首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Some original observations have been made on the process of cassava fermentation to produce “foofoo”, a local nigerian diet. During the period of fermentation the pH of the fermenting liquor decreases from 6.1 to 3.4 at the end of the 6th day. The change in pH is uniform throughout the fermentation period. Decreases in dry weight of the fermenting cassava have been recorded; there is a very rapid decline during the third and fourth days of fermentation. Free reducing sugars decrease drastically within the first and second days. Total sugar concentration which is an indication of the starch content of the cassava also declines with fermentation time, and more so during the third and fourth days. Protein concentration in the liquor increases very rapidly during the first and second days of fermentation. It is believed that cassava protein is converted to microbial protein.  相似文献   

2.
Proton motive force (Δp) generation by Escherichia coli wild type cells during glycerol fermentation was first studied. Its two components, electrical—the membrane potential (?φ) and chemical—the pH transmembrane gradient (ΔpH), were established and the effects of external pH (pHex) were determined. Intracellular pH was 7.0 and 6.0 and lower than pHex at pH 7.5 and 6.5, respectively; and it was higher than pHex at pH 5.5. At high pHex, the increase of ?φ (?130 mV) was only partially compensated by a reversed ΔpH, resulting in a low Δp. At low pHex ?φ and consequently Δp were decreased. The generation of Δp during glycerol fermentation was compared with glucose fermentation, and the difference in Δp might be due to distinguished mechanisms for H+ transport through the membrane, especially to hydrogenase (Hyd) enzymes besides the F0F1-ATPase. H+ efflux was determined to depend on pHex; overall and N,N’-dicyclohexylcarbodiimide (DCCD)-inhibitory H+ efflux was maximal at pH 6.5. Moreover, ΔpH was changed at pH 6.5 and Δp was different at pH 6.5 and 5.5 with the hypF mutant lacking all Hyd enzymes. DCCD-inhibited ATPase activity of membrane vesicles was maximal at pH 7.5 and decreased with the hypF mutant. Thus, Δp generation by E. coli during glycerol fermentation is different than that during glucose fermentation. Δp is dependent on pHex, and a role of Hyd enzymes in its generation is suggested.  相似文献   

3.
The improved method for preparing Oyokpo a Nigerian fermented beverage from millet, and the preparation of single cell proteins from the spent grain is described. Improvement of the brew was made by controlled malting, mashing and brewing with a pure culture of Saccharomyces cerevisiae. It had a reducing sugar content of 19.73 g/100 ml before fermentation and after fermentation 5.56% alcohol, 0.58 g/100 ml titratable acidity as acetic acid, a final pH of 4.2 and consisted of a yellowish clear liquid, slightly sour. The native brew had a reducing sugar content of 7.37 g/100 ml before fermentation and after fermentation, 2.40% alcohol, 0.43 g/100 ml titratable acidity, a final pH of 3.8 and consisted of a creamy yellowish liquid with a very sour taste. Fermented spent grain gave a higher protein yield compared to unfermented or ground millet. The lipids, proteins and crude fibre were 4.94%, 11.20% and 4.33% respectively for ground millet, 12,79%, 23.77% and 19.46% respectively for unfermented spent grain and 19.61%, 47.28% and 32.09% respectively for fermented spent grain. The high protein and fibre content of the fermented spent grain points to its potential as a feed supplement for ruminants.  相似文献   

4.
【目的】研究泸型酒酒醅中梭菌(Clostridia)群落的演替规律,探讨梭菌群落在酒醅发酵过程中的潜在功能。【方法】利用实时荧光定量PCR技术结合高通量测序技术研究不同发酵时间泸型酒酒醅中梭菌丰度变化;通过梭菌16S r RNA基因序列高通量测序数据分析揭示梭菌群落演替规律,并运用LEf Se分析找出标志性OTU;通过PICRUSt分析对梭菌功能组成进行预测。【结果】泸型酒发酵过程酒醅中梭菌的生物量在发酵14 d上升至最高(3.46×10~7 copies/g),梭菌占总细菌的相对丰度在发酵20 d达到最高(6.67%);对梭菌群落结构的聚类分析结果表明,发酵7 d的酒醅梭菌群落结构显著区别于其他发酵时间,主要体现为存在17个标志性OTU,其中大部分分类学地位尚不明确;PICRUSt分析显示梭菌主要参与氨糖与核糖代谢、磷酸戊糖途径,其次是果糖和甘露糖代谢、TCA循环、糖酵解途径、丙酸及丁酸代谢。【结论】泸型酒酒醅中梭菌的生物量和占细菌的相对丰度在发酵开始后的2-3周内逐渐达到最高,而梭菌群落的结构则在发酵1周内便发生了显著改变,并在发酵2-3周内趋于稳定。在发酵2-3周时有较多与丙酸、丁酸等风味物质代谢相关的基因在酒醅梭菌中被预测到。  相似文献   

5.
The excretion of some sugars (maltose, glucose, and glucose-6-phosphate) was studied at pH 2.5–6.0 in 38 strains of Chlorella belonging to 15 species of which 7 are capable and 8 incapable of symbiosis with Hydra viridis. A high rate of maltose excretion below pH 4.0 (Cernichiari et al., 1969) was found only in C. vulgaris (non-symbiotic) and C. mirabilis (non-symbiotic). The other Chlorella species are characterized by quite different patterns of sugar excretion. C. spec. (= “C. paramecii”; symbiotic) excretes very high amounts of maltose in the whole range from pH 2.5–6.0. C. kessleri (symbiotic), C. luteoviridis (symbiotic), and C. fusca var. fusca (non-symbiotic) show a predominant excretion of glucose-6-phosphate from pH 2.5–6.0. Some strains also exhibit a high excretion of glucose above pH 4.0 (C. spec. = “C. paramecii”) or below pH 3.0 (C. fusca var. vacuolata). Several species, e.g. C. saccharophila var. saccharophila (symbiotic), C. sorokiniana (non-symbiotic), and C. protothecoides (symbiotic), excrete only very small amounts of sugars. There is no obvious correlation between sugar excretion and the ability or inability of the Chlorella species to form stable symbioses with Hydra viridis.  相似文献   

6.
The kinetics in fed-batch cultures of acetone butanol fermentation by Clostridium acetobutylicum is compared on glucose, xylose, and mixtures of both sugars. The final conversion yield of sugars into solvents always increases with the sugar feeding rate. At low feeding rates, the sugar concentration in the medium becomes limiting, which results in a slower cellular growth, a slower metabolic transition from an acid to a solvent fermentation and, thus, a higher accumulation of acids. It is only at sufficiently high feeding rates that fed-batch fermentations yield kinetic results comparable to those of batch fermentations. With mixtures of glucose and xylose, because of a maintained low glucose level, both sugars are taken up at the same rate during a first fermentation period. An earlier accumulation of xylose when the fermentation becomes inhibited suggest that xylose utilization is inhibited when the catabolic flux of glucose alone can satisfy the metabolic activity of the cell. Kinetic results with batch and fed-batch fermentations indicate several important features of the regulation of C. acetobutylicum metabolism: an early inhibition by the produced acids; an initiation of solvent formation between 4 and 6 g/L acetic and butyric acid depending on the metabolic activity of the cell; a metabolic transition from acids to solvents production at a rate closely related to the rate of sugar uptake; during solvent production, a reassimilation of acids above a minimal rate of sugar consumption of 0.2 h(-1); a final inhibition of the fermentation at a total butanol and acids concentration of ca. 20 g/L.  相似文献   

7.
We studied the effect of genetic transformation on biologically active compound (artemisinin and its co-products (ART) as well as sugars) accumulation in Artemisia vulgaris and Artemisia dracunculus “hairy” root cultures. Glucose, fructose, sucrose, and mannitol were accumulated in A. vulgaris and A. dracunculus “hairy” root lines. Genetic transformation has led in some cases to the sugar content increasing or appearing of nonrelevant for the control plant carbohydrates. Sucrose content was 1.6 times higher in A. vulgaris “hairy” root lines. Fructose content was found to be 3.4 times higher in A. dracunculus “hairy” root cultures than in the control roots. The accumulation of mannitol was a special feature of the leaves of A. vulgaris and A. dracunculus control roots. A. vulgaris “hairy” root lines differed also in ART accumulation level. The increase of ART content up to 1.02?mg/g DW in comparison with the nontransformed roots (up to 0.687?mg/g DW) was observed. Thus, Agrobacterium rhizogenes-mediated genetic transformation can be used for obtaining of A. vulgaris and A. dracunculus “hairy” root culture produced ART and sugars in a higher amount than mother plants.  相似文献   

8.
It is known that seaweeds differ greatly from land plants in their sugar composition. The current research on the L-lactic acid fermentation process focuses on land plant sugars as a carbon source, with the potential of seaweed sugars being largely ignored. This study examined the feasibility of seaweed biomass as a possible carbon source for the production of l-lactic acid, by comparing the fermentation of seaweed sugars (d-galactose, d-mannitol, l-rhamnose, d-glucuronic acid, and l-fucose) and land plant sugars (d-glucose, d-xylose, d-mannose, and l-arabinose). The experiments were repeated with 2 sugar acids (d-gluconic acid, d-glucaric acid) in order to investigate the effect of the degree of reduction of carbon source on the fermentation yield. This research also examined the effect of bacterial strain on the characteristics of fermentation reactions, by conducting l-lactic acid fermentation with 7 different Lactobacillus species. Taking into account the sugar composition of seaweed and the levels of lactic acid production from each pure sugar, it was possible to predict the lactic acid production yield of various seaweeds and land plants. From comparative analysis of the predicted lactic acid production yield, it was found that seaweeds are already comparable to lignocellulosics at the current stage of technology. If new technologies for the utilization of non-fermentable seaweed sugars are developed, seaweeds show promise as an even more useful biomass feedstock than lignocellulosics.  相似文献   

9.
Peptone-yeast extract (PY) medium containing 0.035% ferric ammonium citrate as an indicator, 0.05% sulfite as a substrate, 0.05% cysteine as a reducer and 0.5% glucose was found to be suitable for observing the sulfite reduction test. The effect of added cysteine on the test was suppressed by the addition of glucose. In cultures of bacteria grown for 2 days at 37 C in medium containing the above ingredients, 121 among 132 strains of Clostridia, including 86 strains of Clostridium perfringens, gave a positive reaction. Although some strains of Salmonella and Proteus were positive, the specificity of the test for Clostridia was thought to be relatively high. Positive reactions in a resting cell system were limited to some species of Clostridia.  相似文献   

10.
“Solid-substrate” fermentation developed in the Orient is a very useful fermentation method. It is presently used to produce a variety of foods, beverages and related products. Solid-substrate fermentation products utilizing fungi including soy sauce, miso and tempe, ontjom, sake, and bread have been produced for centuries at the home and village level. They are examples of economical methods of preserving and improving the flavor, texture and nutritive values of cereal/legume substrates. “Solid-substrate” fermentation is also applied to animal products such as milk to produce Roquefort and Camembert cheeses which diversify the food flavors available to man “Solid-substrate”fermentation has certain advantages. The substrate is concentrated; the product can be extracted with relatively small quantities of solvent; the product can be easily dehydrated; moisture level can be controlled favoring the desired organisms; enzyme concentration is generally higher than is submerged fermentation; product concentration is generally higher than in submerged cultures; it is the only technique that yields true mushroom fruiting bodies and it can be used not only for production of crude enzyme concentrates (koji) but also for raising the protein content of high starch substrates. It also can be used to increase the content of vitamins at low cost. Disadvantages of “solid-substrates”from the modern industrial processing view point are the greater difficulty of handling solid substrate and the greater difficulty of controlling the fermentation parameters, temperature, pH and oxygen, and rate of microbial growth compared with liquid submerged fermentations.  相似文献   

11.
Bioethanol is the most commonly used renewable biofuel as an alternative to fossil fuels. Many microbial strains can convert lignocellulosics into bioethanol. However, very few natural strains with a high capability of fermenting pentose sugars and simultaneously utilizing various sugars have been reported. In this study, fermentation of sugar by Fusarium oxysporum G was performed for the production of ethanol to improve the performance of the fermentation process. The influences of pH, substrate concentration, temperature, and rotation speed on ethanol fermentation are investigated. The three significant factors (pH, substrate concentration, and temperature) are further optimized by quadratic orthogonal rotation regression combination design and response surface methodology (RSM). The optimum conditions are pH 4, 40?g/L of xylose, 32?°C, and 110?rpm obtained through single factor experiment design. Finally, it is found that the maximum ethanol production (10.0?g/L) can be achieved after 7 d of fermentation under conditions of pH 3.87, 45.2?g/L of xylose, and 30.4?°C. Glucose is utilized preferentially for the glucose–xylose mixture during the initial fermentation stage, but glucose and xylose are synchronously consumed without preference in the second period. These findings are significant for the potential industrial application of this strain for bioethanol production.  相似文献   

12.
In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett–Burman (P–B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g−1 initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g−1 initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.  相似文献   

13.
随着新一代生物质能源的研发,利用梭菌的发酵生产丁醇已成为热点。选用能生产丁醇的Clostridium acetobutylicum AS1.7,Clostridium acetobutylicum AS1.132,Clostridium acetobutylicumAS1.134和Clostridium beijerinckii NCMIB 8052,在多种糖源下进行发酵培养,通过比较其在不同糖源条件下的生长情况、糖利用率、丁醇及副产物产量、对丁醇、木糖耐受能力等,综合筛选出了最适用于发酵生产丁醇的备选菌种。NCMIB8052因具有最高产量、相对优良的耐受性及可利用多种糖源的特点,而被确定为发酵能力最强的菌种。  相似文献   

14.
Guava pulp used for ethanol production by three yeast strains contained 10% (w/v) total sugars and was pH 4.1. Ethanol production at the optimum sugar concentration of 10%, at pH 4.1 and 30°C was 1.5%, 3.6% and 3.9% (w/v) by Saccharomyces cerevisiae MTCC 1972, Isolate-1 and Isolate-2, respectively, at 60 h fermentation. Higher sugar concentrations at 15 and 20% were inhibitory for ethanol production by all test cultures. The maximum production of ethanol at optimum natural sugar concentration (10%) of guava pulp, was 5.8% (w/v) at pH 5.0 by Isolate-2 over 36 h fermentation, which was only slightly more than the quantity of ethanol produced by Saccharomyces cerevisiae (5.0%) and Isolate-1 (5.3%) over 36 and 60h fermentation, respectively.  相似文献   

15.
Dilatometric measurements of the volume changes accompanying the binding reactions of azide ion to human adult and pigeon methemoglobins as a function pH at 25°C demonstrate pH values of maximum volume change (pH ΔVmax) which are different for the different hemoglobins. pHΔVmax occurs at pH 6.7 for human methemoglobin A and at pH 7.7 for pigeon methemoglobin. The pHΔVmax occurs near the characteristic pH (pHch) of maximum enthalpy of the same binding reaction. It is shown that the large pH variation in ΔV can arise if the configuration of charged groups on the surface of the molecule is different in methemoglobin and methemoglobin complex. When such a difference in configuration exists the addition of the same number of protons to methemoglobin and methemoglobin complex will give rise to different changes in the partial molar volume of the two species.  相似文献   

16.
Summary A culture of brewer's yeast,Saccharomyces cerevisiae (NCYC 240), maintained on Wickerham's MYGP medium, utilized the principal wort sugars sequentially in the order glucose-maltose-maltotriose, when inoculated into brewer's wort. A culture of the same strain maintained on brewer's wort utilized these three sugars simultaneously. Simultaneous utilization could be induced in MYGP-maintained cultures by successive sub-culture in brewer's wort, and appears to be the general rule of sugar uptake during wort fermentation under brewery conditions.  相似文献   

17.
Autohydrolysis was studied as a pretreatment to enhance sugar yields from enzymatic hydrolysis of wheat and rape straw, beech, birch and poplar sawdust. Reaction temperatures were 185°C to 212°C and the reaction time 20 min. The pretreated slurries were hydrolyzed with “Novo” cellulase and Fusarium sp. 27 cellulase at 45°C and pH 4.8 for 24 h with addition of Fusarium sp. 27 cellbound cellobiase. From 85% to 90% sugar content of substrates were converted to reducing sugars after 24 h enzymatic hydrolysis, with exception of poplar wood. 10.8 g biomass was obtained after cultivation of Fusarium sp. 27 with water solution hemicellulose fraction from 100 g beech sawdust autohydrolyzed at 200°C during 20 min.  相似文献   

18.
Sugar cane bagasse was subjected to a mixed culture, solid substrate fermentation with Trichoderma reesei QM9414 and Aspergillus terreus SUK-1 to produce cellulase and reducing sugars. The highest cellulase activity and reducing sugar amount were obtained in mixed culture. The percentage of substrate degradation achieved employing mixed culture was 26% compared to 50% using separate cultures of the two molds. This suggests that the synergism of enzymes in mixed culture solid substrate fermentation have lower synergism than in pure culture.  相似文献   

19.
Glucose and lactose effect on AD and ADD bioconversion by Mycobacterium sp.   总被引:1,自引:0,他引:1  
Summary The glucose and lactose effect on the steroid biotransformation reactions by Mycobacterium sp. NRRL B-3683 was studied. The reduction reactions increased at pH 7 and when sugars are added. The oxidation reactions are highers at pH 8 without any sugar added. The dehydrogenation reaction is inhibited when an endogenous carbon source is present in the media.  相似文献   

20.
Steam-exploded aspenwood chips were acid hydrolysed to their component sugars. Near theoretical solvent yields were achieved in both the acetone-butanol-ethanol (ABE) fermentation and 2,3-butanediol fermentation of these liberated sugars. When Clostridium acetobutylicum was grown on wood hydrolysates, final butanol yields of 9.0 g/L (0.26 g of butanol per g of sugar consumed) were obtained. When Klebsiella pneumoniae was grown on the wood hydrolysates, final butanediol concentrations exceeded 20 g/L, resulting in a bioconversion efficiency approaching 0.5 g of butanediol per g of sugar utilised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号