首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the role of skylight polarization in the orientation system of a day-migrating bird, Yellow-faced Honeyeaters (Lichenostomus chrysops, Meliphagidae) were tested in funnel cages for their directional preferences. In control tests in the natural local geomagnetic field under the clear natural sky, they preferred their normal migratory course. Manipulations of the e-vector by depolarizing the skylight or rotating the axis of polarization failed to affect the orientation as long as the natural geomagnetic field was present. When deprived of magnetic information, the birds continued in their normal migratory direction as long as they had access to information from the natural sky, or when either the sun or polarized light was available. However, when sun was hidden by clouds, depolarizers caused disorientation. — These findings indicate that polarized skylight can be used for orientation when no other known cues are available. However in the hierarchy of cues of this species, the polarization pattern clearly ranks lower than information from the geomagnetic field.  相似文献   

2.
Two ‘cue-conflict’ experiments were designed to evaluate the role of (1) solar cues at sunset and stars, and (2) solar cues at sunset and geomagnetic stimuli, in the migratory orientation of the savannah sparrow (Passerculus sandwichensis). A sunset and stars experiment exposed birds in the experimental group to a mirror-reflected sunset followed by an unmanipulated view of stars. Experimental birds shifted their migratory activity in accordance with the setting sun despite exposure to a normal night sky. The sunset and geomagnetism experiment exposed birds in the experimental group to a simultaneous shift in both the position of sunset and the earth's magnetic field. Again experimentals shifted their activity in accordance with the setting sun rather than the artificially shifted magnetic field. Savannah sparrows probaly use stars as celestial landmarks to maintain a preferred direction and do not reorient their activity when exposed to an alternative cue once a direction is established. Moreover, savannah sparrows with experience of migration do not require geomagnetic information in order to use the solar cues available at sunset to select a migratory direction.  相似文献   

3.
Geomagnetic cues have been shown to influence migratory orientation and migratory fuelling in night‐migratory songbird species. Here, we used captive‐bred northern wheatears Oenanthe oenanthe from the southern Norwegian population to show that other aspects of the birds’ migratory program can be influenced by magnetic cues as well. We observed that the amount of migratory restlessness increased strongly with progression of the migratory season when the birds were kept constantly in the magnetic field of northern Germany, but the amount of migratory restlessness decreased when the magnetic field changed along the birds’ natural flyway are simulated. Thus, the Earth's magnetic field can also act as a ‘signpost’ cue for fine‐tuning the spatio‐temporal course of migration.  相似文献   

4.
The migratory direction in young passerine migrants is based on innate information, with the geomagnetic field and celestial rotation as references. To test whether the direction of celestial rotation is of importance, hand-raised pied flycatchers in Latvia were exposed during the premigratory period to a planetarium rotating in different directions. During autumn migration, when their orientation behavior was recorded in the local geomagnetic field in the absence of celestial cues, birds that had been exposed to a sky rotating in the natural direction showed a unimodal preference of their south-westerly migratory direction. Birds that had been exposed to a sky rotating in the reversed direction, in contrast, showed a bimodal preference of an axis south-west-north-east. Their behavior was similar to that of pied flycatchers that had been raised without access to celestial cues. In Latvia, the magnetic field alone allows only orientation along the migratory axis, and celestial rotation enables birds to select the correct end of this axis. Our findings show that the direction of rotation is of crucial importance: celestial rotation is effective only if the stars move in the natural direction.  相似文献   

5.
To assess the relative importance of celestial and magnetic cues for orientation at dusk, Australian silvereyes, Zosterops l. lateralis, were subjected to artificial magnetic fields under the natural evening sky, beginning 30 min before sunset. Control birds tested in the local geomagnetic field preferred their normal south-southwesterly migratory direction. Birds tested in a magnetic field with north deflected counterclockwise to 240°WSW showed northeasterly tendencies from the first test onward. Birds subjected to a corresponding clockwise deflection to 120°ESE, in contrast, first showed southerly directions, but from the 7th test onward shifted towards the northwest. Hence, both experimental groups followed the shift in magnetic north, one immediately, the other after a delay. When the birds were later tested in a vertical magnetic field without directional information, the two experimental groups continued in the direction they had preferred in the artificial magnetic fields, presumably by celestial cues alone. This indicates that they had not simply ignored celestial cues, but had recalibrated them according to the altered magnetic fields. The reasons for the initial difference between the two experimental groups remain unclear. Delayed responses to deflections of magnetic north have also been observed in previous studies. They appear to be the main reason why studies that expose birds only once to a cue-conflict situation often seem to indicate a dominance of celestial cues, whereas studies exposing the birds repeatedly usually indicate a dominance of magnetic cues. Accepted: 17 September 1997  相似文献   

6.
  1. Young migratory birds enter the world with two representations of the migratory direction, one coded with respect to the magnetic field, the other with respect to celestial rotation. The preferred magnetic direction of migratory orientation is malleable early in life: it may be calibrated by celestial rotation, observed either in daytime or at night.
  2. Previous experiments showed that early experience with skylight polarization was necessary for calilbration to occur in daytime. In this study, we performed a direct manipulation of patterns of polarized skylight at dawn and dusk.
  3. Hand-raised Savannah sparrows (Passerculus sandwichensis) were allowed to observe the clear sky for 1 h prior to local sunrise and for one h following local sunset. They never saw the Sun nor stars. The birds observed the sky through bands of polarizing material (HNP'B) aligned with the e-vector axis in one of three orientations with respect of the azimuth of sunrise and sunset: group 1) 90°; group 2) 45° CW; group 3) 45° CCW.
  4. Tested indoors in covered cages in both shifted and unshifted magnetic fields, the autumn migratory orientation of the three groups differed significantly. Group 1 oriented magnetic N-S, group 2 oriented magnetic NW-SE, and group 3 oriented magnetic NNE-SSW. These observed orientation directions are very close to those predicted by the manipulations of polarized skylight.
  5. These results indicated that a fairly simplified, static polarized light pattern viewed a limited number of times only in dawn and dusk snapshots is sufficient to produce calibration of the preferred magnetic migratory orientation direction.
  相似文献   

7.
The orientation system of migratory birds consists of a magnetic compass and compasses based upon celestial cues. In many places, magnetic compass directions and true or geographic compass directions differ (referred to as magnetic declination). It has been demonstrated experimentally in several species that the innate preferred direction of magnetic orientation can be calibrated by celestial rotation, an indicator of geographic directions. This calibration process brings the two types of compass into conformity and provides the birds with a mechanism that compensates for the spatial variation in magnetic declination. Calibration of magnetic orientation has heretofore been demonstrated only with hand-raised birds exposed to very large declination (90° or more). Here we show that the magnetic orientation of wild birds from near Albany, New York, USA (declination = 14° W) was N–S, a clockwise shift of 26° from the NNW–SSE direction of birds raised entirely indoors. Hand-raised birds having visual experience with either the daytime sky or both day and night sky orientated N–S, similar to wild-caught birds. These data provide the first confirmation that calibration of magnetic orientation occurs under natural conditions and in response to modest declination values.  相似文献   

8.
Previous experiments have shown that a short, strong magnetic pulse caused migratory birds to change their headings from their normal migratory direction to an easterly direction in both spring and autumn. In order to analyse the nature of this pulse effect, we subjected migratory Australian silvereyes, Zosterops lateralis, to a magnetic pulse and tested their subsequent response under different magnetic conditions. In the local geomagnetic field, the birds preferred easterly headings as before, and when the horizontal component of the magnetic field was shifted 90 degrees anticlockwise, they altered their headings accordingly northwards. In a field with the vertical component inverted, the birds reversed their headings to westwards, indicating that their directional orientation was controlled by the normal inclination compass. These findings show that although the pulse strongly affects the magnetite particles, it leaves the functional mechanism of the magnetic compass intact. Thus, magnetite-based receptors seem to mediate magnetic 'map'-information used to determine position, and when affected by a pulse, they provide birds with false positional information that causes them to change their course.  相似文献   

9.
The population-specific orientation of two groups of blackcaps (Sylvia atricapilla), one from southwest Germany, the other from easternmost Austria, was studied outdoors in Emlen funnels. We investigated whether a seasonal shift in the migratory direction — as expected for the Austrian birds from ringing recoveries — occurs under experimental conditions and in a seasonally constant magnetic field. The West German birds, for which no shift was expected, oriented southwest during the entire season. The Austrian birds oriented southeast in October and southsouthwest in November. The clockwise shift by about 60° occurred within a 10-day period. The results indicate that in this species seasonal changes of migratory direction are probably based on an endogenous program, occur without the birds actually migrating and are independent of changes in the magnetic field. Our results provide further evidence that directional shifts in Sylvia warblers may be controlled by a different mechanism than in pied flycatchers (Ficedula hypoleuca).  相似文献   

10.
Migratory orientation of Scandinavian and Greenland wheatears was recorded during the autumn migration periods of 1988 and 1989. Orientation cage tests were conducted under clear sunset skies, to investigate the importance of different visible sky sections on orientation performance. In addition, wheatears were released under clear starry skies and under total overcast to examine the orientation of free-flying birds. The following results were obtained:
  • 1 Wheatears tested with a restricted visible sky section (90° centered around zenith) in orientation cages, showed a mean orientation towards geographic W/geomagnetic NW (Greenland) and towards geographic and magnetic WNW-NW (Sweden). These mean directions are clearly inconsistent with the expected autumn migration directions, SW-SSW in Scandinavia and SE in Greenland, as revealed by ringing recoveries for the two populations.
  • 2 When the birds were allowed a much more extensive view of the sky, almost down to the horizon (above 10° elevation), Scandinavian wheatears chose headings in agreement with ringing data. Greenland birds were not significantly oriented.
  • 3 Release experiments under clear starry skies resulted in mean vanishing directions in good agreement with ringing data from both sites. Greenland wheatears released under total overcast showed a similar orientation as under clear skies, indicating that a view of the stars may not be of crucial importance for selecting a seasonally accurate migratory direction.
The results suggest that an unobstructed view of the sky, including visual cues low over the horizon, is important, possibly in combination with geomagnetic cues, for the orientation of migratory naive wheatears. Furthermore, the birds showed remarkably similar orientation responses in Greenland and Scandinavia, respectively, indicating that they use basically the same orientation system, despite considerable differences in visual and geomagnetic orientation premises at the two different geographic and magnetic latitudes.  相似文献   

11.
Migrating Birds as Dispersal Vehicles for West Nile Virus   总被引:1,自引:0,他引:1  
Whereas migrating birds have been implicated in the spread of West Nile virus (WNV), there is no direct evidence of birds actively migrating while infectious. The role of birds in WNV dispersal is difficult to assess in the field. However, this role can be evaluated experimentally because birds in migratory disposition display increased locomotor activity or restlessness under captive conditions. We tested the following hypotheses: (1) migrating passerine birds continue to exhibit migratory activity while infectious with WNV and (2) the migratory state of the individual affects the magnitude of viremia. We examined the migratory activity of two neoarctic-neotropical passerine migrants, Swainson’s thrush (Catharus ustulatus) and gray catbird (Dumetella carolinensis), during acute WNV infection. All gray catbirds and six of nine Swainson’s thrushes exhibited migratory activity while infectious. Moreover, migratory status did not appear to influence viremia titers, as might be expected if individuals were immunosuppressed during migration. Therefore, we demonstrate that migrating passerine birds are potential dispersal vehicles for WNV.  相似文献   

12.
Although magnetic compass orientation has been reported in a number of invertebrate and vertebrate taxa, including about a dozen migratory bird species, magnetic orientation capabilities in animals remain somewhat controversial. We have hand-raised a large number of Savannah sparrows (Passerculus sandwichensis) to study the ontogeny of orientation behavior. Young birds with a variety of early experience with visual and magnetic orientation cues have been tested for magnetic orientation during their first autumn migration. Here we present data from 80 hand-raised sparrows, each tested several times in both normal and shifted magnetic fields. Birds reared indoors with no experience with visual orientation cues showed axial north-south orientation that shifted by almost exactly the magnitude of 90° clockwise and counterclockwise shifts in the direction of magnetic north. Other groups of birds with varying early experience with visual orientation cues showed different preferred orientation directions, but all groups shifted orientation direction in response to shifts in the magnetic field. The data thus demonstrate a robust magnetic orientation ability in this species.  相似文献   

13.
Summary Seasonal changes in several blood components (cholesterol, phospholipid phosphorus, glyceride glycerol, free fatty acids, and calcium), hematocrit, and body mass were studied in captive and free-living groups of White-crowned Sparrows (Zonotrichia leucophrys gambelii) over a 2-year period. Cholesterol, phospholipid phosphorus, and glyceride glycerol levels were correlated with body mass and all of them changed in parallel during the year (Table 2 and Figs. 1–3). These lipids were elevated during premigratory and migratory periods, minimal during the summer breeding period, and reduced during periods of body molt. Concentrations of them were consistently higher in captive birds than in free-living ones. Free fatty acid levels were highly variable and not correlated with levels of other blood lipids or with body mass (Fig. 4). However, they too increased during premigratory periods. On the other hand, they were consistently higher in free-living sparrows than in captives. Plasma calcium was relatively constant at 3–5 mEq/l between July and the following March (Fig. 5). It increased during the spring, but earlier than preparations for migration by 2–3 weeks. It was also elevated in egg-laying females. The hematocrit rose during the vernal migratory period, but not during the autumnal one; was minimal in breeding birds; and declined during periods of body molt (Fig. 6). Calcium and hematocrit levels were similar in captive and free-living birds. It appears that captive populations of White-crowned Sparrows generally provide relibale information concerning changes in blood composition that are taking place concurrently in the field.This investigation was done to satisfy partially the requirements for the Ph.D. degree at Washington State University by deGraw and Kern. The project was supported by an NIH Training Grant (GM01276) from the National Institute of General Medical Sciences  相似文献   

14.
气候变化对鸟类迁徙时间的影响是目前生态学研究的热点问题.本文利用鸟类环志的方法分析了2010至2019年河北秦皇岛两种鸟类春季迁徙时间变化趋势及其差异性,并进一步探讨了差异性的原因.选择环志数量较多的食虫鸟黄眉柳莺(Phylloscopus inornatus)和食谷鸟灰头鹀(Emberiza spodocephala...  相似文献   

15.
The magnetic compass of migratory birds has been suggested to be light-dependent. Retinal cryptochrome-expressing neurons and a forebrain region, "Cluster N", show high neuronal activity when night-migratory songbirds perform magnetic compass orientation. By combining neuronal tracing with behavioral experiments leading to sensory-driven gene expression of the neuronal activity marker ZENK during magnetic compass orientation, we demonstrate a functional neuronal connection between the retinal neurons and Cluster N via the visual thalamus. Thus, the two areas of the central nervous system being most active during magnetic compass orientation are part of an ascending visual processing stream, the thalamofugal pathway. Furthermore, Cluster N seems to be a specialized part of the visual wulst. These findings strongly support the hypothesis that migratory birds use their visual system to perceive the reference compass direction of the geomagnetic field and that migratory birds "see" the reference compass direction provided by the geomagnetic field.  相似文献   

16.
In this study, we describe and compare the duration and timing of post-breeding moult of primary and secondary wing feathers, tail feathers, wing coverts and body feathers in captive partially migratory and non-migratory Australian silvereyes (Zosterops lateralis). This study allowed us to follow individual birds through the course of their moult and record the progression of moult in two populations. Both groups of birds underwent a conventional (or basic) post-breeding moult. While all birds followed a similar pattern of feather replacement, differences were found in the timing and duration of moult between migratory and non-migratory birds. The migratory birds generally started their moult earlier in the year and completed it before the non-migratory birds. The migratory birds revealed an overall uniformity in the timing and duration of their moult, while the non-migratory birds showed a greater degree of variability between individuals.  相似文献   

17.
A model of magnetoreception proposes that the avian magnetic compass is based on a radical pair mechanism, with photon absorption leading to the formation of radical pairs. Analyzing the predicted light dependency by testing migratory birds under monochromatic lights, we found that the responses of birds change with increasing intensity. The analysis of the orientation of European robins under 502 nm turquoise light revealed two types of responses depending on light intensity: under a quantal flux of 8.10(15) quanta m(-2) s(-1), the birds showed normal migratory orientation in spring as well as in autumn, relying on their inclination compass. Under brighter light of 54.10(15) quanta m(-2) s(-1), however, they showed a "fixed" tendency toward north that did not undergo the seasonal change and proved to be based on magnetic polarity, not involving the inclination compass. When birds were exposed to a weak oscillating field, which specifically interferes with radical pair processes, the inclination compass response was disrupted, whereas the response to magnetic polarity remained unaffected. These findings indicate that the normal inclination compass used for migratory orientation is based on a radical-pair mechanism, whereas the fixed direction represents a novel type of light-dependent orientation based on a mechanism of a different nature.  相似文献   

18.
Night-migratory songbirds are known to use a magnetic compass , but how do they detect the reference direction provided by the geomagnetic field, and where is the sensory organ located? The most prominent characteristic of geomagnetic sensory input, whether based on visual patterns or magnetite-mediated forces , is the predicted symmetry around the north-south or east-west magnetic axis. Here, we show that caged migratory garden warblers perform head-scanning behavior well suited to detect this magnetic symmetry plane. In the natural geomagnetic field, birds move toward their migratory direction after head scanning. In a zero-magnetic field , where no symmetry plane exists, the birds almost triple their head-scanning frequency, and the movement direction after a head scan becomes random. Thus, the magnetic sensory organ is located in the bird's head, and head scans are used to locate the reference direction provided by the geomagnetic field.  相似文献   

19.
《Ostrich》2013,84(3-4):142-147
Ecological barriers are the riskiest phases of the annual migrations for migratory birds. Comparatively little field data exists pertaining to the ability of migratory birds to prepare for the challenges of crossing ecological barriers, or their ability to recuperate afterward. Migrating Reed Warblers (Acrocephalus scirpaceus) were captured in Eilat, Israel, during their spring and autumn migrations. Data on spring and autumn body masses, their inter-annual variation, and the pattern of body mass increase were analysed. The birds show a significant inter-annual variation in their body mass and body condition index in both seasons, which is consistent with the data from other sites and for other passerine species. During stopovers, mass gain occurred in both seasons. Birds in poor initial condition, and those that stop over for a longer period of time, gained more body mass faster. In spring, but not in autumn, the progress of the season was also an important factor; late-arriving birds gained more fuel faster. The average rate of fuel gain was 0,157g·day?1 ± 0.018 SE.  相似文献   

20.
Rachel  Muheim  Susanne  Åkesson  Thomas  Alerstam 《Oikos》2003,103(2):341-349
The use of celestial or geomagnetic orientation cues can lead migratory birds along different migration routes during the migratory journeys, e.g. great circle routes (approximate), geographic or magnetic loxodromes. Orientation cage experiments have indicated that migrating birds are capable of detecting magnetic compass information at high northern latitudes even at very steep angles of inclination. However, starting a migratory journey at high latitudes and following a constant magnetic course often leads towards the North Magnetic Pole, which means that the usefulness of magnetic compass orientation at high latitudes may be questioned. Here, we compare possible long‐distance migration routes of three species of passerine migrants breeding at high northern latitudes. The initial directions were based on orientation cage experiments performed under clear skies and simulated overcast and from release experiments under natural overcast skies. For each species we simulated possible migration routes (geographic loxodrome, magnetic loxodrome and sun compass route) by extrapolating from the initial directions and assessing a fixed orientation according to different compass mechanisms in order to investigate what orientation cues the birds most likely use when migrating southward in autumn. Our calculations show that none of the compass mechanisms (assuming fixed orientation) can explain the migration routes followed by night‐migrating birds from their high Nearctic breeding areas to the wintering sites further south. This demonstrates that orientation along the migratory routes of arctic birds (and possibly other birds as well) must be a complex process, involving different orientation mechanisms as well as changing compass courses. We propose that birds use a combination of several compass mechanisms during a migratory journey with each of them being of a greater or smaller importance in different parts of the journey, depending on environmental conditions. We discuss reasons why birds developed the capability to use magnetic compass information at high northern latitudes even though following these magnetic courses for any longer distance will lead them along totally wrong routes. Frequent changes and recalibrations of the magnetic compass direction during the migratory journey are suggested as a possible solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号