首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a semi-chemically defined medium, the requirement of extracellular Ca2+ for survival, capacitation, and acrosome reaction of spermatozoa as well as various stages of fertilization in the hamster was studied. A Ca2+-deficient environment is unfavorable for long-term survival of spermatozoa. Sperm capacitation may occur in Ca2+-deficient media, but not as efficiently as in normal media. The acrosome reaction definitely requires extracellular Ca2+. Other processes or phenomena that require extracellular Ca2+ are initiation and maintenance of hyperactivated motility of spermatozoa, penetration of acrosome-reacted spermatozoa into the zona pellucida, fusion of the spermatozoa with eggs, and the development of pronuclear eggs into two-cell embryos. Extracellular Ca2+ is apparently unnecessary for the attachment of spermatozoa to the zona and egg surfaces, decondensation of the sperm nucleus, and the development of sperm and egg pronuclei within the egg. These results were compared with data obtained in other species such as the sea urchin, mouse, rat and guinea pig.  相似文献   

2.
Capacitation of guinea pig spermatozoa in vitro was inhibited by the disulfide-reducing agent dithiothreitol (DTT). Even a brief treatment with DTT inhibited capacitation unless an oxidizing agent (glutathione disulfide) was present in the posttreatment medium. Precapacitated spermatozoa were unable to undergo the acrosome reaction in the presence of DTT, indicating that this reagent also blocks the acrosome reaction. Acrosome-reacted spermatozoa were incapable of attaching to and penetrating the zona pellucida in the presence of DTT. Even when acrosome-reacted spermatozoa were directly brought to the surface of zona-free eggs, they were unable to bind to and fuse with the egg plasma membrane so long as DTT was present in the medium. These observations suggest that the tertiary and quaternary structures of sperm surface proteins regulated by their thioldisulfide status are of critical importance in the physiology and function of spermatozoa preliminary to and in the process of fertilization.  相似文献   

3.
The mammalian sperm acrosome reaction is a unique form of exocytosis, which includes the loss of the involved membranes. Other laboratories have suggested the involvement of hydrolytic enzymes in somatic cell exocytosis and membrane fusion, and in the invertebrate sperm acrosome reaction, but there is no general agreement on such an involvement. Although reference was made to such work in this review, the focus of the review was on the evidence (summarized below) that supports or fails to support the importance of certain hydrolytic enzymes to the mammalian sperm acrosome reaction. Because the events of capacitation, the prerequisite for the mammalian acrosome reaction, and of the acrosome reaction itself are not fully understood or identified, it is not yet always possible to determine whether the role of a particular enzyme is in a very late step of capacitation or part of the acrosome reaction. (1) The results of studies utilizing inhibitors of trypsin-like enzymes suggest that such an enzyme has a role in the membrane events of the golden hamster sperm acrosome reaction. The enzyme involved may be acrosin, but it is possible that some as yet unidentified trypsin-like enzyme on the sperm surface may play a role in addition to or instead of acrosin. Results obtained by others with guinea pig, ram and mouse spermatozoa suggest that a trypsin-like enzyme is not involved in the membrane events of the acrosome reaction, but only in the loss of acrosomal matrix. Such results, which conflict with those of the hamster study, may have been due to species differences or the presence of fusion-promoting phospholipase-A or lipids contaminating the incubation media components, and in one case to the possibly damaging effects of the high level of calcium ionophore used. The role of the trypsin-like enzyme in the membrane events of the hamster sperm acrosome reaction may be to activate a putative prophospholipase and/or to hydrolyse an outer acrosomal or plasma membrane protein, thus promoting fusion. A possible role of the enzyme in the vesiculation step rather than the fusion step of the acrosome reaction cannot be ruled out at present. (2) Experiments utilizing inhibitors of phospholipase-A2, as well as the fusogenic lysophospholipid and cis-unsaturated fatty acid hydrolysis products that would result from such enzyme activity, suggests that a sperm phospholipase-A2 is involved in the golden hamster sperm acrosome reaction. Inhibitor and LPC addition studies in guinea pig spermatozoa have led others to the same conclusion. The fact that partially purified serum albumin is important in so many capacitation media may be explained by its contamination with phospholipase-A and/or phospholipids. Serum albumin may also play a role, at least in part, by its removal of inhibitory products released by the action of phospholipase-A2 in the membrane. The demonstration of phospholipase-A2 activity associated with the acrosome reaction vesicles and/or the soluble component of the acrosome of hamster spermatozoa, and the fact that exogenous phospholipase A2 can stimulate acrosome reactions in hamster and guinea pig spermatozoa, also support a role for the sperm enzyme. The actual site or the sites of the enzyme in the sperm head are not yet known. The enzyme may be on the plasma membrane as well as, or instead of, in the acrosomal membranes or matrix. A substrate for the phospholipase may be phosphatidylcholine produced by phospholipid methylation. It is possible that more than one type of ‘fusogen’ is released by phospholipase activity (LPC and/or cis-unsaturated fatty acids, which have different roles in membrane fusion and/or vesiculation. In addition to acting as a potential ‘fusogen’, arachidonic acid released by sperm phospholipase-A2 probably serves as precursor for cyclo-oxygenase or lipoxygenase pathway metabolites, such as prostaglandins and HETES, which might also play a role in the acrosome reaction. Although much evidence points to a role for phospholipase-A2, phospholipase-C found in spermatozoa could also have a role in the acrosome reaction, perhaps by stimulating events leading to calcium gating, as suggested for this enzyme in somatic secretory cells. (3) A Mg2+-ATPase H+-pump is present in the acrosome of the golden hamster spermatozoon. Inhibition of this pump by certain inhibitors of ATPases (but not by those that only inhibit mitochondrial function) leads to an acrosome reaction only in capacitated spermatozoa and only in the presence of external K+. The enzyme is also inhibited by low levels of calcium, and such inhibition, combined with increased outer membrane permeability to H+ and K+, and possibly plasma membrane permeability to H+ (perhaps by the formation of channels), may be part of capacitation and/or the acrosome reaction. The pH of the hamster sperm acrosome has been shown to become more alkaline during capacitation, and such a change may result in the activation of hydrolytic enzymes in the acrosome or perhaps in a change in membrane permeability to Ca2+. A similar Mg2+-ATPase has not been found in isolated boar sperm head membranes. However, that conflicting result could have been due to the use of noncapacitated boar spermatozoa for the preparation of the membranes or to protease modification of the boar sperm enzyme during assay. (4) Inhibition of Na+, K+-ATPase inhibits the acrosome reaction of golden hamster spermatozoa, and the activity of this enzyme increases relatively early during capacitation. A late influx of K+ is important for the acrosome reaction. However, this late influx may not be due to Na+, K+-ATPase, but instead may be due to a K+ permeability increase (possibly via newly formed channels) in the membranes during capacitation. It is suggested in this review that Na+, K+-ATPase has a role early in capacitation rather than directly in the acrosome reaction (although such a role cannot yet be completely ruled out). One possible role for the enzyme in capacitation might be to stimulate glycolysis (which appears to be essential for capacitation and/or the acrosome reaction of hamster and mouse spermatozoa). The function of the influx of K+ just before the acrosome reaction is probably to stimulate, directly or indirectly, the H+-efflux required for the increase in intraacrosomal pH occurring during capacitation. Direct stimulation of the acrosome reaction by a change in membrane potential resulting directly from K+-influx is not a likely explanation for the hamster results. However, the importance of an earlier membrane potential change, due to increased Na+, K+-ATPase during capacitation, and/or of later membrane potential changes resulting from the pH change, cannot be ruled out. Although K+ is required for the hamster acrosome reaction, other workers have reported that K+ inhibits guinea pig sperm capacitation. However, the experimental procedures used in the guinea pig sperm studies raise some questions about the interpretation of those inhibition results. (5) Ca2+-influx is known to be required for the acrosome reaction. Others have suggested that increased Ca2+-influx due to inhibition or stimulation of sperm membrane calcium transport ATPases are involved in the acrosome reaction. There is as yet no direct or indirect biochemical evidence that inhibition or stimulation of such enzymatic activity is involved in the acrosome reaction, and further studies are needed on those questions. (6) I suggest that the hydrolytic enzymes important to the hamster sperm acrosome reaction will also prove important for the acrosome reaction of all other eutherian mammals.  相似文献   

4.
The effects of lipids on the survival, acrosome reaction, and fertilizing capacity of guinea pig spermatozoa were studied by incubating the spermatozoa in media containing various concentrations of the lipids. Lipids tested were: phosphatidyl-choline (PC), -ethanolamine (PE), -inositol (PI), -serine (PS), sphingomyelin (S), cholesterol (C), lysophosphatidyl-choline (LC), -ethanolamine (LE), -inositol (LI), -serine (LS), and glyceryl monooleate (M). When spermatozoa were incubated in a regular medium (containing 2 mM Ca2+) with M, the majority underwent the acrosome reaction within 1 hour. None of the other lipids were as effective as M, and some were totally ineffective under the same conditions. However, when spermatozoa were preincubated in Ca2+-free medium containing LC, LE, or LI, they gained the ability to undergo the acrosome reaction. One hour of preincubation in Ca2+-free medium with LC, LE, or LI was enough to render the vast majority of spermatozoa capable of undergoing the acrosome reaction in response to Ca2+. The optimum concentrations for LC, LE, and LI were approximately 85 μg/ml, 210 μg/ml, and 140 μg/ml, respectively. Spermatozoa that had undergone the acrosome reaction by pretreatment with LC, LE, or LI remained actively motile and were capable of fertilizing eggs. LS was totally ineffective in rendering the spermatozoa capable of undergoing the acrosome reaction, and in fact it inhibited the acrosome reaction by itself and also inhibited the LC-, LE-, or LI-mediated acrosome reaction. LS did not prevent acrosome-reacted spermatozoa from penetrating the zona pellucida, but did prevent sperm-egg fusion. Based on these findings, it is suggested that lysophospholipids are intricately involved in the sperm acrosome reaction and perhaps in sperm-egg fusion.  相似文献   

5.
The abundance of data pertaining to the metabolism of lipids in relation to mammalian fertilization has warranted an effort to assemble a molecular membrane model for the comprehensive visualization of the biochemical events involved in sperm capacitation and the acrosome reaction. Derived both from earlier models as well as from current concepts, our membrane model depicts a lipid bilayer assembly of space-filling molecular models of sterols and phospholipids in dynamic equilibrium with peripheral and integral membrane proteins. A novel feature is the possibility of visualizing individual lipid molecules such as phosphatidylcholine, phosphatidylethanolamine, lysophospholipids, fatty acids, and free or esterified cholesterol. The model illustrates enzymatic reactions which are believed to regulate the permeability and integrity of the plasma membrane overlying the acrosome during interactions between the male gamete and capacitation factors present in fluids of the female genital tract. The use of radioactive lipids as molecular probes for monitoring the metabolism of cholesterol and phosphatidylcholine revealed the presence of (1) steroid sulfatase in hamster cumulus cells, (2) lecithin: cholesterol acyltransferase in human follicular fluid, (3) phospholipase A2, and (4) lysophospholipase in human spermatozoa. These enzymatic reactions can be integrated into a pathway that provides a link between the concepts of lysophospholipid accumulation in the sperm membranes and alteration of the cholesterol/phospholipid ratio as factors involved in the preparation of the membranes for the acrosome reaction. Capacitation is viewed as a reversible phenomenon which, upon completion, results in a decrease in negative surface charge, an efflux of membrane cholesterol, and an influx of calcium between the plasma and outer acrosomal membranes. Triggered by the entry of calcium, the acrosome reaction involves phospholipase A2 activation followed by a transient accumulation of unsaturated fatty acids and lysophospholipids implicated in membrane fusion which occurs during the formation of membrane vesicles in spermatozoa undergoing the acrosome reaction.  相似文献   

6.
Guinea pig spermatozoa are able to undergo capacitation and the acrosome reaction in a K+-free (-deficient) medium. However, they are unable to fuse with eggs unless they are exposed to a millimolar concentration of extracellular K+ during or after the acrosome reaction. Apparently, the plasma membrane over the equatorial segment gains the ability to fuse with eggs in the presence of K+ during and/or after the acrosome reaction. Once it becomes fusible, the membrane retains its fusibility even in a K+-deficient medium. Rb+ is almost as effective as K+ in rendering the sperm membrane fusible. Li+ and Cs+ are less effective. The molecular mechanism by which K+ renders acrosome-reacted spermatozoa fusion competent is unknown, but it may involve K+-mediated efflux of H+ from the spermatozoa.  相似文献   

7.
Extracellular Ca2+ is required for capacitation and fertilization in the mouse, but very little is known about the ability of other divalent cations to substitute for Ca2+. In this study, Sr2+, Ba2+, and Mg2+ were evaluated for their ability to support capacitation, the acrosome reaction, hyperactivated motility, and fertilization. Ba2+ proved to be ineffective, but Mg2+-containing medium was able to support capacitation to a greater extent than unsupplemented Ca2+-deficient media; despite this, Ca2+ was required for fertilization. In contrast, Sr2+ proved capable of substituting for Ca2+ in all events. Furthermore, Sr2+-induced responses were indistinguishable from the corresponding Ca2+-induced ones: Sperm capacitated at the same rate and underwent the acrosome reaction to the same extent. However, demonstration of sperm:egg fusion in Sr2+ required the use of zona-free eggs. This was due not to the inability of the sperm to penetrate the zona but to the very rapid activation and cortical granule release by eggs in response to Sr2+. When zona-intact eggs were used, the block to polyspermy had been mounted by the time sperm had penetrated the zona. A 15 min exposure to Sr2+ was sufficient to block sperm fusion, but a longer exposure was required to ensure the resumption of meiosis in eggs; such a response was surprising in that the eggs were freshly ovulated and not susceptible to activation by many different treatments. Thus Sr2+ can profoundly affect both gametes in the mouse: It substitutes completely for Ca2+ in sperm responses and rapidly activates eggs, possibly by displacing Ca2+ from intracellular stores into the cytoplasm, where the Ca2+ can then trigger the various events of activation.  相似文献   

8.
The aim of the present study was to evaluate the effect of heat-inactivated estrous sheep serum (ESS) on sheep IVF. When the capacitation and the fertilization media contained 20% ESS, a fertilization rate of 85% was achieved. The beneficial effect of ESS on sheep IVF was further demonstrated since the fertilization rate was null when ESS was omitted during sperm capacitation and fertilization. Estrous sheep serum supported both sperm capacitation and fertilization as shown by the results of experiments in which it was omitted during one of these steps: sperm capacitation in serum-free medium resulted in delayed sperm-oocyte penetration, while fertilization in serum-free medium significantly decreased the percentage of fertilized oocytes. To investigate the influence of serum on sperm ability to undergo the acrosome reaction, salt-stored follicular sheep oocytes were inseminated, and the acrosomal status of spermatozoa attached to zonae was examined by electron microscopy after a 4-h period of coincubation. Quantitative analysis on thin sections demonstrated that fewer acrosome-reacted spermatozoa were observed when the capacitation and insemination steps were carried out in DM-H medium without serum than in DM-H-SS supplemented with 20% ESS (0.08, [0; 0.34], (median, range)/100mum zona vs 1.32, [0.90; 2.28]/100mum zona; P < 0.01). Since a higher number of spermatozoa attached to the zona surface in DM-H medium, the proportion of acrosome-reacted spermatozoa was much lower (0.7%, [0%; 2.2%], (median, range) vs 54%, [25%; 100%]; P < 0.01) in the absence of serum. These results indicate that in our IVF system the development of the acrosome reaction depended on serum. Sperm cholesterol efflux during in vitro capacitation was measured on [(3)H] cholesterol labeled spermatozoa resuspended in DM-H or DM-H-SS medium. A time-dependent cholesterol removal was observed in the presence of serum (60 +/- 5%, mean +/- SD, after 5 h), whereas it was limited to 14 +/- 3 % in DM-H medium; hence addition of serum to the capacitation medium efficiently supports cholesterol efflux, which is thought to be a key-event in the capacitation process.  相似文献   

9.
Ejaculated spermatozoa must undergo physiological priming as they traverse the female reproductive tract before they can bind to the egg’s extracellular coat, the zona pellucida (ZP), undergo the acrosome reaction, and fertilize the egg. The preparatory changes are the net result of a series of biochemical and functional modifications collectively referred to as capacitation. Accumulated evidence suggests that the event that initiates capacitation is the efflux of cholesterol from the sperm plasma membrane (PM). The efflux increases permeability and fluidity of the sperm PM and causes influx of Ca2+ ions that starts a signaling cascade and result in sperm capacitation. The binding of capacitated spermatozoa to ZP further elevates intrasperm Ca2+ and starts a new signaling cascade which open up Ca2+ channels in the sperm PM and outer acrosomal membrane (OAM) and cause the sperm to undergo acrosomal exocytosis. The hydrolytic action of the acrosomal enzymes released at the site of sperm-egg (zona) binding, along with the hyperactivated beat pattern of the bound spermatozoon, are important factors in directing the sperm to penetrate the ZP and fertilize the egg. The role of Ca2+-signaling in sperm capacitation and induction of the acrosome reaction (acrosomal exocytosis) has been of wide interest. However, the precise mechanism(s) of its action remains elusive. In this article, we intend to highlight data from this and other laboratories on Ca2+ signaling cascades that regulate sperm functions.  相似文献   

10.
A protein complex containing IGF-I, purified from rabbit seminal plasma, was used to investigate its effects on the capacitation and acrosome reaction of rabbit spermatozoa. Uncapacitated sperm (Pattern F), capacitated sperm (Pattern B), and acrosome-reacted sperm (Pattern AR) were determined by CTC staining, and the results were validated by PSA-staining. The addition of the IGF-I complex to the capacitative medium directed the spermatozoa to spontaneous acrosome reaction. On the other hand, IGF-I complex, added to capacitated spermatozoa, acted as inducer of the acrosome reaction. Results of IVF experiments showed high rates of fertilization with capacitated spermatozoa, acrosome-reacted by either A23187 or IGF I complex, whereas significantly lower rates were obtained with spermatozoa capacitated in the presence of IGF-I complex.  相似文献   

11.
Heavy meromyosin-binding filaments in the mitotic apparatus of mammaliam cells   总被引:12,自引:0,他引:12  
Guinea pig spermatozoa fail to fertilize eggs in Ca2+-free media primarily because of specific inhibition of the acrosome reaction and activation of the spermatozoa. In Ca2+-free media the spermatozoa undergo capacitation at the same rate as in Ca2+-containing media, but are arrested in the capacitated state. If Ca2+ is made available after the spermatozoa have reached the capacitated state, the spermatozoa immediately undergo the acrosome reaction and activation. The minimum concentration of Ca2+ necessary for the initiation of the acrosome reaction and activation is about 0.2 mM. Mg2+ cannot substitute for Ca2+ in initiating these processes. Possible mechanisms by which Ca2+ triggers the acrosome reaction and activation of guinea pig spermatozoa are discussed.  相似文献   

12.
The effect of the calmodulin antagonist W-7 on the capacitation and the acrosome reaction of guinea pig spermatozoa was examined. The characteristic features of the acrosome reaction induced by W-7 were the dependence on the composition and pH of the medium and on the presence of sodium bicarbonate. The most effective concentration of W-7 for inducing the acrosome reaction was approximately 5 μM, which is far less than the Kd for calmodulin. Moreover, W-7 enhanced the ability of spermatozoa to acquire capacitation in a Ca2+-free medium. The spermatozoa induced to undergo the acrosome reaction by W-7 were capable of penetrating the zona-free hamster eggs. W-5, which has a lower affinity for calmodulin than W-7, also induced the acrosome reaction in the same manner as W-7. These results suggest that the naphthalenesulfonamide derivatives W-7 and W-5 can induce the acrosome reaction in guinea pig spermatozoa via capacitation in a pH-dependent, Ca2+-calmodulin-independent manner.  相似文献   

13.
After capacitation of guinea pig spermatozoa in vitro, the plasma membrane was mechanically separated from the spermatozoa in the presence or absence of HgCl2 and subsequently isolated by density gradient centrifugation. Examination of the spermatozoa by electron microscopy after homogenization in the presence of HgCl2 revealed that plasma membrane was removed only from the acrosomal region and remained predominately intact posterior to the equatorial segment of the sperm head, as well as the midpiece and tail. In comparison, spermatozoa homogenized under similar buffer conditions but in the absence of HgCl2 lose the large apical segment of the acrosome and the plasma membrane is removed essentially from the entire cell. If spermatozoa were homogenized in the absence of Hg2+, analysis of plasma membrane phospholipid composition revealed a complete loss of lysophosphatidylcholine (LPC) from the plasma membrane after incubation of spermatozoa in minimal capacitating medium (MCM-PL) for 2 hours. Under these culture conditions the addition of Ca2+ (5 mM) to the capacitated spermatozoa induced approximately 78 ± 5% (n = 3) of the motile spermatozoa to undergo acrosome reactions while still maintaining sperm motility (80 ± 5%) (n = 3). If the spermatozoa were homogenized in the presence of Hg2+, a time course study revealed that plasma membrane LPC loss occurred between 60 and 90 minutes of incubation. This complete loss of LPC was evident when approximately half of the capacitated spermatozoa had undergone acrosome reactions. Incubation of the spermatozoa with the metabolic and acrosome reaction inhibitor, 2-deoxyglucose (10 mM) for 2 hours, maintained the plasma membrane phospholipid composition similar to that in the noncapacitated state. These data provide evidence that changes in the plasma membrane phospholipid composition may be associated with guinea pig sperm capacitation.  相似文献   

14.
The surface of spermatozoa plays a critical role in many stages involved in fertilisation. The plasma membrane undergoes important alterations in the male and female reproductive tract, which result in the ability of spermatozoa to fertilise eggs. One of these membrane modifications is sperm capacitation, a process by which sperm interacts with the zona pellucida receptors leading to the acrosome reaction. It has been proposed that the freezing process induces capacitation-like changes to spermatozoa, and that this premature capacitation could explain the reduction in longevity and fertilising capacity of cryopreserved mammalian spermatozoa. Our research focused on the relationship between membrane alterations occurring throughout freezing-thawing and the processes of capacitation and acrosome reaction. We used centrifugal countercurrent distribution (CCCD) analysis to compare the partition behaviour of ram spermatozoa that was either subjected to cold-shock or frozen-thawed with capacitated and acrosome reacted samples. In addition, the effect of the induced acrosome reaction on membrane integrity of ram spermatozoa was studied using biochemical markers and electron microscopy scanning. The CCCD analysis revealed important similarities between the surface characteristics of capacitated and cold-shocked sperm as well as between acrosome-reacted and frozen-thawed sperm. Cold-shocked and capacitated sperm showed an increased cell affinity for the lower dextran-rich phase as well as a decreased heterogeneity. Likewise, the induction of the acrosome reaction resulted in a loss of viability and an important decrease in cell surface heterogeneity compared to the untreated-control sample. Similar surface changes were found when semen samples were frozen with either Fiser or milk-yolk extender. These results confirm those obtained for membrane integrity by fluorescence markers. Thus, the high cell viability value found in the control sample (74.5%) was greatly decreased after cold-shock (22.2%), cryopreservation (26.38% Fiser medium, 24.8% milk-yolk medium) and acrosome reaction (6.6%), although it was preserved after inducing capacitation (46.7%). The study using electron microscopy scanning revealed dramatic structural alterations provoked by the induction of the acrosome reaction.  相似文献   

15.
Successful fertilization is tightly regulated by capacitation and decapacitation processes. Without appropriate decapacitation regulation, sperm would undergo a spontaneous acrosome reaction which leads to loss of fertilization ability. Seminal plasma is known to negatively regulate sperm capacitation. However, the suppressive mechanisms still remain unclear. In this study, we demonstrate the decapacitation mechanism of mouse seminal vesicle autoantigen (SVA) might target membrane sphingomyelin (SPM) and regulate plasma membrane Ca2+‐ATPase (PMCA) activity. The SVA was shown to suppress sperm capacitation induced by a broad panel of capacitation factors (bovine serum albumin (BSA), PAF, and cyclodextrin (CD)). Furthermore, SVA significantly decreased [Ca2+]i and NaHCO3‐induced [cAMP]i. Cyclic AMP agonists bypassed the SVA's suppressive ability. Importantly, the SVA may regulate PMCA activity which was evidenced by the fact that the SVA decreased the [Ca2+]i and intracellular pH (pHi) of sperm; meanwhile, a PMCA inhibitor (carboxyeosin) could reverse SVA's suppression of [Ca2+]i. The potential target of the SVA on membrane SPM/lipid rafts was highlighted by the high binding affinity of SPM–SVA (with a Kd of ~3 µM) which was close to the IC50 of SVA's suppressive activity. Additionally, treatment of mink lung epithelial cells with the SVA enhanced plasminogen activator inhibitor (PAI)‐1 expression stimulated by tumor growth factor (TGF)‐β and CD. These observations supported the membrane lipid‐raft targeting of SVA. In summary, in this paper, we demonstrate that the decapacitation mechanism of the SVA might target membrane sphingolipid SPM and regulate PMCA activity to lower [Ca2+]i, thereby decreasing the [cAMP]i level and preventing sperm pre‐capacitation. J. Cell. Biochem. 111: 1188–1198, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
In the course of in vitro fertilization of zona-free hamster and pig eggs by boar and guinea-pig spermatozoa it was observed that homologous and heterologous eggs fused together, forming cell hybrids between two or more cells. The fusogenic activity was attributed to spermatozoa and this was the hypothesis tested. The fusogenic activity (coinciding with sperm penetration activity) was dependent on the duration of sperm preincubation, which may be regarded as capacitation in vitro. Fusion occurred only after 3 hr of sperm preincubation and a narrow optimum was detected at 4–4.5 hr. Fusion of eggs was also dependent on sperm concentration. A relatively high proportion of fusions was observed at a sperm concentration of 4.0 × 104 per ml and an optimum was attained at a concentration of 5.0 × 105 per ml. The first fusions were observed at 90 min after semination. After 3 hr more than a half of the eggs reacted, and by 20 hr of incubation 80% of ova were fused. The fusability of eggs was tested and found to occur at 14 hr after ovulation. The fusion process was also studied using transmission electron microscopy. It is supposed that the process of egg fusion may be caused either by a similar mechanism to sperm-egg fusion, or by products released during the sperm acrosome reaction.  相似文献   

17.
The minimal requirements and characteristics of epididymal sperm binding to the zona pellucida of the mouse egg were investigated using a new stop-fix centrifugation technique. This assay provided a precise physical definition of the association between the spermatozoon and the zona and permitted quantitation of the binding reaction at short time intervals. The results demonstrated that Ca2+ is an essential physiological component required for binding to occur. Sperm preincubated for 60 min in a simplified medium lacking Ca2+ did not acquire the ability to bind to eggs. In contrast, if sperm preincubation occurred in this medium supplemented with 1.7 mM Ca2+, binding was identical to that observed following sperm preincubation in the complete culture medium which supports both capacitation and fertilization in vitro. The Ca2+-dependent binding reaction was rapid, reversed by EGTA, specific for Ca2+, and did not require the transport of Ca2+ into the cell. Sperm bound to the zona surface following preincubation with Ca2+ were capable of fertilization in vitro when the eggs were subsequently transferred to the culture medium. It is proposed that this binding reaction represents a part of capacitation and not the acrosome reaction.  相似文献   

18.
The effect of chymotrypsin inhibitors and substrates on the human sperm acrosome reaction stimulated by the human zonae pellucidae or follicular fluid were evaluated. Motile spermatozoa, selected by a Percoll gradient, were incubated at 1 × 107 cells/ml, 37°C, and 5% CO2, After 4.5 hr, the chymotrypsin inhibitor TPCK (N-Tosyl-L-Phenylalanine-Chloromethyl Ketone) or the substrate ATEE (N-Acetyl-L-Tyrosine Ethyl Ester) were added for 30 min. Then, four oocytes were added and the percentage of acrosome-reacted spermatozoa on the zona was determined. TPCK and ATEE inhibited the zona pellucida-induced acrosome reaction. The chymotrypsin inhibitors TPCK and chymostatin and the chymotrypsin substrates ATEE, BTEE (N-Benzoyl-L-Tyrosine Ethyl Ester), Succinyl-Ala-Ala-Phe-7-Amido-4-Methyl-Coumarin (Suc-Ala-Ala-Phe-AMC), and Succinyl-Leu-Leu-Val-Tyr-7-Amido-4-Methyl-Coumarin (Suc-Leu-Leu-Val-Tyr-AMC) inhibited the human follicular fluid-induced acrosome reaction. Sperm extracts exhibited hydrolytic activity toward Suc-Ala-Ala-Phe-AMC and Suc-Leu-Leu-Val-Tyr-AMC. This enzyme activity was abolished by TPCK and chymostatin, was independent of Ca2+, and was not modified by 1,10 phenanthroline. In addition, the activity was present in the supernatant after the acrosome reaction was induced with calcium ionophore and in epididymal spermatozoa recovered from the cauda region. Electron microscopic observations indicated that the inhibitors prevented the membrane events of the acrosome reaction. These data suggest an association between human spermatozoa and chymotrypsin-like activity with a possible role in the acrosome reaction. © 1994 Wiley-Liss, Inc.  相似文献   

19.
The final modifications that the spermatozoa undergo correspond with the destabilization of their plasma membrane. This indispensable step facilitates the fusion of membranes and primes the signal transduction during fertilization. This destabilization is composed of a series of changes and modulation of the lipids in membranes such as cholestérol, phospholipids and glycolipids. Several differences exist in the lipid composition of the plasma, acrosome, nuclear and mitochondrial membranes of spermatozoa. The principal membrane phospholipids are phosphatidyl choline, phosphatidyl ethanolamine and sphingomyelin. Plasma membrane of sperm is also rich in polyunsaturated fatty acids (PUFA) linked to phospholipids. Such as C18∶2n?6, C20∶4n?6 and large amounts of docosahexaenoic acid (C22∶6n?6). The amount of membrane lipids in human sperm varies considerably between patients. This variation, could influence certain functional properties of the sperm cells such as their ability to undergo capacitation, the acrosome reaction and the fusion between sperm and oocyte membranes. The lipid composition of the human sperm cell can be altered during the process of freezing-thawing. A significant decrease in phospholipids (phosphatidyl choline, phosphatidyl ethanolamine), and PUFA in particular docosahexaenoic acid and arachidonic acid was observed. Human spermatozoa have a molar cholestérol/phopholipid ratio ≤1.0, and reduces during capacitation due to loss of cholestérol. In addition, the decrease in the levels of cholestérol and the methylation of phospholipids is involved in the modification of membrane fluidity and in the maturation of the sperm plasma membrane receptors. Therefore it seems that the methylation is important for the fusion between sperm and oocyte membranes. Intrinsic sperm phospholipase A2 also plays a role in the destabilization of the plasma membrane by producing of lysophospholipid. Therefore this enzyme and free fatty acids are believed to play a role in the acrosome reaction, an indispensable event facilitating the fusion between sperm and oocyte membranes.  相似文献   

20.
The capacity to undergo the acrosome reaction and subsequent fusion with egg plasma membrane was examined in rete testicular and cauda epididymal spermatozoa from boars. Sperm penetration assay using zona-free hamster eggs demonstrated that the penetration rates for rete testicular spermatozoa preincubated for induction of the acrosome reaction for 2 and 3 h were 55% and 97%, respectively. However, most of the eggs (93%) were penetrated with polyspermy by cauda epididymal cells preincubated for 2 h. Results obtained by the triple-stain technique revealed the percentages of acrosome-reacted spermatozoa in the rete testicular and cauda epididymal samples preincubated for 3 h to be 61% and 74%, respectively. These results indicate that many rete testicular spermatozoa possess the capacity to undergo the acrosome reaction and subsequent fusion with egg plasma membrane in vitro, which appears to be completely established only after sperm transit through at least the proximal part of the epididymis. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号