-acid peptide (SA), comprised of the nuclear localization signal (NLS) of fibroblast growth factor-1 (FGF-1) and a membrane-permeable peptide, was able to stimulate DNA synthesis after it was taken up by NIH3T3 fibroblasts. Here, we report that SA, but not a mutant with the NLS motif destroyed, induced DNA synthesis in BALB/c3T3 murine fibroblasts, human vascular endothelial (HUVE) cells, and primary cultured hepatocytes, although the activity was weaker than that of FGF-1. The kinetics of SA-induced DNA synthesis and G1cyclin expression were similar to those elicited by FGF-1, indicating that SA induces cell cycle progression. Kinetic analysis also suggested that SA stimulates only a fraction of the DNA replication in BALB/c3T3 cells. At high cell densities, SA-induced G1cyclin expression and DNA synthesis were more strongly inhibited than those induced by FGF-1. SA did not induce cell division in HUVE and BALB/c3T3 cells and did not interfere with FGF-1-stimulated proliferation of HUVE cells. These results indicate that SA is able to partially induce cell cycle progression through a contact-inhibition sensitive signaling pathway, but it is insufficient to support cell mitosis. We also suggest that signaling by SA does not interfere with that of FGF-1.  相似文献   

8.
Summary The effect of mitomycin C administration on the generation of cytotoxic cells, induced by in vitro activation of peripheral blood mononuclear cells (PBM) with interleukin-2, was studied in patients with various carcinomas. The ability of PBM to generate lymphokine-activated killer (LAK) cell activity against Raji cell targets was significantly augmented 5 and 7 days after a single intravenous dose of 12 mg/m2 mitomycin C, when compared to that of PBM obtained before mitomycin C injection. Further, LAK cell activity against autologous tumor cells was also significantly increased after the drug administration. The distribution of lymphocyte subsets exhibited a significant increase in the percentage of CD3+ cells after injection, with the elevation of the CD4/CD8 ratio. Furthermore, the proportion of the CD4+ Leu8+ subpopulation, which identifies inducers of suppression, was significantly reduced. Thus, the decrease in the proportion of suppressor-inducer subsets of PBM might be at least partially, responsible for the augmented generation of LAK cells after mitomycin C administration.  相似文献   

9.
Methylglyoxal bis-(guanylhydrazone) (mGBG) blocked the stimulation of DNA synthesis in quiescent, density-inhibited BALB/c-3T3 cells treated with platelet-derived growth factor (PDGF) and platelet-poor plasma (PPP). Competence formation produced by a transient exposure to PDGF was not effected by mGBG. In contrast, mGBG effectively inhibited the PPP-stimulated progression of competent cells through the G1 phase of the cell cycle, although maximal inhibition was observed when mGBG was present during both the exposure to PDGF- and PPP-supplemented media. When quiescent cells were treated with PDGF and PPP-supplemented media in the presence of mGBG for 12–18 hours and the mGBG was then removed, cells entered the S phase after a 4 hour lag. The rate of entry into the S phase, but not the time necessary for the cells to progress from the mGBG block into the S phase, was dependent on the concentration of PPP present after removal of the mGBG. Either somatomedin C or insulin, but not epidermal growth factor, fibroblast growth factor, or PDGF were able to substitute for PPP in allowing cells to enter the S phase after the cells were released from the mGBG block. A marked inhibition of (3H)-leucine incorporation in serum-stimulated cultures was produced at mGBG concentrations which caused no decrease in the amount of (3H)-uridine incorporated during a short (15 minute) pulse. The ability of hormones to allow cells to progress to the late G1 phase and become committed to DNA synthesis after a mGBG inhibition was not related to their ability to restore the normal rate of protein synthesis as determined by (3H)-leucine incorporation.  相似文献   

10.
Temporal relationships between hydroxymethylglutaryl-CoA reductase activity, biosynthesis of C27 sterols, and [3H]thymidine incorporation into DNA were studied in a rat embryo fibroblast cell line synchronized by double thymidine block and cultured in cholesterol-containing medium. Cyclic variations of HMG-CoA reductase activity and C27 sterols occurred, with two maxima in S and G2M phases; the relative shortness of the G1 phase (3 h) in these cells could be responsible for the shift of sterol synthesis in the S phase. No noticeable variation of the individual C27 sterols was observed during the entire cell cycle. In each experiment, there was a good linear correlation between HMG-CoA reductase activity and C27 sterol synthesis, but from one experiment to another, a given level of enzymatic activity led to varying levels of [2-14C]acetate incorporation into sterols. In our experimental conditions, total HMG-CoA reductase activity is measured, and the preceding observation could be explained by a varying degree of phosphorylation of the enzyme depending on the metabolic state of the cells at the start of the experiment. The cyclic variations of the enzyme activity seem to be due more to increased synthesis at given times of the cycle than to periodic dephosphorylation. We question the existence of a relationship between cell division and cyclic sterol synthesis occurring in cells cultured in cholesterol-containing medium.  相似文献   

11.
Suspension cultures of Chinese hamster cells (line CHO), which had stopped dividing and were arrested in G1 following growth to high cell concentrations in F-10 medium, could be induced to reinitiate DNA synthesis and to divide in synchrony upon addition of the appropriate amounts of isoleucine and glutamine. Both amino acids were required to initiate resumption of cell-cycle traverse. Deficiencies in other amino acids contained in F-10 medium did not result in accumulation of cells in G1, indicating a specific action produced by limiting quantities of isoleucine and glutamine. In the presence of sufficient glutamine, approximately 2 x 10-6 M isoleucine was required for all cells to initiate DNA synthesis in a population initially containing 1.5 x 105 cells/ml. Under similar conditions, about 4 x 10-6 M isoleucine was required for all G1-arrested cells to progress through cell division. In contrast, 1 x 10-4 M glutamine was necessary for maximum initiation of DNA synthesis in G1 cells, along with sufficient isoleucine. A technique for rapid production of G1-arrested cells is described in which cells from an exponentially growing population placed in F-10 medium deficient in both isoleucine and glutamine or isoleucine alone accumulated in G1 after 30 hr.  相似文献   

12.
Growth induction in resting fibroblast cultures by serum or growth factors induces a fast, transient cGMP peak which may constitute the intracellular signal for growth. A similar cGMP peak occurs when 3T3 cells arrested at the restriction point or in G0 by starvation for certain amino acids are induced for growth by readdition of the lacking nutrients. Both 3T3 and SV3T3 cells which are arrested randomly all around the cell cycle do not exhibit major changes in cyclic nucleotides after growth induction. Determination of intracellular cAMP and cGMP levels in normal and transformed fibroblasts under different growth conditions shows that the transition between growing and resting state (G0 arrest) is accompanied and probably induced by characteristic changes in cAMP to cGMP ratios. cGMP is decreased 2-5-fold in resting as compared to growing cultures, and increased 10-20-fold in activated cultures 20 min after serum induction. No major cGMP change was observed in growing, confluent, or serum-activated cultures of transformed cells. Measurement of guanylcyclase under unphysiological conditions (2 mM Mn++) in crude and purified membranes from 3T3 and SV3T3 cultures did not show increased enzyme activity in the transformed cells. Significant differences may only show up when synchronized cells pass through the restriction point in G1 phase. As a hypothesis it is proposed that transformed cells have an activated guanylcyclase system or a relaxed cGMP-pleiotypic response mechanism at the restriction point of their cell cycle.  相似文献   

13.
Because infiltration of mononuclear cells and fibroblast proliferation are associated in chronic inflammatory lesions, we tested the hypothesis that leukotrienes (LT), a product of activated mononuclear cells, may modulate fibroblast growth. Proliferation of cultured human skin fibroblasts was estimated by [3H]thymidine incorporation and cell count at increasing concentrations (0.1 nM to 0.1 microM) of LTC4 or LTD4. LTC4 and LTD4 stimulated cell growth in a dose-dependent manner only in the presence of 50 microM indomethacin. Under similar conditions, LTE4 but not LTB4 (0.1 microM) was active. Both asynchronous, growing cells and synchronous, quiescent cells were sensitive to LT when prostaglandin (PG) synthesis was suppressed by indomethacin. Other blockers of cyclooxygenase such as ibuprofen and aspirin exhibited identical permissive activity, and the effect of indomethacin was totally abolished by addition of PGE2. LTC4 modified neither [3H]arachidonic acid release from prelabeled fibroblasts nor PGE2 production by fibroblasts. These results demonstrate that the sulfidopeptide LT stimulate fibroblast proliferation only when the endogenous synthesis of PG is blocked, but they do not enhance the synthesis of PG in their target cells showing no evidence for a negative feed-back loop. Nevertheless, it seems likely that the initiation and development of the fibrotic process in the different tissues depends in part on the local balance between PG and LT productions.  相似文献   

14.
The tumor suppressor Fhit protein is defective or absent in many tumor cells due to methylation, mutation or deletion of the FHIT gene. Despite numerous attempts to unravel the functions of Fhit, the mechanisms by which the function and expression of Fhit are regulated remain poorly understood. We have recently shown that activated Gαq subunits interact directly with Fhit and enhance its inhibitory effect on cell growth. Here we investigated the regulation of Fhit expression by Gq. Our results showed that Fhit was up-regulated specifically by activating Gα subunits of the Gq subfamily but not by those of the other G protein subfamilies. This up-regulation effect was mediated by a PKC/MEK pathway independent of Src-mediated Fhit Tyr114 phosphorylation. We further demonstrated that elevated Fhit expression was due to the specific regulation of Fhit protein synthesis in the ribosome by activated Gαq, where the regulations of cap-dependent protein synthesis were apparently not required. Moreover, we showed that activated Gαq could increase cell–cell adhesion through Fhit. These findings provide a possible handle to modulate the level of the Fhit tumor suppressor by manipulating the activity of Gq-coupled receptors.  相似文献   

15.
Cultures of Euglena gracilis (strain Z from French CNRS collection) can be made cadmium resistant if grown in a medium with 5x10-4M cadmium chloride. This resistance is reflected by the appearance of a second exponential growth phase. The development of this resistance was studied at the cellular level by determining the relative content of DNA at different stages of the cell cycle in an asynchronously grown culture. The culture was followed until the second, cadmium resistant, growth phase had reached its stationary state. During the first exponential growth phase, cells were mostly in the late period of DNA synthesis (stage S of the cell cycle), or in the gap preceding mitosis (stage G2 of the cell cycle). In addition, some cells contained high multiples of the normal amount of DNA. In the beginning of the second exponential growth phase, a few cells were again in G1 (the post mitotic stage of the cell cycle preceding DNA synthesis). These G1 cells were predominant at the end of the second growth period. During the second stationary phase the DNA content of the cadmium treated cells was similar to the stationary phase of the control culture. Cells had stopped growing in G1 with an unreplicated genome. The implications of these data are discussed.  相似文献   

16.
The proliferation of normal non-tumourigenic mouse fibroblasts is stringently controlled by regulatory mechanisms located in the postmitotic stage of G1 (which we have designated G1 pm). Upon exposure to growth factor depletion or a lowered de novo protein synthesis, the normal cells leave the cell cycle from G1 pm and enter G0. The G1 pm phase is characterized by a remarkably constant length (the duration of which is 3 h in Swiss 3T3 cells), whereas the intercellular variability of intermitotic time is mainly ascribable to late G1 or pre S phase (G1 ps) (Zetterberg & Larsson (1985) Proc. Natl. Acad. Sci. USA 82 , 5365). As shown in the present study two tumour-transformed derivatives of mouse fibroblasts, i.e. BPA31 and SVA31, did not respond at all, or only responded partially, respectively, to serum depletion and inhibition of protein synthesis. If the tumour cells instead were subjected to 25-hydroxycholesterol (an inhibitor of 3-hydroxy-3 methyglutaryl coenzyme A reductase activity), their growth was blocked as measured by growth curves and [3H]-thymidine uptake. Time-lapse analysis revealed that the cells were blocked specifically in early G1 (3-4h after mitosis), and DNA cytometry confirmed that the arrested cells contained a G1 amount of DNA. Closer kinetic analysis revealed that the duration of the postmitotic phase containing cells responsive to 25-hydroxycholesterol was constant. These data suggest that transformed 3T3 cells also contain a ‘G1 pm program’, which has to be completed before commitment to mitosis. By repeating the experiments on a large number of tumour-transformed cells, including human carcinoma cells and glioma cells, it was demonstrated that all of them possessed a G1 pm-like stage. Our conclusion is that G1 pm is a general phenomenon in mammalian cells, independent of whether the cells are normal or neoplastic.  相似文献   

17.
U2OS Dr1 cells, originating from a human osteosarcoma, are resistant to the intracellular action of diphtheria toxin but contain toxin receptors on their surfaces. These cells do not have detectable amounts of fibroblast growth factor receptors. When these cells were transfected with fibroblast growth factor receptor 4, the addition of acidic fibroblast growth factor to the medium induced tyrosine phosphorylation, DNA synthesis, and cell proliferation. A considerable fraction of the cell-associated growth factor was found in the nuclear fraction. When the growth factor was fused to the diphtheria toxin A fragment, it was still bound to the growth factor receptor and induced tyrosine phosphorylation but did not induce DNA synthesis or cell proliferation, nor was any fusion protein recovered in the nuclear fraction. On the other hand, when the fusion protein was associated with the diphtheria toxin B fragment to allow translocation to the cytosol by the toxin pathway, the fusion protein was targeted to the nucleus and stimulated both DNA synthesis and cell proliferation. In untransfected cells containing toxin receptors but not fibroblast growth factor receptors, the fusion protein was translocated to the cytosol and targeted to the nucleus, but in this case, it stimulated only DNA synthesis. These data indicate that the following two signals are required to stimulate cell proliferation in transfected U2OS Dr1 cells: the tyrosine kinase signal from the activated fibroblast growth factor receptor and translocation of the growth factor into the cell.  相似文献   

18.
Summary SV3T3 cells, originally responsive to epidermal growth factor (EGF) and displaying density-dependent inhibition of growth, lose responsiveness to the growth factor after several passages and then proliferate without restriction, but continue to display EGF receptor sites at the cell surface. Proliferation of primary fetal rat hepatocytes is not stimulated by EGF, but cells bind it to an extent comparable to that of responsive 3T3 cells. Therefore presence of EGF receptors does not imply that cells are responsive to the growth factor. The relevance of some growth-factor-induced events for DNA synthesis initiation is dicussed. In various primary and secondary cell cultures, Ca++-levels appear to be involved in controlling cell proliferation. In contrast, in 3T3-4a cells, levels of Ca++ ions are not tightly coupled to DNA synthesis initiation; effects of growth factors are not mediated by extracellular Ca++ ions, but cells have a Ca++-sensitive restriction, point in G1. In various cell types in primary or secondary culture or in 3T3-4a cells, polyamine, levels are not tightly coupled to induction of proliferation. Therefore growth-factor-induced ornithine decarboxylase is not an event essential for DNA synthesis initiation. Normal but not transformed cells have a spermidine/spermine-sensitive restriction point in G1. Although rRNA synthesis appears to be necessary for induction of proliferation, preliminary data obtained by double-beam flow microfluorometry suggest that cellular RNA levels might not affect rate of entry into S phase and, furthermore, that 3T3-4a cells can enter S without accumulating RNA above levels present in quiescent cells. It appears that none of the events induced during the prereplicative phase that have been studied in 3T3 cells are essential for DNA synthesis initiation under normal culture conditions. Presented in the Opening Symposium on Nutritional Factors and Differentiation at the 28th Annual Meeting of the Tissue Culture Association, New Orleans, Louisiana, June 6–9, 1977. This work was supported by Research Grants GM 20101, CA 15087, CA 14195, CA 12227 and CA 11176 from the USPHS, and Grant BC-30D from the American Cancer Society.  相似文献   

19.
Incorporation of tritiated thymidine into acid-precipitable material was used to measure the rate of DNA synthesis in secondary cultures of human diploid fibroblasts. Confluent cultures of human diploid fibroblasts, which are synchronized in the G1 phase due to contact inhibition, were released from growth inhibition either by the addition of fresh medium to the cultures or by trypsinization and replating at nonconfluent densities. Either treatment resulted in a synchronous wave of DNA synthesis beginning 10–15 h after treatment and peaking at 20–25 h. In confluent cultures stimulated by fresh medium, either the addition of 0.25 mM N6, O2-dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP) to the medium in the interval 4–8 h after stimulation or the replacement of the fresh medium in that same 4 h interval with the depleted medium present on the cells for the 2 day period before stimulation delayed the synchronous onset of DNA synthesis in the cultures by about 4 h. In nonconfluent cultures freshly seeded from trypsinized confluent cultures, this same depleted medium obtained after a 2 day incubation of fresh medium on confluent cultures is shown to support the progress of the cells into S phase; however, the addition of 0.25 mM db-cAMP to the medium 3½ h after replating still partially prevented the initiation of DNA synthesis in the cultures. The results are discussed in terms of the role of serum and cAMP in the control of cell growth in fibroblast cultures.  相似文献   

20.
《Cell calcium》1997,22(2):75-82
In MCF-7 breast cancer cells, insulin-like growth factor-1 (IGF-1) increased the calcium-permeability of the cells by activating a voltage-independent calcium-permeable channel. IGF-1 also induced oscillatory elevation of cytoplasmic free calcium concentration in these cells. An anti-allergic compound, tranilast, reduced the calcium-permeability augmented by IGF-1 in a dose-dependent manner and blocked the oscillatory elevation of cytoplasmic free calcium concentration. Tranilast did not affect early intracellular signals activated by IGF-1, including receptor autophosphorylation, activations of Ras, mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Tranilast inhibited increases in [3H]-thymidine incorporation, DNA content and cell number induced by IGF-1. The ID50 for [3H]-thymidine incorporation and DNA content were about 10 μM. The inhibitory effect of tranilast was reversible, and cell viability was not affected. Treatment with tranilast increased the number of cells in the G1 phase suggesting that this compound induced G1 arrest. Tranilast also reduced the phosphorylation of the retinoblastoma protein. These results indicate that tranilast inhibits the IGF-1-induced cell growth in MCF-7 cells by blocking calcium entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号