首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Graham, Alan. (U. Michigan, Ann Arbor.) Systematic revision of the Sucker Creek and Trout Creek Miocene floras of southeastern Oregon. Amer. Jour. Bot. 50(9): 921–936. Ilus. 1963.—The Sucker Creek flora is preserved in shales of volcanic origin exposed in Malheur County, southeastern Oregon. A study of the flora has been made and the systematic revisions presented. The following new species are described: Osmunda claytonites, Davallia solidités, Shepherdia argen∗∗∗teaites, Magnolia ovulata, Anoda suckerensis, and Platanus youngii. A new combination, Hiraea knowltoni (Berry), is proposed. Additional synonymies, Incertae Sedis, and other taxonomic changes are included. The Trout Creek flora is to the west of Sucker Creek in Harney County, southeastern Oregon. The fossils are preserved in diatomite. Four new species are described: Equisetum miocenicum, Gossypium arnoldii, Urena miocenica, and Spiraea miocenica. New combinations are Pteridium calabazensis (Dorf), and Nymphaea rotunda (Arnold). A revised species list is given for the 2 floras. The Sucker Creek flora contains 47 families, 60 genera, and 69 species, presently identified. The Trout Creek flora contains 29 families, 51 genera, and 75 species. The distributional, ecologic, and geologic interpretations of the 2 floras will be presented in a subsequent publication.  相似文献   

2.
Influence of disturbance on insect communities in Pacific Northwest streams   总被引:2,自引:2,他引:0  
Coniferous forests of the Pacific Northwest provide a unique setting for stream ecology research because of the great age of the forests and the important role of wood debris in structuring aquatic systems. The composition and diversity of the insect community in Mack Creek, a stream in a 450 yr conifer forest, was compared with that in Grasshopper Creek where it flowed through a recent clearcut, and at Quartz Creek, which had a 40 yr deciduous canopy. Of the 256 taxa identified, Mack Creek had the highest species richness (196) and evenness. The open site had 191 taxa but high dominance of a few grazer taxa. The deciduous-canopy site had 165 taxa with abundant detritivores. Despite differences in density, the biomass of emergence was similar at the three sites, ranging from 1.53 to 1.65 g m–2 yr–1.The importance of disturbance in structuring stream communities was demonstrated in phenomenological studies after a debris torrent at Quartz Creek, and by monitoring stream recovery following the eruption of Mt. St. Helens in 1980. At Quartz Creek, the debris torrent eliminated the fauna from a 300 m reach, but there was rapid recovery. Emergence density in the same year was similar to that of the control site. The major shift in populations was a decrease in detritivores and moss associates and an increase in grazers, especially Baetis mayflies.At Ape Creek on Mt. St. Helens, over 200 taxa were recorded by 1987 but most occurred in very low densities. This site is reset by winter freshets and by infilling with glacial fines in the summer so the fauna continues to be dominated by weedy, or early successional species. At Clearwater Creek, the presence of wood debris as a stable substrate and limited inputs of fine sediment after 1980 have hastened population recovery. A decade after the eruption this site can be characterized as being in the mid-stages of succession with high insect productivity from an algal-based food web. With further growth of the riparian vegetation I predict a shift towards a detritus-based food web and fauna more similar to Mack Creek than it is at present.  相似文献   

3.
For the first time, the Late Sagwon Flora is described from the upper beds of the Prince Creek Formation (Upper Paleocene) at the Sagavanirktok River (northern Alaska Peninsula). The flora is dominated by the angiosperm Tiliaephyllum brooksense Moiseeva et Herman sp. nov. and conifer Metasequoia occidentalis (Newb.) Chaney. The Late Sagwon Flora is most similar to the Danian or Danian-Selandian flora from the middle part of the Upper Tsagayan Subformation (Amur Region) and lower part of the Wuyun Formation (Heilongjiang Province, China). This similarity allows us to hypothesize that the genus Tiliaephyllum, which dominated in the Late Tsagayan Flora, migrated via the Bering Land Bridge from southern paleolatitudes of the Far East to high latitudes of the Arctic Pacific, due to the progressively warming climate of the Paleocene. Additional new angiosperm species are described from the Late Sagwon Flora: Archeampelos mullii Moiseeva et Herman sp. nov., Tiliaephyllum brooksense Moiseeva et Herman sp. nov., and Dicotylophyllum sagwonicum Moiseeva et Herman sp. nov.  相似文献   

4.
Vesicomyidae clams harbor sulfide‐oxidizing endosymbionts and are typical members of cold seep communities where active venting of fluids and gases takes place. We investigated the central biogeochemical processes that supported a vesicomyid clam colony as part of a locally restricted seep community in the Japan Trench at 5346 m water depth, one of the deepest seep settings studied to date. An integrated approach of biogeochemical and molecular ecological techniques was used combining in situ and ex situ measurements. In sediment of the clam colony, low sulfate reduction rates (maximum 128 nmol mL?1 day?1) were coupled to the anaerobic oxidation of methane. They were observed over a depth range of 15 cm, caused by active transport of sulfate due to bioturbation of the vesicomyid clams. A distinct separation between the seep and the surrounding seafloor was shown by steep horizontal geochemical gradients and pronounced microbial community shifts. The sediment below the clam colony was dominated by anaerobic methanotrophic archaea (ANME‐2c) and sulfate‐reducing Desulfobulbaceae (SEEP‐SRB‐3, SEEP‐SRB‐4). Aerobic methanotrophic bacteria were not detected in the sediment, and the oxidation of sulfide seemed to be carried out chemolithoautotrophically by Sulfurovum species. Thus, major redox processes were mediated by distinct subgroups of seep‐related microorganisms that might have been selected by this specific abyssal seep environment. Fluid flow and microbial activity were low but sufficient to support the clam community over decades and to build up high biomasses. Hence, the clams and their microbial communities adapted successfully to a low‐energy regime and may represent widespread chemosynthetic communities in the Japan Trench. In this regard, they contributed to the restricted deep‐sea trench biodiversity as well as to the organic carbon availability, also for non‐seep organisms, in such oligotrophic benthic environment of the dark deep ocean.  相似文献   

5.
Phytoplankton distribution and abundance in eleven tributaries of the Colorado River within the Grand Canyon were investigated from April, 1975 to June, 1976. During this period a total of 56 genera and 156 species of phytoplankton was identified. Phytoplankton species of the individual tributaries were quite distinct, with only four diatom species, Diatoma vulgare, Navicula tripunctata, Nitzschia linearis and Synedra ulna, common to all the tributaries. Bright Angel Creek, Shinumo Creek and Elves Chasm were the tributaries with the most diverse algal flora, whereas Vaseys Paradise, Tapeats Creek, Deer Creek and Havasu Creek showed the lowest species richness. Elves Chasm and Diamond Creek had the highest phytoplankton numbers. Phytoplankton abundance and species richness appeared to be influenced by high turbidity, current velocity, fluctuating water levels and age of the water. Some of the dominant algal species, Biddulphia laevis, Cocconeis pediculus, Cymbella ventricosa, Epithemia sorex, Gomphonema parvulum and Synedra ulna, showed significant correlations with specific physico-chemical characteristics of the tributaries.Grand Canyon National Park Colorado River Research Series Contribution No. 66. This research was supported by the National Park Service, U. S. Department of the Interior.  相似文献   

6.
《Geobios》2016,49(5):407-422
Invertebrate fossils described from ancient hydrocarbon seep deposits represent diverse groups, e.g., brachiopods, mollusks, decapod crustaceans, worm tubes, and rare echinoderms, but the fossil record of ostracodes from hydrocarbon seep deposits is still very limited, making their ecology and evolutionary history still little known. We found fossil ostracodes in eight Eocene to Oligocene hydrocarbon seep deposits in the Humptulips, Lincoln Creek, Makah, and Pysht formations in western Washington State, USA. They represent eleven taxa belonging to genera found in a wide range of shelf to slope habitats: Acanthocythereis, Loxoconcha?, Cytherella, Cytheropteron, Macropyxis?, Krithe, Paracosta, Pontocythere?, Propontocypris, Palmoconcha, and Neonesidea? Acanthocythereis acroreticulata from one late Oligocene seep deposit in the Lincoln Creek Formation is the oldest and northernmost record for this species. The hydrocarbon seep ostracode faunas from Washington appear to be benthos-dominated, showing the same ecological structure and pattern of phylogenetic relatedness as ostracodes from Miocene and Quaternary seep sediments from Italy and off Ireland. We suggest that the benthos-dominated structure has been stable for ostracodes in hydrocarbon seep environments and/or has a higher preservation potential than the nektobenthos-dominated structure.  相似文献   

7.
ABSTRACT

An account is presented of the chemistry and algal flora of two streams in Ekiti State, Nigeria. The two streams, one of which is much warmer than the other, are separate upstream but subsequently merge. A comparison of the springs revealed that while they differed markedly in temperature, colour, turbidity, conductivity, solids, total alkalinity, total hardness, Ca, SiO3, SO4, Mg, Cl- and dissolved oxygen, they showed some similarities in pH, Fe, Na, K, PO4 and NO3. In the cold spring, while total alkalinity, conductivity and silicate increased in the wet season, total hardness decreased slightly and other variables exhibited fluctuations with season. For the warm spring, except for increased total alkalinity and total hardness, dissolved oxygen and pH decreased in the wet season. However, most parameters of the warm spring were unaffected by season. Floristically, the springs were rich in species with a total of 84 taxa: 56 in the warm spring, 33 in the cold spring, 44 at the confluence and 40 beyond the confluence. The warm spring was dominated mainly by blue-green algae such as Lyngbya birgei, Synechococcus aequalis and Oscillatoria spp.; the cold spring was dominated by Rhizoclonium hieroglyphicum and Navicula spp. The confluence was dominated by Terpsinoe musica, R. hieroglyphicum and Lyngbya birgei, while the site downstream of the confluence was dominated entirely by R. hieroglyphicum. In most cases, the confluence and downstream area beyond the confluence of the springs exhibited intermediate characteristics between the two springs. This study is a contribution to the dearth of information on streams in West Africa.  相似文献   

8.
Aims: Copper is a critical metal of modern industry, and is the most widespread heavy metal contaminant in wastewater. Therefore, isolation of copper‐tolerant microbes having the potential as biosorbent is fascinating not only from an environmental microbiology, but also from a biotechnology view point. In this study, we attempted to isolate highly copper‐tolerant microbes from soil samples of the Nabanobori copper mine, the oldest mine in Japan. Methods and Results: As a result of an enrichment culture, two fungal strains were isolated from soil of the smelter remains. The isolates could grow in a maximum of 200 mmol l?l Cu2+, and grew under a wide pH range. The Cu2+‐binding capacity of nontreated biomass of the isolates was around 35 mg Cu2+ g?1‐biomass. Analysis of 18S rDNA suggested that the isolates belong to the Aspergillus/Penicillium clade, but they represented a distinct lineage against known neighbours. Conclusion: The isolates were highly copper‐tolerant, and their Cu2+‐binding capacity was comparable to well‐studied fungal sorbents. The isolates were implied as novel species. Soil of the historic old mine under weather‐beaten conditions might be a suitable source for metal‐tolerant microbes. Significance and Impact of the Study: The present results advance our understanding of metal‐tolerant microbes, and offer a new tool for both environmental control and metal recovery operations.  相似文献   

9.
The Sorrento wetland hosts several Fe- and Mn-rich seeps that are reported to have appeared after the area was disturbed by recent attempts at development. Culture-independent and culture-based analyses were utilized to characterize the microbial community at the main site of the Fe and Mn seep. Several bacteria capable of oxidizing Mn(II) were isolated, including members related to the genera Bacillus, Lysinibacillus, Pseudomonas, and Leptothrix, but none of these were detected in clone libraries. Most probable number assays demonstrated that seep and wetland sites contained higher numbers of culturable Mn-oxidizing microorganisms than an upstream reference site. When compared with quantitative real time PCR (qPCR) assays of total bacteria, MPN analyses indicated that less than 0.01% of the total population (estimated around 109 cells/g) was culturable. Light microscopy and fluorescence in situ hybridization (FISH) images revealed an abundance of morphotypes similar to Fe- and Mn-oxidizing Leptothrix spp. and Gallionella spp. in seep and wetland sites. FISH allowed identification of Leptothrix-type sheath-forming organisms in seep samples but not in reference samples. Gallionella spp. and Leptothrix spp. cells numbers were estimated using qPCR with a novel primer set that we designed. Results indicated that numbers of Gallionella, Leptothrix or total bacteria were all significantly higher at the seep site relative to the reference site (where Gallionella was below detection). Interestingly, numbers of Leptothrix in the seep site were estimated at only 107 cells/g and were not statistically different in the late summer versus the late winter, despite dramatic changes in sheath abundance (as indicated by microscopy). qPCR also indicated that Gallionella spp. may represent up to 10% (3 × 108 cells/g) of the total bacteria in seep samples. These data corroborate clone library data from samples taken in October 2008, where 11 SSU rRNA sequences related to Gallionella spp. were detected out of 77 total sequences (roughly 10–15%), and where Leptothrix sequences were not detected. Analysis of this SSU rRNA clonal library revealed that a diverse microbial community was present at seep sites. At a 3% difference cutoff, 30 different operational taxonomic units were detected out of 77 sequences analyzed. Dominant sequence types clustered among the beta- and gamma- Proteobacteria near sequences related to the genera Ideonella, Rhodoferax, Methylotenera, Methylobacter, and Gallionella. Overall, results suggest that high metal concentrations at the seep sites have enriched for Fe- and Mn-oxidizing bacteria including organisms related to Gallionella and Leptothrix species, and that members of these genera coexist within a diverse microbial community.  相似文献   

10.
SUMMARY. The algal flora of the Rivers Hayle and Gannel. whieh drain copper and lead mining regions of Cornwall, are described and compared. Although fluctuations in the rarer members of the algal communities were observed, the dominant filamentous algae at most sites did not change over the year of study. Both the total algal abundance and the number of species were depressed at high metal sites. Associations of species that were evident in field samples were confirmed and correlated with water metal levels by principal component analysis. The close similarity between the flora of similar sites on the copper-polluted River Hayle and the lead-polluted River Gannei implies that the degree of metal pollution, rather than the polluting metal per se, determines the species present. All mine sites were characterized by a Microspora -community whereas a Zygnemales community of Spirogyra and Mougeotia species was typical of low metal pollution. Moderately polluted sites downsteam of the mines had an intermediate flora of Zygnemaies, Microsporales. Ulotrichales and gelatinous Volvocales and Tetrasporales species. No species could be said to invariably indicate metal pollution; the most abundant species at highly contaminated sites were also those with the widest distributions. Field samples of filamentous algae (mainly Spirogyra, Zygogonium, Mougeotia and Microspora species) contained metal concentrations several orders of magnitude greater than ambient levels. For copper and iron, both algal metal contents and concentration ratios (μg g-1 algae/μg ml-1 water) were positive functions of water metal levels, although algal iron appeared to plateau at water concentrations of about 1 mg ml-1. Algal lead concentrations, but not the concentration ratios, also were positively correlated with water lead levels. Thus, for these three metals, the algal metal contents were indicative of ambient conditions. In contrast, algal zinc concentrations were nearly constant and consequently the concentration ratios for this metal were inversely related to water levels. This result suggests that unlike the uptake of other metals, uptake of zinc by these aigae may be strictly regulated.  相似文献   

11.
An aquatic biological survey was conducted in 1979–1980 to determine the effects of drainage from an active coal strip-mine on Trout Creek, in northwest Colorado, U.S.A. Sampling was conducted over four seasons at four stations for periphyton, benthic invertebrates and fish. Periphyton in Trout Creek changed in the relative abundance of algae divisions in no apparent relation to mining. Diatoms were the predominant division at all sites. Golden-brown algae were abundant in spring at the stations upstream and adjacent to the mine. Blue-green algae were relatively important at stations upstream and downstream of the mine in winter. Benthic invertebrates exhibited a progressive increase in density, biomass and number of taxa from the upstream station to the downstream station. Shannon-Wiener diversity index for bethic invertebrates decreased slightly downstream of mine drainage but remained indicative of a clean water community. Aquatic insects (especially Trichoptera) were the predominant invertebrates at all stations. Analysis of functional groups of benthic invertebrates revealed increased importance of collector species at the lower sites while shredders were most important upstream of the mine. Unlike the invertebrates, fish exhibited slightly lower biomass at the station adjacent to the mine. The decrease was due to fewer salmonids. However, salmonid density and biomass increased substantially at the station just downstream of the mine. Non-game species (suckers and minnows) increased in numbers downstream and were most abundant at the lowest station. This coal strip-mine had little discernable adverse effects on the periphyton and invertebrates of Trout Creek. Fish populations did not appear to be significantly affected by the mine. Apparently, the presence of settling ponds and a buffer zone of unmined land between the mine and the stream helped to minimize adverse effects.  相似文献   

12.
Archived data from a long-term (1973–1988) monitoring study were used to assess the impacts of kraft mill effluents (KME) on fish community dynamics in Elevenmile Creek, a small blackwater stream located in Cantonment, Florida, compared to a neighboring stream, Black Creek, that did not receive KME. The fish community in Elevenmile Creek was generally lower in species richness and diversity than the reference stream. The exception was the mill outfall site, which had similar species richness and diversity to the reference stream. Neither species richness nor diversity changed substantially during the survey period in either stream. Throughout the survey, Elevenmile Creek was numerically dominated by bluegill, Lepomis macrochirus, and eastern mosquitofish, Gambusia affinis. Black Creek had greater abundances of minnows, suckers, and darters. Time series analysis of L. macrochirus for Elevenmile Creek showed that this species was more abundant during winter than summer, but no overall long-term trend was found. Although data used in this study may not be representative of the fish community in Elevenmile Creek as it exists today, results suggest that Elevenmile Creek was highly disturbed during the survey and that species diversity did not increase following mill treatment upgrades.  相似文献   

13.
Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg?1, respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.  相似文献   

14.
Periphyton and benthic invertebrates assemblages were studied at the confluence of two Rocky Mountain streams, Deer Creek and the Snake River near Montezuma, Colorado. Upstream from the confluence the Snake River is acidic and enriched in dissolved trace metals, while Deer Creek is a typical Rocky Mountain stream. In the Snake River, downstream from the confluence, the pH increases and hydrous metal oxides precipitate and cover the streambed. The algal and benthic invertebrate communities in the upstream reaches of the Snake River and in Deer Creek were very different. A liverwort, Scapania undulata var. undulata, was abundant in the Snake River, and although periphyton were very sparse, there were as many benthic invertebrates as in Deer Creek. Downstream from the confleunce, the precipitation of hydrous metal oxides greatly decreased the abundance of periphyton and benthic invertebrates. This study shows that in streams metal precipitates covering the streambed may have a more deleterious effect on stream communities than high metal-ion activities.  相似文献   

15.
16.
  • 1 Macroinvertebrate community development in Wolf Point Creek in Glacier Bay National Park, Alaska formed by ice recession was investigated from 1991 to 1994 as part of a long‐term study of colonization now exceeding 20 years. Chironomidae, the first taxon to colonize the stream, still dominated the community comprising 75–95% by number, but species succession was apparent.
  • 2 Species richness in August increased from five species in 1978 to 11 in 1991 and 16 in 1994.
  • 3 Diamesa species, abundant in 1978 at densities exceeding 2 750 m‐2, were not collected in 1994, while Pagastia partica dominated the community with densities exceeding 10 000 m‐2.
  • 4 Sixteen taxa, never previously collected, colonized the stream between 1991 and 1994 including representatives of Coleoptera, Muscidae, Trichoptera, and the first noninsect taxon, Oligochaeta. Colonization by new taxa was associated with an increase in summer water temperature and the development of riparian vegetation.
  • 5 Inter‐specific competition is suggested as a possible factor in species succession and is incorporated into a taxa richness model of community development in postglacial streams incorporating stable and unstable channels.
  相似文献   

17.
Benthic macroinvertebrates were collected from the Plachek Pit, a final-cut coal strip mine pit at the Big Horn Mine near Sheridan, Wyoming, USA. Goose Creek was routed through the pit to allow mining under the original creek bed. The benthic community in the pit was dominated by the worm Limnodrilus hoffmeisteri and various midge genera, including Chironomus sp., Procladius sp. and Tanypus stellatus. Insects other than chironomids were minor components of the benthic fauna, and were collected only in the upstream portions of the pit; they were concluded to have originated from drift deposition. The pit functions as a sink for drifting macroinvertebrates. Based on community composition and supplemental water quality information it was concluded that the Plachek Pit best exemplified an organically-enriched, lake-like ecosystem. Overall, rerouting of Goose Creek through the Plachek Pit was not viewed as deleterious to Goose Creek, but rather benefited the creek by serving as a sink for inputs from upstream municipal and agricultural effluents.  相似文献   

18.
An assessment of the performance of a wetland dominated by opportunistic weeds in removing nutrients from a secondary sewage effluent was carried out at Thredbo in Kosciusko National Park. Water quality sampling of the inflow and outflow showed a reduction in turbidity, pH and conductivity with passage through the wetland. Dissolved oxygen levels also decreased. In summer 1982, the phosphorus toad of 1.8 kg P day-1 was reduced by 44% as wastewater moved through the wetland, and the nitrogen load of 6.4 kg N day-1 by 65%. Winter retentions were 10% and 14% of inflowing loads, respectively. In 1983 there was a net release of phosphorus and reduced retention of nitrogen. This was regarded as being a result of physical disturbance of the wetland. Vegetation downstream of the effluent inflow was dominated by the opportunistic weeds Epilobium sarmantaceum and Rumex crispus. Upstream, Carex gaudichaudiana and Baeckea gunniana dominated. Marked seasonal changes in vigour and biomass were recorded. Plants, but not sediments, downstream of the inflow contained more nutrients than those upstream. Seed bank analysis showed more seeds downstream than upstream. A moist treatment promoted more seed germination than a flooded treatment. E. sarmantaceum and to a lesser extent R. crispus dominated in each treatment. In an effort to promote greater water retention and replacement of the weed species, channels in the wetland have been blocked with gravel and planted with Phragmites australis and Schoenoplectus validus.  相似文献   

19.
1. Recovery of acidified aquatic systems may be affected by both abiotic and biotic processes. However, the relative roles of these factors in regulating recovery may be difficult to determine. Lakes around the smelting complexes near Sudbury, Ontario, Canada, formerly affected by acidification and metal exploration, provide an excellent opportunity to examine the factors regulating the recovery of aquatic communities. 2. Substantial recovery of zooplankton communities has occurred in these lakes following declines in acidity and metal concentrations, although toxicity by residual metals still appears to limit survival for many species. Metal bioavailability, not simply total metal concentrations, was very important in determining effects on zooplankton and was associated with a decrease in the relative abundance of cyclopoids and Daphnia spp., resulting in communities dominated by Holopedium gibberum. 3. As chemical habitat quality has improved and fish, initially yellow perch and later piscivores (e.g. smallmouth bass, walleye), have invaded, biotic effects on the zooplankton are also becoming apparent. Simple fish assemblages dominated by perch appear to limit the survival of some zooplankton species, particularly Daphnia mendotae. 4. Both abiotic (residual metal contamination) and biotic (predation from planktivorous fish) processes have very important effects on zooplankton recovery. The re‐establishment of the zooplankton in lakes recovering from stress will require both improvements in habitat quality and the restoration of aquatic food webs.  相似文献   

20.
Chironomid retreats, constructed out of sand grains upon submerged wood debris, increase the surface area available for diatom colonization. The three dimensional substratum afforded by chironomid tubes supports up to twelve times the diatom biavolume found upon adjacent, unmodified substratum in a northern Michigan stream. Diatom enumeration within scrapings from small defined areas on artificial substrata, combined with examination of intact natural substrata through scanning electron microscopy (SEM), reveals distinct, microdistribution patterns. The larval retreats of two major taxa of tube-dwelling chironomid's (Micropsectra sp. and Pseudodiamesa cf. pertinax Garrett) display significantly different diatom communities relative to adjacent masonite substratum. Substratum without chironomid tubes is primarily colonized by Achnanthes minutissima Kütz. and Cocconeis placentula Ehr., exhibiting the lowest species diversity of microhabitats examined. The diatom flora upon sand tubes of Micropsectra sp. is dominated by Opephora martyi Herib., as is the flora of sand grains collected from the stream sediment load. These two micro-habitats exhibit a high community similarity (SIMI). The SIMI index also suggests that the flora of P. pertinax tubes is highly similar to that of sand grains. Diversity, however, is almost three times greater on P. pertinax tubes and SEM observations reveal that this microhabitat is characterized by a more spatially complex flora; Nitzschia and Navicula spp. dominate the upperstory, and O. martyi is located on underlying sand grains. Results indicate that tube-building chironomids in Carp Creek affect diatom microdistribution by: (1) stabilizing sand grains and associated flora within their retreats, (2) providing a ‘refugium’ for upperstory diatom taxa from the mayfly grazer, Baetis vagans McDunnough (Insecta: Ephemeroptera), and (3) through local nutrient enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号