首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Estradiol 17-β (E2) was found to either inhibit or synergize Na-insulin (Ins)-induced meiotic maturation of Rana oocytes. Inhibition of Ins activity occurred in the presence of the follicular investments of the oocyte; synergism with Ins occurred in oocytes denuded of the follicle wall. Similarly, co-incubation of E2 with frog pituitary homogenate (FPH) or pregnenolone (Pe) significantly decreased meiotic reinitiation as determined by germinal vesicle dissolution (GVD) in follicle-enclosed oocytes. By contrast, E2 had no consistently significant effect on progesterone (P)-induced meiosis in follicle-enclosed oocytes. Furthermore, E2 had no significant effect, either inhibitory or synergistic, on Pe- or P-induced GVD of denuded oocytes. Thus, of the meiotogens tested (Ins, P, Pe, FPH), all but P were consistently inhibited by E2 in the presence of the follicle wall. Na-insulin was the only meiotogen tested (Ins, P, Pe) which was potentiated by E2 in denuded oocytes, However, when E2 and Ins were spatially separated on the surface of individual intact follicles, the result was synergism of Ins-induced GVD rather than inhibition. These results suggest that Ins acts to induce GVD in the denuded oocyte through a mechanism distinct from that used by P (ie, Ins mechanism allows E2 synergism while the P mechanism does not). The E2 inhibitory effect on Ins-induced GVD appears to be dependent upon simultaneous exposure of follicle wall tissue to mixtures of E2 and Ins. The synergistic effect of E2 on Ins-induced GVD is dependent upon the simultaneous exposure of the oocyte surface to Ins and E2, either as a homogenous mixture in the case of denuded oocytes or as single substances at independent sites, for follicle-enclosed oocytes.  相似文献   

2.
3.
In this study we have examined the effects of denuded oocyte coculture with dissociated cumulus cells (CC) or intact oocyte-CC complexes on meiotic resumption. When denuded oocytes (DO) or cumulus cell-enclosed oocytes (CEO) were cultured in 40-microl drops of medium under oil, and held in meiotic arrest with 4 mM hypoxanthine plus 25 microM dbcAMP, they underwent germinal vesicle breakdown (GVB) at similar frequencies (34%-35%). Coculture of DO with complexes or dissociated CCs stimulated maturation (50% and 61% GVB, respectively), with no effect of DO on maturation of cocultured CEO (32% GVB). This coculture effect was increased with the number of CCs added to the culture drop. When either glucose or glutamine was eliminated from the medium, no meiotic induction resulted from cocultured CCs. When CEO were cultured alone in microdrops, increasing their number from 10 to 50 significantly lowered the percentage resuming maturation, an effect also reduced by removing glucose and/or glutamine from the medium. This effect was not observed with DO. When inhibitory medium was conditioned overnight with complexes, subsequent culture with DO led to higher maturation percentages than culture in unconditioned medium; however, when CEO were cultured in conditioned medium, there was either no effect or increased inhibition of maturation. Assay of glucose and pyruvate in spent medium showed that DO cultured alone consumed glucose and pyruvate, but under CC coculture conditions more glucose was consumed and significant amounts of pyruvate accumulated in the medium, changes that led to an increase in the maturation of DO. Further experiments showed that DO were more sensitive than CEO to the meiosis-inducing effect of pyruvate. These results demonstrate different responsiveness of DO and CEO to coculture conditions and question the physiological relevance of denuded oocyte/CC coculture to study meiotic induction.  相似文献   

4.
The effect of follicular cells and their conditioned media on the FSH-induced oocyte maturation of oocytes surrounded by cumulus cells connected to the membrana granulosa (COCGs) was investigated. COCGs and cumulus oocyte complexes (COCs) were cultured for 22 hr in M199 supplemented with 0.05 IU FSH/ml in either the presence of pieces of theca cell layer or in the presence of pieces of membrana granulosa. COCGs and COCs were also cultured for 22 hr in either theca-cell conditioned medium (CMt) or in granulosa cell conditioned medium (CMg), both supplemented with 0.05 IU FSH/ml. To investigate the importance of cell–cell contacts between granulosa cells and cumulus cells, oocytes were cultured as COCs in CMt, as COCs in CMt supplemented with pieces of membrana granulosa, or as COCGs in CMt. In all groups the medium was supplemented with 0.05 IU FSH/ml. After culture the nuclear status of the oocytes was assessed using orcein staining. Culture of COCGs in the presence of theca cells as well as in CMt resulted in a significantly decreased proportion of oocytes that had undergone germinal vesicle breakdown (GVBD) at the end of the culture period as compared to the control. Of the oocytes that resumed meiosis in the presence of theca cells or in CMt, the proportion of oocytes that progressed up to the MII stage was significantly reduced. This indicates the production of a meiosis-inhibiting factor by theca cells. Culture with COCs instead of COCGs resulted in comparable results although the effect was less pronounced. The significant effect on the progression of meiosis of oocytes cultured as COCGs or as COCs, obtained in the presence of granulosa cells or in CMg, was much weaker than the effect of theca cells or culture in CMt. Culture of COCs in CMt supplemented with layers of membrana granulosa and 0.05 IU FSH/ml, resulted in significantly less oocytes that resumed meiosis as compared to culture of COCs in CMt. Of the oocytes that showed GVBD, the proportion that progressed up to the MII stage was significantly reduced. Attachment of the COCs to the membrana granulosa enhanced this inhibiting action of CMt on the progression of meiosis. It is concluded that theca cells secrete a stable factor that inhibits the progression of FSH-mediated meiosis in oocytes of COCGs. Mol. Reprod. Dev. 51:315–321, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
A factor, secreted by theca cells, inhibits FSH induced resumption of meiosis in bovine oocytes that are surrounded by cumulus cells which are attached to a piece of the membrana granulosa (COCGs). In order to characterize this factor, theca cell conditioned medium (CMt) was heat-treated, filtered through a 5 kD spin off filter, charcoal treated, chloroform extracted and protease treated. To investigate whether the meiosis inhibiting factor produced by theca cells was also present in follicular fluid (FF), the same treatments were done with 50% bovine follicular fluid (bFF). COCGs, originating from 2 to 8 mm follicles of bovine ovaries collected at a slaughterhouse, were cultured in groups of 15 per 600 microl medium supplemented with 0.05 IU ml FSH for 22 hr at 39 degrees C in a humidified atmosphere of 5% CO(2). After culture the oocytes were denuded, stained with orcein, and the nuclear status assessed. Heat treatment did not affect the meiosis arresting capacity of CMt since a similar proportion of the oocytes remained at the GV stage after 22 hr of culture in heat treated CMt as compared to the proportion of oocytes in the GV stage after culture in untreated CMt. Filtering through a 5 kD spin-off filter revealed that the meiosis inhibiting action was maintained in the <5 kD fraction, although there was a significant (P < 0.05) loss of inhibiting activity compared to nonfiltered CMt. No significant decrease was observed in the meiosis arresting capacity of the <5 kD fraction after charcoal or protease treatment. Extraction of the <5 kD fraction with chloroform also did not affect the theca cell produced factor. The effect of the theca cell factor on the progression of meiosis of the oocytes that resumed meiosis, as demonstrated by a very low percentage of the oocytes that matured up to the M2 stage, was not affected following any of the treatments. With regard to bFF, the results show a lower percentage of the oocytes in the GV stage after culture in 50% bFF as compared to culture in CMt, but progression of meiosis was clearly inhibited as demonstrated by a significant higher proportion of the oocytes blocked in the M1 stage after resumption of meiosis. In general, with regard to meiotic inhibition, bFF showed the same pattern as CMt following the various treatments. It is concluded that the theca cell secreted factor which inhibits the FSH-induced resumption of meiosis in COCGs is a small, stable, polar molecule which is not a peptide.  相似文献   

6.
Objective: To evaluate mesometrial transplantation of frozen-thawed ovarian tissue in rabbit and to choose the optimized fertilization method for oocytes retrieved from grafts by investigating the capability of oocyte fertilization and further development. Forty rabbits were divided into three groups randomly: control group, fresh tissues transplantation group and frozen-thawed tissues transplantation group. Three months after the transplantation, rabbits were stimulated with FSH and oocytes were retrieved 13 h after human chorionic gonadotropin (HCG) injection. Oocytes matured in vivo or in vitro were then fertilized by conventional in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI), followed by observation and evaluation of fertilization rate and blastocyst formation rate. Blastocytes embryos were transferred to pseudopregnancy rabbits to observe pregnancy rate and birth rate. There were no significant differences in the percentage of oocytes matured either in vivo or in vitro among the three groups. The fertilization rate, cleavage rate and blastocyst formation rate of in vivo-matured oocytes had no difference among the three groups, whether they were fertilized by IVF or ICSI. Significantly higher fertilization rates of in vitro-matured oocytes were observed with ICSI compared with IVF in each group. The blastocyst formation rate of in vitro-matured oocytes was significantly lower than that of in vivo-matured oocytes in each group. The birth rate of in vivo-matured oocytes was significantly higher than that of in vitro-matured oocytes, although the pregnancy rate was similar between them. Mesometrial transplantation of frozen-thawed ovarian tissue may provide favorable conditions for follicle development. Oocytes retrieved from mesometrial grafts can develop to the blastocyst stage and produce live offspring. ICSI can optimize the fertilization rate of in vitro-matured oocytes retrieved from grafts.  相似文献   

7.
8.
This study tests the hypothesis 033 that growing murine oocytes, which are incompetent to resume meiosis, are deficient in their content of p34cdc2 and/or cyclin B, the two subunits of maturation promoting factor (MPF). Accumulation of the two MPF components occurred in an asynchronous manner in growing oocytes. Cyclin B content reached maximal levels in oocytes that were not yet competent to undergo germinal vesicle breakdown (GVB), the first obvious morphological manifestation of the resumption of meiosis. Thus, the amount of cyclin B is not the limiting factor rendering these growing oocytes incompetent to undergo GVB. In contrast, synthesis and accumulation of p34cdc2 increased during the period of oocyte growth in vivo when they became competent to undergo GVB. A similar increase in the amount of p34cdc2 also occurred in cultured granulosa cell-free oocytes despite the lack of oocyte growth, but these cultured oocytes did not become GVB competent. Thus, the accumulation of p34cdc2 is probably necessary, but not sufficient, for mouse oocytes to become competent to undergo GVB. This accumulation occurs autonomously in oocytes independently of growth or of the participation of follicular somatic cells. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Oocyte maturation is a complex process during which epigenetic modifications are dramatically changed, especially histone acetylation and phosphorylation. We have investigated the effects of NaBu (sodium butyrate), a natural HDAC (histone deacetylase) inhibitor, on porcine oocyte maturation at different stages and subsequent embryonic development to improve IVF (in vitro fertilization) and embryo production. COCs (cumulus oocyte complexes) were cultured, IVM (in vitro maturation) supplemented with 1 mM NaBu before or after GVBD [GV (germinal vesicle) breakdown] during maturation. NaBu delayed oocyte meiosis in the GV and GVBD stages in an exposure-dependent manner. However, the short treatment with 1 mM NaBu after GVBD significantly improved the meiotic competence. No positive effects of NaBu on GSH levels and subsequent embryonic development following IVF were seen. Transient exposure to NaBu after GVBD improves meiotic competence, but not subsequently, probably by having an effect on histone acetylation during oocyte maturation.  相似文献   

10.
Experiments were designed to identify the extent to which follicle cells and hormones contribute to the developmental competence of porcine oocytes matured in vitro. Oocyte-cumulus complexes were collected from ovaries by dissection and cultured in 2 ml of TCM199-based medium in 5% CO2 in humidified air at 38.5°C. This basic maturation system was supplemented, for either the first 24 hr only or for the 48-hr culture period, with 1) everted follicle shell alone, 2) gonadotrophic hormones alone, or 3) both follicle shells and hormones. The effect of these treatments was evaluated on 1) meiotic maturation rates, 2) the capacity of matured eggs to undergo activation and early cleavage, and 3) changes to the profile of proteins secreted into the culture medium. The results showed that 1) supplementation with either follicle shell or hormones alone increased the rates of meiotic maturation over the nonsupplemented control group, and 2) combined follicle shell and hormonal supplementation yielded the highest rates for maturation, activation, and cleavage but only when hormonal supplementation was removed after the first 24 hr of culture. Proteins of 30, 37, 45, and 46 kD, but of unknown function, were secreted during the first 24 hr into the culture medium in groups supplemented with follicle shells. The addition of hormones did not affect this pattern of secreted proteins. It is possible that some secreted proteins may act to facilitate full maturation of pig oocytes. Mol. Reprod. Dev. 47:191–199, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Ability of ovarian oocytes from the domestic dog to complete nuclear maturation in vitro (IVM) varies markedly among donors and generally is 20% or less of all oocytes cultured. To identify the cause(s) underlying these significant variations in meiotic maturation (to metaphase II; MII), we retrospectively analyzed data from 1,643 oocytes recovered from 90 bitches for which stage of reproduction and season of year were known. Neither stage of reproduction (proestrus/estrus, diestrus, anestrus, or prepuberty) nor season (P > 0.05) influenced the ability of oocytes to achieve nuclear maturation in vitro. A second study was conducted to examine the impact of follicular size on meiotic maturation. Populations of large oocytes were recovered from four categories of follicles (ranging from <0.5 to > 2 mm in diameter) and cultured in TCM 199 for 48 hr. Follicular size influenced (P < 0.05) meiotic competence. Mean percentages of MII oocytes were 16.9 +/- 9.2, 26.1 +/- 7.6, 38.4 +/- 9.2, and 79.5 +/- 10.9 for oocytes recovered from < 0.5 mm, > or = 0.5-< 1 mm, 1-2 mm, and > 2 mm diameter follicles, respectively. In summary, stage of reproduction and season have no impact on the ability of dog oocytes to achieve nuclear maturation in vitro. However, we demonstrated for the first time that dog oocytes acquire meiotic competency during follicular development. IVM success of selected oocytes from large size follicles (almost 80%) is about 60% higher than measured in most previous studies involving randomly collected oocytes.  相似文献   

12.
Cumulus oocyte complexes (COCs) and cumulus oocyte complexes connected to a piece of the membrane granulosa (COCGs) were isolated from bovine antral follicles with a diameter of 2 to 8 mm. After culture of COCGs without gonadotrophic hormones for 22 hr approximately 50% of the oocytes were still in the germinal vesicle (GV) stage Histology of the COCGs showed that the pieces of the membrana granulosa were free of thecal cells and parts of the basal membrane. This indicates that the membrana granulosa solely inhibits the progression of meiosis. To investigate the effect of gonadotropins on the resumption of meiosis of oocytes from small and medium sized antral follicles, COCs and COCGs were cultured with or without rec-hFSH or hCG. Addition of 0.05 IU rec-hFSH to the culture medium of COCGs resulted in germinal vesicle breakdown in 97.8% of the oocytes compared to 46% in the control group, and an increase of the diameter of the COCs (479 μm vs. 240 μm in the control group). Addition of 0.05 IU hCG to the culture medium had no effect on nuclear maturation (47.2% GV vs. 48.5% GV in the control group nor on cumulus expansion (246 μm vs. 240 μm in the control group). RT-PCR on cDNA of the follicular wall, cumulus cells, granulosa cells, COCs, and oocytes revealed that mRNA for FSH receptor was present in all cell types except oocytes. mRNA of the LH receptor was detected exclusively in thecal cells. Nucleotide sequence analysis and alignment of the cloned PCR products showed the presence of two isoforms of the FSH receptor mRNA and two isoforms of the LH receptor mRNA. It is concluded that, in vitro, resumption of meiosis of oocytes, originating from small and medium sized antral follicles and meiotically arrested by the membrana granulosa, is triggered by FSH and not by LH. This is supported by the fact that receptors for FSH, but not for LH, are transcribed in the cumulus and granulosa cells of these follicles. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Guaranteeing the sustainability of gametogenesis is a fundamental issue for perpetuating the species. In the mammalian ovary, sustainability is accomplished by keeping a number of oocytes “stocked” in the dormant state. Despite the evident importance of this state, the mechanisms underlying the oocyte dormancy are not fully understood, although it is presumed that both intrinsic and extrinsic factors are involved. Here, we review environmental factors involved in the regulation of oocyte dormancy. Consideration of the environmental factors illustrates the nature of the ovarian compartment, in which primordial follicles reside. This should greatly improve our understanding of the mechanisms and also assist in reconstitution of the dormant state in culture. Accumulating knowledge on the dormant state of oocytes will contribute to a wide range of research in fields such as developmental biology, reproductive biology and regenerative medicine.  相似文献   

14.
Immature (germinal vesicle stage) Rana pipiens oocytes typically remain arrested in prophase I of meiosis even after extended periods of in-vitro culture, if not stimulated with hormones. We have, however, sporadically observed “spontaneous” occurrences of oocyte maturation in vitro without the addition of hormones. This study documents some of our observations on this phenomenon and presents experimental results concerning the effects and possible involvement of estrogen and follicle wall components in regulating spontaneous oocyte maturation. Estrogen was found to inhibit spontaneous oocyte maturation (GVBD) in a dose-dependent fashion. Follicles in which spontaneous maturation was inhibited by estrogen retained their responsiveness (GVBD) to both frog pituitary homogenate (FPH) and progesterone stimulation. Inhibitory effects of estrogen on spontaneous maturation, however, were not reversed following incubation of washed follicles in plain culture medium without added hormones. Possible involvement of progesterone synthesis in spontaneous oocyte maturation was ascertained by simultaneously monitoring endogenous progesterone synthesis and the occurrence of spontaneous GVBD over the course of the maturation process. In spontaneous maturing follicle there was a gradual increase in basal levels of progesterone synthesis that preceded GVBD. Significantly, addition of estrogen abolished both the spontaneous progesterone production and spontaneous oocyte maturation. When FPH was added to follicles exhibiting spontaneous oocyte maturation, progesterone production was augmented and the time course of oocyte maturation was greatly accelerated. Involvement of ovarian components in the maturation process was investigated by selective removal of various follicle layers by microdissection. Removal of follicle epithelium and theca layer (defolliculation) markedly decreased spontaneous and FPH-induced maturation, whereas removal of the entire follicle wall (denudation) completely blocked it. Our results suggest that both spontaneous and FPH-induced maturation involve an estrogen sensitive process in the follicle wall. Thus, somatic follicle cells appear to serve as a common mediator for both types of maturation, which are linked by some intrafollicular mechanism involving steroidogenesis. Hence, estrogen may play an important role as an endogenous intrafollicular regulator of oocyte meiotic maturation.  相似文献   

15.
The effects of luteinizing hormone (NIH-bovine LH) and progesterone on maturation in vitro of oocyte-cumulus complexes from adult proestrous rats were studied by comparing proportions of oocytes showing germinal vesicle breakdown, mucification of the cumulus oophorus, and fertilizability. Addition of either or both of the hormones to the medium in concentrations between 1.25 and 10 μg/ml during maturation had no discernible effect on germinal vesicle breakdown or on fertilization. Mucification was stimulated by LH and even more by LH plus progesterone. It was concluded that maturation in vivo is the result of concerted action of the two hormones. However, addition of LH + progesterone had no effect on the fertilizability of these oocytes. We attribute this to a relative insensitivity of the system for fertilization in vitro to subtle changes in the oocyte.  相似文献   

16.
Maturation of Xenopus laevis oocytes can be induced by mianserine, a tricyclic antidepressant. K+-free medium facilitates this maturation process. Mianserine must be kept in contact with the oocytes during the whole process of maturation for maximal efficiency. It is inactive after injection into the oocytes. Mianserine induces the formation of maturation-promoting factor (MPF) in the treated oocytes. Mianserine-induced maturation is strongly inhibited by theophylline, even in K+-free medium. Progesterone displays synergistic effects with mianserine for the induction of maturation. Likewise, oestradiol shows cooperative maturing effects with progesterone as well as with mianserine. It is suggested that mianserine exerts its primary effects on oocyte maturation by inhibiting a membrane adenylate cyclase.  相似文献   

17.
In mammals, the nucleolus of full‐grown oocyte is essential for embryonic development but not for oocyte maturation. In our study, the role of the growing oocyte nucleolus in oocyte maturation was examined by nucleolus removal and/or transfer into previously enucleolated, growing (around 100 µm in diameter) or full‐grown (120 µm) pig oocytes. In the first experiment, the nucleoli were aspirated from growing oocytes whose nucleoli had been compacted by actinomycin D treatment, and the enucleolated oocytes were matured in vitro. Most of non‐treated or actinomycin D‐treated oocytes did not undergo germinal vesicle breakdown (GVBD; 13% and 12%, respectively). However, the GVBD rate of enucleolated, growing oocytes significantly increased to 46%. The low GVBD rate of enucleolated, growing oocytes was restored again by the re‐injection of nucleoli from growing oocytes (23%), but not when nucleoli from full‐grown oocytes were re‐injected into enucleolated, growing oocytes (49%). When enucleolated, full‐grown oocytes were injected with nucleoli from growing or full‐grown oocytes, the nucleolus in the germinal vesicle was reassembled (73% and 60%, respectively). After maturation, the enucleolated, full‐grown oocytes injected with nucleoli from full‐grown oocytes matured to metaphase II (56%), whereas injection with growing‐oocyte nucleoli reduced this maturation to 21%. These results suggest that the growing‐oocyte nucleolus is involved in the oocyte's meiotic arrest, and that the full‐grown oocyte nucleolus has lost the ability. Mol. Reprod. Dev. 78:426–435, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
19.
Pig oocytes obtained from slaughterhouse material and rat oocytes obtained from PMSG-treated immature females were incubated as isolated oocytes or injected into explanted pig follicles (5–8 mm). Free oocytes of both species, with or without their cumulus investment or gonadotropins during culture, matured at high rates after 30 hr or 9–10 hr of culture, respectively. Gonadotropic stimulation was necessary for maturation of both the native and injected cumulus-intact pig oocytes in follicle culture. Cumulus-free pig oocytes injected into follicle failed to mature in response to gonadotropic stimulation, suggesting an inability to perceive or respond to stimulation. Injected rat oocytes, however, matured irrespective of cumulus investment or gonadotropic stimulation. Their maturation was delayed and reduced at 9 hr. These results in the rat suggest that the pig follicular environment is incapable of regulating rat oocyte maturation but rather presents a permissive or supportive environment for their maturation. The explanted surrogate follicles from the pig or other species may provide a useful model for the study of oocyte-follicle interactions in oocyte maturation within or between species.  相似文献   

20.
The influence of diluted Ringer solution on ovulation and maturation of common frog oocytes stimulated in vitro by homologous pituitary extract (0.005 pit/ml) or progesterone (1 μg/ml) was studied. During hibernation, the dilution of Ringer solution led to a decreased percentage of oocytes ovulated and matured under the influence of both inducers. As the season of reproduction approached, the dependence of oocyte maturation and ovulation on the Ringer solution dilution was reduced. Possible causes of different dependence of the ovulation of amphibian and sturgeon oocytes stimulated by gonadotropic hormones or progesterone on the culture medium osmolality is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号