首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the involvement of K+ efflux in apoptotic cell shrinkage, we monitored efflux of the K+ congener,86 Rb+, and cell volume during CD95-mediated apoptosis in Jurkat cells. An anti-CD95 antibody caused apoptosis associated with intracellular GSH depletion, a significant increase in 86Rb+ efflux, and a decrease in cell volume compared with control cells. Preincubating Jurkat cells with Val-Ala-Asp-chloromethylketone (VAD-cmk), an inhibitor of caspase proteases, prevented the observed 86Rb+ efflux and cell shrinkage induced by the anti- CD95 antibody. A wide range of inhibitors against most types of K+ channels could not inhibit CD95-mediated efflux of86 Rb+, however, the uptake of86 Rb+ by Jurkat cells was severely compromised when treated with anti-CD95 antibody. Uptake of86 Rb+ in Jurkat cells was sensitive to ouabain (a specific Na+/K+-ATPase inhibitor), demonstrating Na+/K+-ATPase dependent K+ uptake. Ouabain induced significant86 Rb+ efflux in untreated cells, as well as it seemed to compete with86 Rb+ efflux induced by the anti-CD95 antibody, supporting a role for Na+/K+-ATPase in the CD95-mediated86 Rb+ efflux. Ouabain treatment of Jurkat cells did not cause a reduction in cell volume, although together with the anti-CD95 antibody, ouabain potentiated CD95-mediated cell shrinkage. This suggests that the observed inhibition of Na++/K+-ATPase during apoptosis may also facilitate apoptotic cell shrinkage.  相似文献   

2.
3.
Summary It is shown that the ouabain-resistant (OR) furosemide-sensitive K+(Rb+) transport system performs a net efflux of K+ in growing mouse 3T3 cells. This conclusion is based on the finding that under the same assay conditions the furosemidesensitive K+(Rb+) efflux was found to be two- to threefold higher than the ouabain-resistant furosemide-sensitive K+(Rb+) influx. The oubain-resistant furosemide-sensitive influxes of both22Na and86Rb appear to be Cl dependent, and the data are consistent with coupled unidirectional furosemide-sensitive influxes of Na+, K+ and Cl with a ratio of 1 1 2. However, the net efflux of K+ performed by this transport system cannot be coupled to a ouabain-resistant net efflux of Na+ since the unidirectional ouabain-resistant efflux of Na+ was found to be negligible under physiological conditions. This latter conclusion was based on the fact that practically all the Na+ efflux appears to be ouabainsensitive and sufficient to balance the Na+ influx under such steady-state conditions. Therefore, it is suggested that the ouabain-resistant furosemide-sensitive transport system in growing cells performs a facilitated diffusion of K+ and Na+, driven by their respective concentration gradients: a net K+ efflux and a net Na+ influx.  相似文献   

4.
In this study, cell permeable diacyglycerols, sn-1,2-dioctanoglycerol (DiC8), and sn-1-oleoyl-2-acetylglycerol (OAG) were found to downregulate the activity of Na+-K+ pump in Xenopus laevis oocytes. Both DiC8 and OAG decreased the binding of [3H]ouabain to intact oocytes while phorbol esters did not appreciably influence the same. These diacylglycerols inhibited the amiloride-sensitive 22Na+ influx and ouabain-sensitive 88Rb+ uptake in the oocytes. Furthermore, DiC8 prevented the 22Na+ efflux from the oocytes preloaded with 22Na+. Addition of H-7 to DiC8- and OAG-treated oocytes stimulated the pump activity curtailed by the two latters. The impairment of Na+-K+ pump activity by diacylglycerols suggests that protein kinase C activators may stimulate endocytosis of membrane-coupled Na+-K+ ATPase.  相似文献   

5.
The pig kidney cell line, LLC-PK1, exhibits rheogenic d-glucose coupled transepithelial Na+ transport that is inhibited by phlorizin. By measuring the difference in initial rates of influx of 86Rb+ with and without coupled Na+ transport, we can demonstrate an 86Rb+ uptake linked to Na+ transport. The simultaneous determination of phlorizin-inhibited Na coupled d-[3H]glucose uptake and 86Rb+ influx allows calculation of an Na+/Rb+ stoichiometry that is consistent with an electrogenic Na+ for Rb+ exchange.  相似文献   

6.
Isolated muscle cells from adult rat heart have been used to study the relationship between myocardial glucose transport and the activity of the Na+/K+ pump. 86Rb+-uptake by cardiac cells was found to be linear up to 2 min with a steady-state reached by 40–60 min, and was used to monitor the activity of the Na+/K+ pump. Ouabain (10?3 mol/I) inhibited the steady-state uptake of 86Rb+ by more than 90%. Both, the ouabain-sensitive and ouabain-insensitive 86Rb+-uptake by cardiac cells were found to be unaffected by insulin treatment under conditions where a significant stimulation of 3-O-methylglucose transport occurred. 86Rb+-uptake was markedly reduced by the presence of calcium and/or magnesium, but remained unresponsive towards insulin treatment. Inhibition of the Na+/K+ pump activity by ouabain and a concomitant shift in the intracellular Na+:K+ ratio did not affect basal or insulin stimulated rates of 3-O-methylglucose transport in cardiac myocytes. The data argue against a functional relationship between the myocardial Na+/K+ pump and the glucose transport system.  相似文献   

7.
86Rb+ uptake by yeast was not only stimulated by Rb+ or K+ but also by Na+. The uptake of 22Na+ was enhanced by both Rb+ and K+, but not by Na+, which was inhibitory at all concentrations applied. Inhibition of 22Na+ uptake by inactive Na+ occurred in two phases: one phase refers to inhibition at low Na+ concentrations and the other to inhibition at high Na+ concentrations. Our results can be qualitatively described by a two-site transport mechanism, having two cation binding sites, which must be occupied with monovalent cations before transport can occur.  相似文献   

8.
The mechanism of the protective effect of Ca2+ on cellular K+ content was studied by examination of the effect of Ca2+ on efflux of the K+ analog, 86Rb+, from preloaded cells with the use of compounds which interfere with monovalent cation movements. Ca2+ decreased 86Rb+ efflux to the same extent in the presence and absence of ouabain, suggesting that Ca2+ did not alter the activity of the (Na+ + K+)-adenosine triphosphatase pump. Ca2+ exerted a similar protective effect in the presence of furosemide, an inhibitor of K+-K+ exchange, indicative that Ca2+ was not inhibiting this pathway. Since Ca2+ did not influence these pathways, it is concluded that Ca2+ exerts its primary effect by slowing passive diffusion. In support of this, Ca2+ also slowed 22Na+ efflux. In addition, ethanol-induced leakage of 86Rb+ was reversed by extracellular Ca2+, suggestive of a Ca2+-membrane phospholipid interaction.  相似文献   

9.
The effects of ouabain on the growth of murine lymphoblasts in vitro have been studied. Exposure of cells to ouabain (0.1 mM) initially inhibited 86Rb+ uptake rate, reduced the intracellular potassium concentration, and decreased population growth rates. Continued exposure to the same ouabain concentration resulted in an increase of 86Rb+ uptake rate, intracellular potassium content and population growth rates to control values (adaptation). When treated cells were resuspended in medium free of ouabain after 12 to 15 hours of ouabain treatment, 86Rb+ uptake rates and intracellular potassium levels exceeded those of untreated cells. Adaptation was inhibited by cycloheximide (3 μg/ml) and by actinomycin D (0.05 μg/ml). Kinetic analysis of transport suggested that while the total capacity of the Na+, K+ transport system increased, the affinity for both the cation (86Rb+) and ouabain decreased.  相似文献   

10.
Summary 86Rb+ fluxes have been measured in suspensions of vesicles prepared from the epithelium of toad urinary bladder. A readily measurable barium-sensitive, ouabain-insensitive component has been identified; the concentration of external Ba2+ required for half-maximal inhibition was 0.6mm. The effects of externally added cations on86Rb+ influx and efflux have established that this pathway is conductive, with a selectivity for K+, Rb+ and Cs+ over Na+ and Li+. the Rb+ uptake is inversely dependent on external pH, but not significantly affected by internal Ca2+ or external amiloride, quinine, quinidine or lidocaine. It is likely, albeit not yet certain, that the conductive Rb+ pathway is incorporated in basolateral vesicles oriented right-side-out. It is also not yet clear whether this pathway comprises the principle basolateral K+ channel in vivo, and that its properties have been unchanged during the preparative procedures. Subject to these caveats, the data suggest that the inhibition by quinidine of Na+ transport across toad bladder does not arise primarily from membrane depolarization produced by a direct blockage of the basolateral channels. It now seems more likely that the quinidine-induced elevation of intracellular Ca2+ activity directly blocks apical Na+ entry.  相似文献   

11.
K+ [86Rb+] uptake by Phaseolus aureus Roxb. hypocotyl segments cut immediately below the hook is inhibited by the active form of phytochrome (Pfr). Short load-short wash experiments indicate that the inhibition of uptake occurs across the plasmalemma. A maximal inhibition of short term uptake occurs in 10 to 50 millimolar KCI. Low temperature had only a small effect on influx and the inhibition of influx from 50 millimolar KCI. A consideration of the electrochemical gradient for K+ suggests that passive K+ fluxes may predominate under these conditions. Red light induces small depolarizations of membrane potential in subhook cells. Far red light antagonizes this effect. Pfr inhibits efflux of K+[86Rb+] from subhook segments. This effect is also relatively insensitive to low temperature. This inhibition of efflux may reflect inhibition of a K+ -K+ exchange process, or reduced passive permeability of the plasmalemma to K+. In contrast, Pfr enhances short term uptake of K+[86Rb+] in apical hypocotyl hook segments of Phaseolus aureus Roxb. Short load-short wash experiments indicate that fluxes across the plasmalemma are modified by Pfr. A maximal enhancement of short term influx occurs in 50 millimolar KCI. Influx and the red light enhancement of influx from 50 millimolar KCI are relatively insensitive to low temperature. Pfr also enhances efflux of K+[86Rb+] from preloaded apical hook segments. This increased influx may reflect enhancement of a K+ -K+ exchange process or increased passive permeability of the plasmalemma to K+.  相似文献   

12.
The mechanisms by which cationic amino acids influence pancreatic B-cell function have been studied by monitoring simultaneously 86Rb+ efflux and insulin release from perifused rat islets. The effects of two reference amino acids arginine and lysine were compared with those of closely related substances to define the structural requirements for recognition of these molecules as secretagogues. Arginine accelerated 86Rb+ efflux and increased insulin release in the absence or in the presence of 7mm-glucose. Its effects on efflux did not require the presence of extracellular Ca2+ or Na+, but its insulinotropic effects were suppressed in a Ca2+-free medium and inhibited in an Na+-free medium. Among arginine derivatives, only 2-amino-3-guanidinopropionic acid mimicked its effects on 86Rb+ efflux and insulin release; citrulline, guanidinoacetic acid, 3-guanidinopropionic acid and guanidine were inactive. Norvaline and valine also increased 86Rb+ efflux, but their effect required the presence of extracellular Na+; they did not stimulate insulin release. Lysine as well as the shorter-chain cationic amino acids ornithine and 2,4-diaminobutyric acid accelerated 86Rb+ efflux in a Ca2+- and Na+-independent manner. Their stimulation of insulin release was suppressed by Ca2+ omission, but only partially inhibited in an Na+-free medium. The uncharged glutamine and norleucine increased the rate of 86Rb+ efflux in the presence of glucose, only if extracellular Na+ was present. Norleucine slightly increased release in a Ca2+- and Na+-dependent manner. The effects of lysine on efflux and release were not mimicked by other related substances such as 1,5-diaminopentane and 6-aminohexanoic acid. The results suggest that the depolarizing effect of cationic amino acids is due to accumulation of these positively charged molecules in B-cells. This causes acceleration of the efflux of K+ (86Rb+) and activation of the influx of Ca2+ (which triggers insulin release). The prerequisite for the stimulation of B-cells by this mechanism appears to be the presence of a positive charge on the side chain of the amino acid, rather than a specific group.  相似文献   

13.
In a previous study, evidence was presented for an external Na+-dependent, ouabain-insensitive component of Na+ efflux and an external K+-dependent component of K+ efflux in the Ehrlich ascites tumor cell. Evidence is now presented that these components are inhibited by the diuretic furosemide and that under conditions of normal extracellular Na+ and K+ they represent Na+-for-Na+ and K-+for-K+ exchange mechanisms. Using 86Rb to monitor K+ movements, furosemide is shown to inhibit an ouabain-insensitive component of Rb+ influx and a component of Rb+ efflux, both representing approx. 30% of the total fux. Inhibition of Rb+ efflux is greatly reduced by removal of extracellular K+. Furosemide does not alter steady-state levels of intracellular K+ and it does not prevent cells depleted of K+ by incubation in the cold from regaining K+ upon warming. Using 22Na to monitor Na+ movements, furosemide is shown to inhibit an ouabain-insensitive component of unidirectional Na+ efflux which represents approx. 22% of total Na+ efflux. Furosemide does not alter steady-state levels of intracellular Na+ and does not prevent removal of intracellular Na+ upon warming from cells loaded with Na+ by preincubation in the cold. The ability of furosemide to affect unidirectional Na+ and K+ fluxes but not net fluxes is consistent with the conclusion that these components of cation movement across the cell membrane represent one-for-one exchange mechanisms. Data are also presented which demonstrate that the uptake of α-aminoisobutyrate is not affected by furosemide. This indicates that these components of cation flux are not directly involved in the Na+-dependent amino acid transport system A.  相似文献   

14.
We have previously reported on the biochemical properties of a Na+,K+,2Cl?-cotransport in HeLa cells and here we deal with aspects of its physiological regulation. Na+,K+,2Cl?-cotransport in HeLa cells was studied by 86Rb+ influx and 86Rb+/22Na+ efflux measurements. The effects of rat atrial natriuretic peptide (ANP), isoproterenol, and amino acids on 86Rb+ flux, mediated by the bumet-anide-sensitive Na+, K+, 2Cl?-cotransport system and the ouabain-sensitive Na+/K+-pump, were investigated. ANP reduced bumetanide-sensitive 86Rb+ influx under isotonic as well as under hypertonic conditions. Similar decrease of bumetanide-sensitive 86Rb+ influx was observed in the presence of 8-bromo-cGMP, while neither isoproterenol as a β-receptor agonist nor 8-bromo-cAMP-could alter bumetanide-sensitive 86Rb+ influx. Furthermore, efflux of 86Rb+ and 22Na+ was greatly reduced in the presence of bumetanide and ANP. Together with our recent findings, showing functionally active, high affinity receptors for ANP on HeLa cells (Kort and Koch, Biochim. Biophys. Res. Commun. 168:148–154, 1990), this study indicates that ANP participates in the regulation of the Na+, K+, 2Cl?-cotransport system in HeLa cells. Further measurements revealed that amino acids as present in the growth medium (Joklik's minimal essential medium) and the amino acid derivative α-methyl-aminoisobutyric acid (metAlB, 1 and 5 mM, respectively) also reduced Na+, K+, 2Cl?-cotransport-mediated 86Rb+ uptake and diminished the stimulatory effect of hypertonicity on the cotransporter. In addition, the Na+/K+-pump was markedly stimulated in the presence of amino acids, while neither ANP and 8-Br-cGMP nor isoproterenol and 8-Br-cAMP had a significant effect on the activity of the Na+/K+-pump.  相似文献   

15.
Sodium transport through the molluscan erythrocyte membrane was examined using 22Na as a tracer. Incubation of the red cells in standard saline resulted in a rapid 22Na uptake reaching steady state concentration (about 21.5 mmol/l cells) in the first 60 min. A similar pattern in the time course of 22Na uptake was seen in the erythrocytes incubated in mantle fluid. The average value of unidirectional Na+ influx, measured as a 5-min 22Na uptake, was 7.76 ± 0.36 mmol/1 cells/5 min or 93 ± 4.3 mmol/1 cells/hr. The initial rate of Na+ influx increased in a saturable fashion as a function of external Na+ concentration with apparent AT., of 380±12mM and Vmax of 14.3 ± 2.4 mmol/1 cells/5 min. Amiloride (1 mM), furosemide (1 mM), and DIDS (0.1 mM) had no effect on either initial Na+ influx (5 min 22Na uptake) or equilibrium Na+ concentration (60 min and 120min 22Na uptake) in the molluscan red cells exposed to standard saline. Quinine (1 mM) caused a significant fall in the initial Na+ influx (by 48%) and in 60-min 22Na uptake (by 32%) as compared with control levels. In the presence of 0.1 mM ouabain, 22Na uptake into the red cells was enhanced by an average 27% and 44% during 60 min and 120 min of cell incubation, respectively. The ouabain-sensitive Na+ accumulation in the red cells reflected a contribution of the Na, K-pump to Na+ transport and the mean value was 5.6 ± 1.0 mmol/1 cells/hr.  相似文献   

16.
The activity of the β-cell Na+/K+ pump was studied by using ouabain-sensitive (lmM ouabain) 86Rb+ influx in β-cell-rich islets of Umeå-ob/ob mice as an indicator of the pump function. The present results show that the stimulatory effect of glucose on ouabain-sensitive 86Rb+ influx reached its approximate maximum at 5mM glucose. Pre-treatment of the islets with 20mM glucose for 60 min strongly reduced the glucose-induced stimulation of the Na+/K+ pump. Pre-treatment (60 or 180 min) of islets at 0mM glucose, on the other hand, did not affect the magnitude of the glucose-induced stimulation of 86Rb+ influx dunng the subsequent 5-min incubation. Glibenclamide stimulated the ouabain-sensitive 86Rb+ uptake in the same manner as glucose. The stimulatory effect, showed its apparent maximum at 0.5μM. Pre-treatment (60 min) of islets with 1μM glibenclamide did not reduce the subsequent stimulation of the ouabain-sensitive 86Rb+ influx. The stimulatory effect of glibenclamide and D-glucose were not .additive, suggesting that they may have the same mechanism of action. No direct effect of glibenclamide (0.01-1μM) was observed on the Na+/K+ ATPase activity in homogenates of islets. Diazoxide (0.4mM) inhibited the Na+/K+ pump. This effect was sustained even after 60 min of pre-treatment of islets with 0.4mM diazoxide. The stimulatory effect of glibenclamide and D-glucose were abolished by diazoxide. It is concluded that nutrient as well as non-nutrient insulin secretagogues activate the Na+/K+ pump, probably as part of the membrane repolarisation process.  相似文献   

17.
(1) Unidirectional K+ (86Rb) influx and efflux were measured in subconfluent layers of MDCK renal epithelial cells and HeLa carcinoma cells. (2) In both MDCK and HeLa cells, the furosemide-inhibitable and chloride-dependent component of K+ influx/efflux was stimulated 2-fold by a 30 min incubation in 1 · 10?3 M ouabain. (3) Measurements of net K+ loss and Na+ gain in ouabain-treated cells at 1 h failed to show any diuretic sensitive component, confirming the exchange character of the diuretic-sensitive fluxes. (4) Prolonged incubations for 2.5 h in ouabain revealed a furosemide- and anion-dependent K+ (Cl?) outward net flux uncoupled from net Na+ movement. Net K+ (Cl?) outward flux was half-maximally inhibited by 2 μM furosemide. (5) After 2.5 h ouabain treatment, the anion and cation dependence of the diuretic-sensitive K+ influx/efflux were essentially unchanged when compared to untreated controls.  相似文献   

18.
Treatment of Friend erythroleukemia cells with several different chemical agents causes an early decrease in the 86Rb+ influx mediated by Na+/K+ adenosine triphosphatase (ATPase). These agents, which induced Friend cells to differentiate, include dimethylsulfoxide (DMSO), ouabain, hypoxanthine, and actinomycin D. The magnitude of the early decrease in 86Rb+ influx correlates with the proportion of cells in cultures of inducible Friend cell clones which later go on to synthesize hemoglobin. Compounds which do not incude differentiation in these cells, such as xanthine, exogenous hematin, and erythropoietin, do not cause a change in 86Rb+ influx. A change in the intracellular K+ ion concentration does not occur during induction by DMSO because, although there is a decrease in K+ content per cell soon after induction, there is a parallel decrease in cell volume. These results and previous observations from this laboratory are discussed in terms of the posible involvement of the Na+/K+ ATPase in Friend cell differentiation.  相似文献   

19.
A furosemide-sensitive, ouabain-insensitive [86Rb+] uptake is described in glioma cells in culture which is dependent upon external Na+, K+, and Cl? concentrations. This transport activity was also inhibited by bumetanide at 100-fold lower concentrations than furosemide. Furosemide-sensitive swelling of glioma cells is demonstrated and this activity is dependent upon external Na+ and K+ in a manner similar to [86Rb+] uptake. This transport activity was not detected in neuroblastoma cells and the possible relevance of these findings to extracellular K+ buffering by glia is discussed.  相似文献   

20.
The uptake of ouabain-sensitive 86Rb+ uptake measured at 5 min and the uptake measured at 60 min was 4.5- and 2.7-fold greater respectively for SV40 transformed 3T3 cells compared to 3T3 cells during the late log phase of growth. This uptake, however, varied markedly with cell growth. Ouabain-sensitive 86Rb+ uptake was found to be a sensitive indicator of protein synthesis as measured by total protein content. Cessation of cell growth as measured by total protein content was associated with a decline in ouabain-sensitive 86Rb+ uptake in both cell types. This increased ouabain-sensitive cation transport was reflected in increased levels of (Na+ + K+)-ATPase activity for SV40 3T3 cells, which showed a 2.5-fold increase V but the same Krmm as 3T3 cells.These results are compared with the results of related work. Possible mechanisms for these effects are discussed and how changes in cation transport might be related to alterations in cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号