首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine catenulid platyhelminths of the genus Paracatenula lack mouth, pharynx and gut. They live in a symbiosis with intracellular bacteria which are restricted to the body region posterior to the brain. The symbiont-housing cells (bacteriocytes) collectively form the trophosome tissue, which functionally replaces the digestive tract. It constitutes the largest part of the body and is the most important synapomorphy of this group. While some other features of the Paracatenula anatomy have already been analyzed, an in-depth analysis of the trophosome region was missing. Here, we identify and characterize the composition of the trophosome and its surrounding tissue by analyzing series of ultra-thin cross-sections of the species Paracatenula cf. polyhymnia. For the first time, a protonephridium is detected in a Paracatenula species, but it is morphologically reduced and most likely not functional. Cells containing needle-like inclusions in the reference species Paracatenula polyhymnia Sterrer and Rieger, 1974 were thought to be sperm, and the inclusions interpreted as the sperm nucleus. Our analysis of similar cells and their inclusions by EDX and Raman microspectroscopy documents an inorganic spicule consisting of a unique magnesium–phosphate compound. Furthermore, we identify the neoblast stem cells located underneath the epidermis. Except for the modifications due to the symbiotic lifestyle and the enigmatic spicule cells, the organization of Paracatenula cf. polyhymnia conforms to that of the Catenulida in all studied aspects. Therefore, this species represents an excellent model system for further studies of host adaptation to an obligate symbiotic lifestyle.  相似文献   

2.
The ultrastructure of the trophosome of Gastromermis boophthorae (Welch & Rubzov, 1965) is described at selected points in the life cycle of this mermithid nematode. The trophosome is grossly modified for the assimilation and storage of nutrients, and comparison is made with a generalised nematode intestine, with which it may be homologous. At its maximum development the trophosome is a solid syncytial cylinder which almost fills the body cavity of the nematode. Internally it is packed with nutrient reserves, whilst the outer cytoplasmic layer exhibits features indicative of transport functions. The trophosome is linked to the hypodermis of the body wall by radially-orientated cytoplasmic bridges, and the possible significance of this arrangement is discussed in relation to the nutritional function of the trophosome.  相似文献   

3.
Beard worms (Siboglinidae, Polychaeta) lack a mouth and a digestive tract and harbour chaemosynthetic bacteria in the bacteriocytes of the trophosome. Since beard worms depend on the organic compounds produced by the bacteria for nourishment, the bacteriocytes should be efficient in exchanging various substances with body fluids. For this reason, it is important to determine how the bacteriocytes are organized in the trophosome. As the first step of the present study, the appearance of bacteriocytes was examined in routinely stained paraffin sections. Second, visualization of the actual distribution of the bacteriocytes was attempted using whole‐mount in situ hybridization with a probe of the 16S rRNA nucleotide sequence of the bacterium. After routine haematoxylin & eosin staining, the bacteriocytes appeared to be aligned in cell cords accompanied with nutrient‐deposit cells that extended from both sides of the trophosome toward the dorsal side and folded up in the coelomic spaces. In whole‐mount preparations, however, bacteriocytes with intense signals of 16S rRNA were seen three‐dimensionally as many irregular leaves arranged from both sides of the ventral vessel toward the dorsal vessel. We will discuss the physiological significance of this characteristic distribution of the bacteriocytes in the present species.  相似文献   

4.
Gutless vestimentiferan tubeworms are known to harbor endosymbiotic bacteria in a specialized tissue, the trophosome, which consists of lobules. The endosymbionts of vestimentiferans inhabiting sulfide-rich hydrothermal vents are monospecific for their host. In contrast, previous studies suggest that vestimentiferas of methane-rich seeps may host multispecific symbionts. Phylogenetic analysis and dot-blot hybridization of 16S ribosomal RNA genes (16S rDNA) detected 4 operational taxonomic units (OTUs) in the trophosome of the vestimentifera Lamellibrachia species from a bathyal methane-seep. The OTUs were closely related to 16S rDNA of the species belonging to -Proteobacteria (Sulfitobacter), -Proteobacteria (Janthinobacterium), and -Proteobacteria (Acinetobacter and Pseudomonas). Localizations of the 4 OTUs within the trophosome were confirmed by in situ hybridization (ISH). ISH signals of the -proteobacterial OTU were observed in the innermost zone of the trophosome lobules. In contrast, ISH signals of the - and -proteobacterial OTUs were observed at the periphery of the lobules; however, whether they occur inside or outside the lobules remains unclear. These results support the possibility that the studied methane-seep tubeworm has a microflora composed of multispecific endosymbionts. Present address (Yukimasa Higashide): Noto Marine Center, 3-47 Uchiura, Suzu, Ishikawa 927-0552, Japan Present address (Hiroyuki Kimura): Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6 1-1, Higashi 1-Chome, Tsukuba-shi, Ibaraki 305-8566 Japan  相似文献   

5.
The symbiotic hydrothermal vent tubeworm Riftia pachyptila needs to supply its internal bacterial symbionts with carbon dioxide, their inorganic carbon source. Our aim in this study was to characterize the carbonic anhydrase (CA) involved in CO(2) transport and conversion at various steps in the plume and the symbiotic tissue, the trophosome. A complete 1209 kb cDNA has been sequenced from the trophosome and identified as a putative alpha-CA based on BLAST analysis and the similarities of total deduced amino-acid sequence with those from the GenBank database. In the plume, the putative CA sequence obtained from cDNA library screening was 90% identical to the trophosome CA, except in the first 77 nucleotides downstream from the initiation site identified on trophosome CA. A phylogenetic analysis showed that the annelidan Riftia CA (CARp) emerges clustered with invertebrate CAs, the arthropodan Drosophila CA and the cnidarian Anthopleura CA. This invertebrate cluster appeared as a sister group of the cluster comprising mitochondrial and cytosolic isoforms in vertebrates: CAV, CAI II and III, and CAVII. However, amino acid sequence alignment showed that Riftia CA was closer to cytosolic CA than to mitochondrial CA. Combined biochemical approaches revealed two cytosolic CAs with different molecular weights and pI's in the plume and the trophosome, and the occurrence of a membrane-bound CA isoform in addition to the cytosolic one in the trophosome. The physiologic roles of cytosolic CA in both tissues and supplementary membrane-bound CA isoform in the trophosome in the optimization of CO(2) transport and conversion are discussed.  相似文献   

6.
Experiments supporting the possible role of the free sulfur-containing amino acid thiotaurine, as a transport and storage compound for sulfide in invertebrates with thiotrophic symbionts are described. The free-living chemotrophic sulfur-oxidising bacterium, Thiobacillus hydrothermalis (strain DSMZ 7121), was used as a model for the symbionts as the actual symbionts have not been obtained in culture.Thiotaurine contains two sulfur atoms, namely the inner sulfone and the outer sulfane sulfur; the latter presents a potential source of reducing equivalents for the symbiont. Nevertheless, we observed no oxidation of thiotaurine when this compound was added to a culture of T. hydrothermalis pre-grown on sulfide. In contrast, when thiotaurine was added to the culture together with an extract of the trophosome of a vestimentiferan tubeworm from the Manus basin, we observed that thiotaurine was oxidised to hypotaurine with concomitant acidification and formation of bacterial biomass. Thus, the trophosome contains an unknown catalytic factor. We suggest that thiotaurine requires reduction prior to oxidation by T. hydrothermalisand that the host may catalyse the conversion of thiotaurine through the glutathione redox couple. This way, the host can accurately control energy delivery (as reduced sulfur) to the symbionts and can therefore control their symbiont biomass.  相似文献   

7.
The trophosome-an organ especially evolved to accommodate symbiotic bacteria-is a key character of the polychaete family Siboglinidae. Astonishingly, the trophosomes vary in organization and origin between the different siboglinid taxa. The trophosome of the small genus Sclerolinum was nearly unknown until now. Here we investigated the trophosome of S. contortum from the Gulf of Mexico, using light and electron microscopy. We show that this organ derives from the visceral mesoderm and propose that the trophosome of the sister clade Vestimentifera and Sclerolinum is a homologous character. Like that of juvenile vestimentiferans, the trophosome of Sclerolinum trophosome is simply organized. This study reveals that the Sclerolinum trophosome exhibits two regions that differ in the organization of host tissue and the size and shape of the symbionts. We suggest that a specific cell cycle within the symbiont-housing organ is directed along the longitudinal body axis, with a region of proliferation anteriorly and a region of degradation posteriorly. Using Raman microspectroscopy we demonstrate that the endosymbionts of S. contortum from the Gulf of Mexico contain sulfur vesicles, and we argue for a chemoautotrophic sulfur-oxidizing metabolism.  相似文献   

8.
Nematode females of the genus Trophomera (Benthimermithidae) from the collection of the Smithsonian’s National Museum of Natural History (Washington, DC, USA) were examined. Nematodes were collected in different parts of the Western Atlantic (Hatteras Abyssal Plain, Brazil Basin, and Argentina Basin) from depths of 467–5,223 m. Two new species are described. Body length of T. americana sp. n. is 3,250–4,470 μm; posterior end conical with rounded tip; cephalic setae about 3–4 μm long; trophosome consisting of several longitudinal rows of large cells; ovaries reflected; mature eggs 35 μm in diameter. Body length of T. longiovaris sp. n. is 7,870–15,400 μm; posterior end conical with rounded tip; cephalic sensilla 7 μm long; mouth opening vestigial, present as very narrow apical pore; pharynx devoid of internal lumen and muscular envelope; midgut represents a trophosome without internal lumen; trophosomal cells arranged in 3–4 longitudinal rows; rectum and anus vestigial; female reproductive system didelphic, amphidelphic, very long, occupying about 0.8 total body length; ovaries telogonic, outstretched; oviducts very long, repeatedly folded across body axis; proximal parts of oviducts being than distal ones, uterus distinctly formed. New finds of two known species, T. arnauidi and T. marionensis, are also recorded and described.  相似文献   

9.
The giant tubeworm Riftia pachyptila lives in symbiosis with the chemoautotrophic gammaproteobacterium Cand. Endoriftia persephone. Symbionts are released back into the environment upon host death in high-pressure experiments, while microbial fouling is not involved in trophosome degradation. Therefore, we examined the antimicrobial effect of the tubeworm’s trophosome and skin. The growth of all four tested Gram-positive, but only of one of the tested Gram-negative bacterial strains was inhibited by freshly fixed and degrading trophosome (incubated up to ten days at either warm or cold temperature), while no effect on Saccharomyces cerevisiae was observed. The skin did not show antimicrobial effects. A liquid chromatography-mass spectrometric analysis of the ethanol supernatant of fixed trophosomes lead to the tentative identification of the phospholipids 1-palmitoleyl-2-lyso-phosphatidylethanolamine, 2-palmitoleyl-1-lyso-phosphatidylethanolamine and the free fatty acids palmitoleic, palmitic and oleic acid, which are known to have an antimicrobial effect. As a result of tissue autolysis, the abundance of the free fatty acids increased with longer incubation time of trophosome samples. This correlated with an increasing growth inhibition of Bacillus subtilis and Listeria welshimeri, but not of the other bacterial strains. Therefore, the free fatty acids produced upon host degradation could be the cause of inhibition of at least these two bacterial strains.  相似文献   

10.
The symbiotic polychaetes of the genus Osedax living on the bones of whale carcasses have become known as bone‐eating worms. It is believed that whale bones are the source of nutrition for those gutless worms and that fatty acids are produced by their symbionts and transferred to the host. However, the symbionts are of the heterotrophic group Oceanospirillales and as such are not able to synthesize organic carbon de novo. Also, they are not housed in close contact to the bone material. We studied the ultrastructure of the integument overlying the symbiont housing trophosome in the ovisac region and the roots region and of the symbiont‐free trunk region of Osedax to investigate the host's possible contribution in feeding for the whole symbiosis. The epidermis differs conspicuously between the three regions investigated and clearly points to being correlated with different functions carried out by those regions. The ultrastructure of the integument of the root region changed towards the ovisac region and corresponds with the change of the ultrastructure observed in the Osedax trophosome. We suggest that the epidermis in the root region is tightly linked to bone degradation and nutrient uptake. The trunk region possess two types of unicellular gland cells, at least one of which seems to be involved in secretion of the gelatinous tube of adult Osedax females. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The present study describes the distribution and properties of enzymes of the catabolic pathway of pyrimidine nucleotides in Riftia pachyptila, a tubeworm living around deep-sea hydrothermal vents and known to be involved in a highly specialized symbiotic association with a bacterium. The catabolic enzymes, 5'-nucleotidase, uridine phosphorylase, and uracil reductase, are present in all tissues of the worm, whereas none of these enzymatic activities were found in the symbiotic bacteria. The 5'-nucleotidase activity was particularly high in the trophosome, the symbiont-harboring tissue. These results suggest that the production of nucleosides in the trophosome may represent an alternative source of carbon and nitrogen for R. pachyptila, because these nucleosides can be delivered to other parts of the worm. This process would complement the source of carbon and nitrogen from organic metabolites provided by the bacterial assimilatory pathways. The localization of the enzymes participating in catabolism, 5'-nucleotidase and uridine phosphorylase, and of the enzymes involved in the biosynthesis of pyrimidine nucleotides, aspartate transcarbamylase and dihydroorotase, shows a non-homogeneous distribution of these enzymes in the trophosome. The catabolic enzymes 5'-nucleotidase and uridine phosphorylase activities increase from the center of the trophosome to its periphery. In contrast, the anabolic enzymes aspartate transcarbamylase and dihydroorotase activities decrease from the center toward the periphery of the trophosome. We propose a general scheme of anatomical and physiological organization of the metabolic pathways of the pyrimidine nucleotides in R. pachyptila and its bacterial endosymbiont.  相似文献   

12.
The hydrothermal vent tubeworm Ridgeia piscesae relies on intracellular chemolithoautotrophic symbionts for its nutrition. Yet, little is known about symbiont diversity within and between individual worms. We report several lines of molecular evidence for multiple genotypes of very closely related symbionts within the trophosome of the R. piscesae. We examined the distribution of genotypic variants (insertions, deletions, and substitutions) in whole genome shotgun sequences of symbionts from the trophosome of a unique individual R. piscesae and the pooled sequences of five other tubeworms of the same species. Observed heterogeneity is unlikely to be the result of recent point or structural mutations of a monoclonal symbiont lineage. To assess inter-host diversity we examined single nucleotide polymorphisms (SNPs) in pyrosequences of the highly variable regions V1 to V3 of the symbiont 16S rRNA gene across 53 individual hosts from two vent sites. Most of the identified SNPs were found in more than one individual, and one seemed to be region specific. Two of the identified SNPs were also present in metagenomic data generated from high-throughput sequencing of trophosome material from an individual R. piscesae. Finally, we observed compositional and structural variations of CRISPR spacers within a CRISPR array.  相似文献   

13.
Abstract. The trophosome of adults of Riftia pachyptila (Vestimentifera) was reinvestigated using 3-dimensional ultrastructural reconstruction and quantitative morphological analysis. The symbionts make up 24.1%, the symbiont-containing cells (bacteriocytes) are 70.5% of the trophosome's volume. The trophosome is composed of lobules that have a central axial blood vessel surrounded by a myoepithelium containing bacteriocytes, in turn surrounded by an apolar tissue of bacteriocytes. Part of the splanchnic peritoneum lining the trunk coelom encases the bacteriocytes and forms a ramifying network of peripheral blood vessels. Based on the morphology and ultrastructure of the adult, we hypothesize a mesodermal rather than endodermal origin of trophosome and its constitute bacteriocytes. Some of the central bacteriocytes are part of the myoepithelium surrounding the axial blood vessel and act as stem cells for a proliferating tissue produced in the center and ultimately degraded at the periphery of each lobule. Similarly, the rod-shaped symbionts in the center act as stem cells and exhibit a simple cell cycle. Differentiation into cocci takes place in the median and peripheral zone. Lysis of cocci occurs in the degenerative zone.  相似文献   

14.
The polychaete family Siboglinidae, which is currently construed as comprising the Frenulata, Monilifera (composed of Sclerolinum), Vestimentifera, and Osedax, has become known for its specialized symbiont-housing organ called the trophosome. This organ replaced the digestive system of the worms and is located in the elongated trunk region in Frenulata, Sclerolinum, and Vestimentifera. Currently two types of trophosomes have been described: in the taxa Frenulata and Sclerolinum the bacteriocytes originate from endoderm, and in Vestimentifera they originate from mesoderm. In Osedax, a trophosome was described as lacking (Rouse et al., 2004), but bacteriocytes are located in Osedax's characteristic root tissue. Here, we argue for a consistent name for the symbiont-housing tissue, namely trophosome, as in other siboglinids. In this study we provide morphological evidence that in Osedax the bacteriocytes are derived from somatic mesoderm. We show that the trophosome in Osedax is an apolar tissue composed of bacteriocytes and nonsymbiotic cells. As in vestimentiferans, a specific cell cycle was identified; however, in this case it is directed from the posterior to the anterior end of the worms instead of from the center toward the periphery. Comparison of all siboglinid trophosomes and re-evaluation of their body regions allows us to discuss whether the trophosomes are homologous and to hypothesize about the organization of the last common ancestor of Siboglinidae.  相似文献   

15.
Pogonophora, also known as Siboglinidae, are tube-dwelling marine annelids. They rely on endosymbiotic chemoautotrophic bacteria for nutrition and their anatomy and physiology are adapted to their need to obtain both oxygen and reduced sulphur compounds. Frenulate pogonophores are generally long and slender, sediment-living tubeworms; vestimentiferans are stouter, inhabitants of hydrothermal vents and cool seeps; and moniliferans or sclerolinids are very slender inhabitants of decaying wood and sulphidic sediments. The anatomy and ultrastructure of the three groups are compared and recent publications are reviewed. Annelid characters are the presence of chaetae and septa, concentrated at the hind end. The adaptations to a specialised way of life include, in particular, the chitinous tube; the anterior appendages that function as gills; the internal tissue called the trophosome, where the endosymbiotic bacteria live; and the blood vascular system that transports oxygen, sulphide and carbon dioxide to the trophosome.  相似文献   

16.
Abstract It has been proposed that Riftia pachyptila , a pogonophoran tube worm abundant at hydrothermal deep sea vents, metabolizes solely via a chemoautotrophic symbiosiols. The symbionts resemble sulfur oxidizing bacteria and form the specific 'trophosome' tissue. Samples of DNA purified from trophosome and vestimentum (muscle) tissues of R. pachyptila were comparatively characterized by thermal denaturation studies, and by analysis of renaturation kinetics. The results show that the great majority of trophosome DNA is homogeneous and prokaryotic with a base ratio of approx. 58 mol% G + C. Its genome size (genetic complexity) is typical of free-living bacteria. Approx. 5% of trophosome DNA appears to be invertebrate DNA equivalent to that found in the vestimentum tissue which lacks symbionts.  相似文献   

17.
The role of intestinal bacteria in induction and repression of ulcer formation in the ileum of rats treated with one of the nonsteroidal antiinflammatory drugs (NSAIDs), 5-bromo-2-(4-fluorophenyl)-3-(4-methylsulfonylphenyl) thiophene (BFMeT), was examined in this study. BFMeT was administered by intragastric gavage once at doses of 500-1,500 mg/kg of body weight to Wistar rats treated with and without antibiotics (bacitracin, neomycin, streptomycin), germ-free rats and gnotobiotic rats, and 72 hr later their gastrointestinal tracts were examined for ulcer formation. A single oral administration of BFMeT induced ileal ulcers in specific pathogen-free rats. However, the rats given antibiotics to reduce the intestinal bacteria had no ulcers. BFMeT-treated germ-free rats and gnotobiotic rats mono-associated with Bifidobacterium adolescentis or Lactobacillus acidophilus also had no intestinal ulcers. However, the drug induced ileal ulcers in gnotobiotic rats mono-associated with Eubacterium limosum or Escherichia coli. An overnight culture of B. adolescentis or L. acidophilus or yogurt containing Bifidobacterium breve and Streptococcus thermophilus, when given as drinking water, inhibited ulcer formation in the ileum of rats treated with BFMeT. Gram staining of the ileal contents of normal rats revealed that 97.4% of the stained microorganisms were Gram-positive rods and only 1.2% were Gram-negative rods. In the group of rats with ulcers induced by BFMeT, the Gram-positive rods decreased by 56.4% and the Gram-negative rods including Escherichia coli, Klebsiella, Proteus and Bacteroides increased by 37.3%. However, in the group of rats administered the Bifidobacterium culture, the Lactobacillus culture or yogurt, the percentages of the Gram-negative rods were decreased. Although Lactobacillus was a major bacterium in the ileum of normal rats, the Gram-negative facultatively anaerobic rods E. coli, Klebsiella and Proteus were increased in the ulcerated ileum of rats treated with BFMeT, suggesting that these bacteria are associated with ulcer formation in rats treated with NSAIDs, and that Lactobacillus and Bifidobacterium inhibit it by repressing the growth of ulcer-inducing bacteria.  相似文献   

18.
The retinal photoreceptors from larval channel catfish (Ictalurus punctatus) were studied using single cell, in situ microspectrophotometry. Rods appear at 5 days after hatch; cones are present from day one. The rods contain a visual pigment which absorbs light maximally at 540 nm. The cones contain either a green sensitive visual pigment with peak absorbance at 535 nm or a red sensitive visual pigment with peak absorbance at 608 nm. All pigments are based on vitamin A2. Visual pigment complement does not change with age, as photoreceptors from adultI. punctatus, I. catus andI. melas contain visual pigments virtually identical to those of the larvalI. punctatus. Regardless of age, no visual pigment with peak absorbance in the short wavelength region of the spectrum was ever observed. Scanning electron microscopy of adultI. punctatus retinas showed large rods with long, cylindrical outer segments and smaller cones with short, tapered outer segments. The myoids of both rods and cones are extensable. The rods, embedded in a granular tapetal material, comprise from 50 to 60% of the photoreceptors. Only single cones are present. The data are consistent with the idea that the ictalurid catfishes spend their entire lives in an environment deficient in blue light.  相似文献   

19.
The deep-sea tube worm Riftia pachyptila (Vestimentifera) from hydrothermal vents lives in an intimate symbiosis with a sulfur-oxidizing bacterium. That involves specific interactions and obligatory metabolic exchanges between the two organisms. In this work, we analyzed the contribution of the two partners to the biosynthesis of pyrimidine nucleotides through both the "de novo" and "salvage" pathways. The first three enzymes of the de novo pathway, carbamyl-phosphate synthetase, aspartate transcarbamylase, and dihydroorotase, were present only in the trophosome, the symbiont-containing tissue. The study of these enzymes in terms of their catalytic and regulatory properties in both the trophosome and the isolated symbiotic bacteria provided a clear indication of the microbial origin of these enzymes. In contrast, the succeeding enzymes of this de novo pathway, dihydroorotate dehydrogenase and orotate phosphoribosyltransferase, were present in all body parts of the worm. This finding indicates that the animal is fully dependent on the symbiont for the de novo biosynthesis of pyrimidines. In addition, it suggests that the synthesis of pyrimidines in other tissues is possible from the intermediary metabolites provided by the trophosomal tissue and from nucleic acid degradation products since the enzymes of the salvage pathway appear to be present in all tissues of the worm. Analysis of these salvage pathway enzymes in the trophosome strongly suggested that these enzymes belong to the worm. In accordance with this conclusion, none of these enzyme activities was found in the isolated bacteria. The enzymes involved in the production of the precursors of carbamyl phosphate and nitrogen assimilation, glutamine synthetase and nitrate reductase, were also investigated, and it appears that these two enzymes are present in the bacteria.  相似文献   

20.
This study deals with the organization of the coelom in the all the parts of the body of the vestimentiferan Oasisia alvinae. The localization of the dissepiment between the vestimental and trunk regions in males and females differs. The histological structure and anatomy of the trophosome and the vascular, excretory, and reproductive systems is described. Three cell types are distinguishable in each trophosome lobe. Up to four bacteriocytes could be found in a row from the central blood vessel to the surface of the organ. The main blood vessels in almost all parts of the body have a well-developed muscle sheath and an endothelium that is expressed in varying degrees. In the trunk region, an intravasal body, which is represented by two modifications, is observed in the dorsal blood vessel. The excretory tree is located under the brain. The reproductive system is symmetrical in males and dissymmetrical in females. The gonoducts of females are extensive; in males, they are short and open in the front part of the reproductive coelom. The genital coeloms of both sexes perform the functions of gamete production and storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号