首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Details are presented relating to chimpanzees' choices between two sympatric species of termites,Macrotermes lillijeborgi andM. vitrialatus, as food in the Campo Animal Reserve, southwest Cameroon, West Africa. An attempt was made to determine the various factors that affected such choices. The two species of termites seemed to have almost the same value in terms of ecological factors. However, chimpanzees fed almost exclusivelyonM. lillijeborgi, using digging sticks and fisching probes, during the study period which extended from the end of August to the middle of January, with their feeding activity showing peak at the beginning of the rainy season. By contrast,M. vitrialatus was rarely eaten in spite of the ease with which such prey could be obtained, namely, by desctruction of termite mounds by hand, without the need for tools. The reason that the chimpanzees discriminated between the two species of termite cannot be explained in terms of ecological factors such as size of prey, seasonal differences in termite activity, etc. Sticks used as tools were fairly uniform in size and character, mainly because of physical constraints related to the structure of termite mounds, and the brush-like ends of sticks seemed to be incidentaly byproducts of the chimpanzee's choice of plant species. Ecological factors could provide chimpanzees with a basis for the use of some kind of tool and help them modify it, while other factors, for example, something akin to leisure or the chimpanzee's interest in use of a tool, could provide an opportunity for inventing some tool-using behavior or for maintaining such behavior. These different factors, not being exclusive of one another, might affect the invention and maintenance of tool using-behavior at different phases. It is possible that chimpanzee's choice of prey may not always be the most efficient or appropriate in a given ecological situation.  相似文献   

2.
1. Termites are important ecosystem engineers that improve primary productivity in trees and animal diversity outside their mounds. However, their ecological relationship with the species nesting inside their mounds is poorly understood. 2. The presence of termite cohabitant colonies inside 145 Cornitermes cumulans mounds of known size and location was recorded. Using network‐theoretical methods in conjunction with a suite of statistical analyses, the relative influence of biotic and abiotic drivers of termite within‐mound diversity on the composition and species richness of the termite community was investigated, specifically builder presence and physical aspects of the mound. 3. We found that richness inside the mound increases with mound size, and the species similarity between mounds decreases with distance. The physical attributes (abiotic drivers) of termite mounds (size and relative distance to other mounds) are the strongest predictors of termite species richness and composition. The biotic driver (presence of a builder colony) has an important, though smaller, negative effect on within‐mound termite species richness. 4. The findings suggest that the termites' physical manipulation of their environment is an important driver of within‐mound community diversity. More generally, the approach taken here, using a combination of statistical and network‐theoretical methods, can be used to determine the relative importance of abiotic and biotic drivers of diversity in a wide range of communities of interacting species.  相似文献   

3.
As a result of environmental variability, animals may be confronted with uncertainty surrounding the presence of, or accessibility to, food resources at a given location or time. While individuals can rely on personal experience to manage this variability, the behavior of members of an individual's social group can also provide information regarding the availability or location of a food resource. The purpose of the present study was to measure how captive chimpanzees individually and collectively adjust their foraging strategies at an artificial termite mound, as the availability of resources provided by the mound varied over a number of weeks. As predicted, fishing activity at the mound was related to resource availability. However, chimpanzees continued to fish at unbaited locations on the days and weeks after a location had last contained food. Consistent with previous studies, our findings show that chimpanzees do not completely abandon previously learned habits despite learning individually and/or socially that the habit is no longer effective.  相似文献   

4.
In the semi-arid woodland of eastern Australia, soil mounds are often associated with fallen mulga (Acacia aneura) trees. Measurements of the physical and chemical properties of the soils in these mounds compared with surrounding soils, together with differences in herbage growth responses, indicate that these mounds are fertile patches, with possible importance as habitats for soil fauna and as refugia for a range of organisms during drought. The mound soil material may accumulate by fluvial, aeolian or rain-splash deposition about the fallen log, however, some of the mound material was derived from termite feeding gallery structures. The surface feeding gallery material may be comprised of soil particles from within the mound or from tunnels and storage galleries below the mound, and probably depends on the termite species.  相似文献   

5.
African savanna termite mounds function as nutrient‐rich foraging hotspots for different herbivore species, but little is known about their effects on the interaction between domestic and wild herbivores. Understanding such effects is important for better management of these herbivore guilds in landscapes where they share habitats. Working in a central Kenyan savanna ecosystem, we compared selection of termite mound patches by cattle between areas cattle accessed exclusively and areas they shared with wild herbivores. Termite mound selection index was significantly lower in the shared areas than in areas cattle accessed exclusively. Furthermore, cattle used termite mounds in proportion to their availability when they were the only herbivores present, but used them less than their availability when they shared foraging areas with wild herbivores. These patterns were associated with reduced herbage cover on termite mounds in the shared foraging areas, partly indicating that cattle and wild herbivores compete for termite mound forage. However, reduced selection of termite mound patches was also reinforced by higher leafiness of Brachiaria lachnantha (the principal cattle diet forage species) off termite mounds in shared than in unshared areas. Taken together, these findings suggest that during wet periods, cattle can overcome competition for termite mounds by taking advantage of wildlife‐mediated increased forage leafiness in the matrix surrounding termite mounds. However, this advantage is likely to dissipate during dry periods when forage conditions deteriorate across the landscape and the importance of termite mounds as nutrient hotspots increases for both cattle and wild herbivores. Therefore, we suggest that those managing for both livestock production and wildlife conservation in such savanna landscapes should adopt grazing strategies that could lessen competition for forage on termite mounds, such as strategically decreasing stock numbers during dry periods.  相似文献   

6.
Termite mounds contribute to the spatial heterogeneity of ecological processes in many savannas, but the underlying patterns and determinants of mound distributions remain poorly understood. Using the Carnegie Airborne Observatory (CAO), we mapped the distribution of termite mounds across a rainfall gradient within a river catchment (~ 27 000 ha) of the Kruger National Park, South Africa. We assessed how different factors were associated with the distribution and height of termite mounds at three spatial scales: the entire catchment, among three broad vegetation types, and on individual hillslope crests. Abiotic factors such as the underlying geology and mean annual precipitation shaped mound densities at broad scales, while local hillslope morphology strongly influenced mound distribution at finer scales, emphasising the importance of spatial scale when assessing mound densities. Fire return period had no apparent association with mound densities or height. Mound density averaged 0.46 mounds ha?1, and exhibited a clustered pattern throughout the landscape, occurring at relatively high densities (up to 2 mounds ha?1) on crests, which are nutrient‐poor elements of the landscape. Mounds exhibited significant over‐dispersion (even spacing) at scales below 60 m so that evenly spaced aggregations of termite mounds are embedded within a landscape of varying mound densities. The tallest mounds were found in dry savanna (500 mm yr?1) and were positively correlated with mound density, suggesting that dry granitic savannas are ideal habitat for mound‐building termites. Mound activity status also varied significantly across the rainfall gradient, with a higher proportion of active (live) mounds in the drier sites. The differential spacing of mounds across landscapes provides essential nutrient hotspots in crest locations, potentially sustaining species that would otherwise not persist. The contribution to biodiversity and ecosystem functioning that mounds provide is not uniform throughout landscapes, but varies considerably with spatial scale and context.  相似文献   

7.
8.
Wild chimpanzees (Pan troglodytes) used probes made of vegetation to fish for termites (Macrotermes herus) in the Mahale Mountains of western Tanzania. Data on both the artefacts and behavior associated with their use were recorded over a 5-month period. The chimpanzees of one unit group, B Group, were seen four times to use the tools to extract the insects from their mounds. A sample of 290 tools was collected and analyzed in terms of age, seasonality, length, width, class of raw materials, species, methods of making, extent of use, and damage incurred through use. There were differences across groups in tool use in feeding on termites; some could be related to biotic factors, but others appeared to be cultural differences.  相似文献   

9.
In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics.  相似文献   

10.
This article provides a meta-analysis of quantitative data available in literature regarding the relation between termite numbers and the volume of their mounds for 24 species belonging to 13 genera. The leading question behind this analysis is: “how do the respiratory gas exchanges regulate the size of termite mounds?” This question is answered through the analysis of the log–log regression between the volume of the mound and the number of inhabitants. The most confident data support the hypothesis of a respiratory regulation that can be achieved through a relation between the termite numbers and (1) the volume of their mounds (slope of the regression near 1, Noditermes), (2) the surface of the outer walls of their mounds (slope of the regression near 0.67, Termitinae and Nasutitermes) or (3) a compromise between the surface of the outer walls of their mounds and some linear structures of their nests (slope of the regression between 0.67 and 0.33, Trinervitermes and Macrotermes). The way this is achieved is linked with the architecture of the mound. A confident relation was found between the number of individuals and the epigeal volume of their mounds for 18 species for which the most reliable data were provided. Three more accurate models are proposed for estimating the termite population based on the nest material and architecture and on the size of the termites.  相似文献   

11.
This study investigated the effect of land-use on density and distribution patterns of termite mounds. A total area of 12 ha was investigated using four 1 ha plots from each of three land-use types (mango orchards, maize fields and communal rangelands). A total of 297 mounds from four termite species were recorded. Plotted GIS coordinates for each mound in ArcMap showed a random distribution pattern in all land-use types. The mean number of mounds per hectare was significantly higher (p < 0.001) in communal rangelands (52.5 ± 1.21), than in maize fields (14.75 ± 3.15) and mango orchards (7.5 ± 0.87), and dominated by small-sized mounds of Trinervitermes sp. Few mounds of Odontotermes sp. were found. Mounds of the edible termites, Macrotermes natalensis and M. falciger, were found in all land-use types, with the highest density for both species being in maize fields. Although the mound height for both species was similar, mound circumference for M. falciger was significantly larger (p < 0.001) which may limit land available for agricultural use. Density of mounds was influenced by land-use which may lead to changes in termite ecosystem functioning and availability of termites as a free source of protein.  相似文献   

12.
Although the level of handedness in humans varies cross-culturally, humans are generally described as right-handed, which has been considered a uniquely human trait. Recently, captive chimpanzees (Pan troglodytes) have been shown to exhibit right-hand preference when performing bimanual but not unimanual tasks. Less clear is whether this pattern also occurs in wild chimpanzees and other African apes. Using videos (N = 49) of six wild western gorillas (Gorilla gorilla gorilla) feeding on termites at the Mondika Research Center (Republic of Congo), we tested whether they exhibit hand preference when performing unimanual, i.e., reaching for termite mound pieces; bimanual, i.e., “termite tapping”: rhythmically shaking a piece of termite mound with the dominant hand and collecting the termites in the other hand tasks; or hand transfer prior to bimanual tasks, i.e., transferring a piece of termite mound from one hand to the other. All individuals exhibited exclusive hand preference when performing the bimanual tasks, with five of six gorillas preferring the right hand. Conversely, most individuals did not show any manual preference during the unimanual task. In addition, hand preference during hand transfer revealed clear hand dominance of similar strength and direction of those shown for the bimanual task, suggesting that this measure is as sensitive as the bimanual task itself. Thus, we propose “termite feeding” as a novel task to be considered in future hand-preference studies in wild western gorillas. Our results are in concordance with those for chimpanzees and captive gorillas showing hemispheric specialization for bimanual actions in apes.  相似文献   

13.
Herbivores do not forage uniformly across landscapes, but select for patches of higher nutrition and lower predation risk. Macrotermes mounds contain higher concentrations of soil nutrients and support grasses of higher nutritional value than the surrounding savanna matrix, attracting mammalian grazers that preferentially forage on termite mound vegetation. However, little is known about the spatial extent of such termite influence on grazing patterns and how it might differ in time and space. We measured grazing intensity in three African savanna types differing in rainfall and foliar nutrients and predicted that the functional importance of mounds for grazing herbivores would increase as the difference in foliar nutrient levels between mound and savanna matrix grasses increases and the mounds become more attractive. We expected this to occur in nutrient‐poor areas and during the dry season when savanna matrix grass nutrient levels are lower. Tuft use and grass N and P content were measured along transects away from termite mounds, enabling calculation of the spatial extent of termite influence on mammalian grazing. Using termite mound densities estimated from airborne light detection and ranging (LiDAR), we further upscaled field‐based results to determine the percentage of the landscape influenced by termite activity. Grasses in close proximity to termite mounds were preferentially grazed at all sites and in both seasons, but the strength of mound influence varied between savanna types and seasons. In the wet season, mounds had a relatively larger effect on grazers at the landscape scale in the nutrient‐poor, wetter savanna, whereas in the dry season the pattern was reversed with more of the landscape influenced at the nutrient‐rich, driest site. Our results reveal that termite mounds enhance the value of savanna landscapes for herbivores, but that their functional importance varies across savanna types and seasons.  相似文献   

14.
Mound fields are a common landscape throughout the world and much of the evidence for their origin has been of a circumstantial nature. It has been hypothesized that earth mounds emerge over grasslands by termite activity; alternatively, they might be formed after erosion. We tested whether a mound field in central Brazil was generated by termite activity or erosion. We used soil organic matter isotopic composition, soil chemical, physical and floristic composition to determine the origin of a mound field. If the mounds emerged by termite activity in an established grassland the soil organic matter below the mound should have the isotopic signature of C4 dominated grassland, which contrasts with savanna C3 + C4 signature. Additionally, soil traits should resemble those of the grassland. All markers indicate that the mounds were formed by erosion. The soil isotopic composition, chemical traits and texture below the mound resembled those of the savanna and not those of the grassland. Moreover, most of the species present in the mound were typical of savanna. Concrete evidence is provided that mound fields in the studied area were produced by erosion of a savanna ecosystem and not termite activity. The use of the techniques applied here would improve the assessments of whether analogous landscapes are of a biogenic nature or not.  相似文献   

15.
Termites are a highly uncertain component in the global source budgets of CH4 and CO2. Large seasonal variations in termite mound fluxes of CH4 and CO2 have been reported in tropical savannas but the reason for this is largely unknown. This paper investigated the processes that govern these seasonal variations in CH4 and CO2 fluxes from the mounds of Microcerotermes nervosus Hill (Termitidae), a common termite species in Australian tropical savannas. Fluxes of CH4 and CO2 of termite mounds were 3.5-fold greater in the wet season as compared to the dry season and were a direct function of termite biomass. Termite biomass in mound samples was tenfold greater in the wet season compared to the dry season. When expressed per unit termite biomass, termite fluxes were only 1.2 (CH4) and 1.4 (CO2)-fold greater in the wet season as compared to the dry season and could not explain the large seasonal variations in mound fluxes of CH4 and CO2. Seasonal variation in both gas diffusivity through mound walls and CH4 oxidation by mound material was negligible. These results highlight for the first time that seasonal termite population dynamics are the main driver for the observed seasonal differences in mound fluxes of CH4 and CO2. These findings highlight the need to combine measurements of gas fluxes from termite mounds with detailed studies of termite population dynamics to reduce the uncertainty in quantifying seasonal variations in termite mound fluxes of CH4 and CO2.  相似文献   

16.
Chimpanzees (Pan troglodytes verus) at Fongoli, Senegal, consume termites year-round. Understanding the ecological context behind this behavior is especially important in light of the environmental conditions at Fongoli. This mosaic savanna habitat is one of the hottest and driest sites where chimpanzees have been studied. Two genera and four species of termites were found in association with tools used by chimpanzees in a sample of 124 termite mounds that were monitored. The chimpanzees of Fongoli termite fish predominantly in woodland and forest habitat types, and, although woodland accounts for the majority of the chimpanzees' home range, forest habitat types comprise only about 4% of their range. Thus, habitat type has an influence on the Fongoli chimpanzees' termite fishing. Termite consumption to the degree seen at Fongoli may have particular significance for hominid evolution, given the expansion of Pliocene hominids into increasingly open, hot, and dry habitats.  相似文献   

17.
Bowé (hardened ferricrete soils formed by erosion, drought or deforestation) are often associated with termite mounds, but little is known about these mounds and their role in the restoration of soils and plant biodiversity on bowé. This study examined termite mounds on bowé and their effects on soil depth and plant richness. Sixty-four sampling plots were laid out randomly on bowé sites with mounds and on adjacent bowé sites without mounds. The height and circumference of each mound were measured. Species inventories were made and soil depth measured in each plot. Linear mixed effects and generalised mixed effects models with Poisson error distribution were used to assess the variation in soil depth and plant species richness in mound and nonmound microsites. Two types of mounds (small vs. large) associated with different termite species were observed on bowé, with the small mounds being most common. Plots with either large or small mounds had deeper soils and higher plant richness than the adjacent plots without mounds. Conservation of termite mounds is important for restoring soils and plant richness on bowé, and termite mounds should be taken into consideration in biodiversity and soil management strategies for bowé.  相似文献   

18.
This study compared elephant use of woody vegetation on termite mounds with surrounding woodlands in western Zimbabwe. Twelve sites consisting of paired plots on termite mounds and in woodlands were selected. At each site, soil and vegetation samples (leaf and stem) were collected for chemical analysis. Both soil and plant samples were analyzed for calcium, magnesium, potassium, sodium, and phosphorus, and plant samples were also analyzed for crude protein concentration. Two indices of elephant feeding damage were computed: the median number of stems and branches removed per plant, and the mass of stems and branches removed by elephants per unit area. Termite mound soils had higher concentrations of all elements tested than soils from woodlands, and termite mounds differed from woodland plots in terms of plant species composition. Trees growing on termite mounds had higher concentrations of all nutrients except sodium and crude protein, and were subjected to more intense feeding by elephants than trees from the surrounding vegetation matrix. Termite mounds may play an important role in determining food availability and spatial feeding patterns by elephants and other herbivores.  相似文献   

19.
Termite mounds are a widespread feature in most African savannas. These structures exhibit high nutrient contents and often host a special vegetation composition. In this study, we analysed mound distribution patterns of a fungus-growing termite species, Macrotermes michaelseni, an important ecosystem engineer in the savannas of Namibia. Inhabited mounds taller than 0.7 m were regularly distributed. We view this pattern as a result of intraspecific competition. The heights of mounds taller than 0.7 m were correlated positively with their distance, such that mounds closer together, i.e. up to inter-mound distances of approximately 50 m, tended to be smaller than average. This indicates that intraspecific competition for foraging areas controls mound distribution pattern and colony size. Differences between mound heights increased on the spatial scale up to inter-mound distances of 80 m. We assume that the foundation of new colonies is only possible in unoccupied patches. In such patches, young colonies are able to occur close together as they have a relatively low foraging demand and therefore a low spatial demand. In contrast, their critical distance to taller colonies with higher foraging demands is rather large, which leads to the observed increasing difference of mound heights with increasing distances between them.  相似文献   

20.
In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号