首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The content of abscisic acid (ABA) in abaxial leaf epidermis of the host (Capsella bursa pastoris) and the unattached hemiparasiteMelampyrum arvense showed diurnal changes. ABA content increased during the light period and declined rapidly upon the darkening of leaves. In an attached hemiparasite the content of ABA in the epidermis was maintained at an almost constant level irrespective of the diurnal cycle. As compared with the maximum level in the host, at the end of the light phase the content of ABA in abaxial epidermis constituted about 70 % and 164 % in the unattached and attached hemiparasite, respectively. No significant changes in ABA content were recorded in adaxial epidermis. In all the samples abaxial/adaxial epidermis ABA content ratio was about 3.6:1 in light phase. In darkness this ratio decreased to about 1.1:1 in the host and the unattached hemiparasite and did not show significant change after attachment. ABA content ratio in mesophyll was 1:0.7:1.5 for the host, the unattached, and attached hemiparasite, respectively. In comparison with the host the concentration of ABA in xylem sap of the hemiparasite constituted about 31 % and 152 % for the unattached and attachedM. arvense, respectively.  相似文献   

2.
Gas exchange characteristics of a hemiparasiteMelampyrum arvense L. before and after attachment to the hostCapsella bursa pastoris (L.) Med. were compared. The net photosynthetic rates (PN) on a leaf area basis were extremely low and in comparison to the value obtained for the host were about 15 % and 23 % for the unattached and attached hemiparasite, respectively. Also the concentration of photosynthetic pigments was low (as compared with the host the content of chlorophylls was about 33 % and 49 % and of carotenoids about 38 % and 36 % in the unattached and attached hemiparasite, respectively). On the other hand the rates of respiration were high (about 1.8 and 2.6 times higher in the unattached and attached hemiparasite, respectively, than in the host). In darkness stomatal conductance (gS) of the host and the unattached hemiparasite was rapidly reduced to 10 % of the value obtained in light, gS of the attached hemiparasite was decreased only by about 30%. A total reduction of gS occurred at relative water content (RWC) of 85 %, 75% and 45 % for the unattached hemiparasite, the host, and the attached hemiparasite, respectively. The transpiration (E) rate in the preparasitic stage was very low, being 2.6 and 4.5 times smaller than in the host and the attached hemiparasite, respectively. In the attached hemiparasite WUE was 7.5 and 3 times poorer than in the host and in the preparasitic stage, respectively.  相似文献   

3.
The effect of cytokinins (CKs) and K+ on stomatal behaviour in darkness were studied in the root hemiparasite Melampyrum arvense before (the preparasitic stage) and after attachment to the host (Capsella bursa pastoris L. Med.). The solutes were applied with xylem stream. The stomatal apparatus of the attached hemiparasite was insensitive to externally supplied CKs and K+. Contrary to this finding, the stomatal aperture of hemiparasite in the preparasitic stage increased to about 25, 40 and 69% of the value obtained in light, respectively, after treatment with 200 mM KCl and 10-5 M zeatin riboside ([9R]Z), applied separately or together. CKs influenced K+ transport. The treatment with KCl and [9R]Z,separately or together, increased the content of K+ in guard cell pairs to about 32, 46 and 79 % of the value obtained in light, respectively. Other CKs had a smaller effect (45 - 16 %) in comparison with that of [9R]Z; isopentyladenine was nearly inactive. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Growth of the hemiparasite Rhinanthus serotinus (Schönh.) Oborny was greatly stimulated after attachment of the parasite to the roots of the host plant, Hordeum vulgare L. In order to find the limiting factors for the growth of Rhinanthus without a host, unattached and attached Rhinanthus plants were compared. Within I day after attachment the contents of nitrogen, phosphorus, potassium, magnesium, and sodium increased considerably. Organic nitrogen and phosphorus compounds were rapidly synthesized in attached Rhinanthus. The accumulation of sugars in unattached Rhinanthus and the decrease in sugar content after attachment suggested that the main requirement from the host was not for carbohydrates.  相似文献   

5.
Endogenous levels of indole-3-acetic acid, abscisic acid, and cytokinins (Z-type: dihydrozeatin, dihydrozeatin riboside, zeatin, and zeatin riboside; iP-type: N 6-isopentenyl adenine and N 6-isopentenyl adenosine), were determined in leaves of hazelnut (Corylus avellana L.) (adult material from spring, autumn and forced outgrowth, and juvenile material). Our results showed high levels of indole-3-acetic acid, abscisic acid and total cytokinins in spring samples and low levels of the same hormones in autumn and forced outgrowth materials. The ratios of iP-type/Z-type cytokinins were low in autumn and spring leaves, while they were high in the juvenile and forced outgrowth samples. Both juvenile and forced-outgrowth hazel tissues also showed a high morphogenetic potential, suggesting that the ratio of iP-type/Z-type cytokinins may be a good index of in vitro potential of hazelnut materials.  相似文献   

6.
A novel technique for the physico‐chemical analysis of xylem sap by underwater access to the sapwood of trees is described. In situ measurements of dissolved oxygen in the sapwood are performed by combining this technique with a novel optical method for oxygen detection. In early spring, the oxygen concentration of the sapwood of Betula pendula was in the range of 80–230 µmol O2 L?1, corresponding to an oxygen deficit of 40–75% of air saturation. Oxygen concentration maxima and minima occurred early in the morning and in the afternoon, respectively, whereas xylem sap temperatures showed the reverse pattern. In the sapwood, hypoxia increased from the beginning of bud break until frondescence, when a deficit of 86% of air saturation marked the upper limit of oxygen depletion. There seemed to be no relationship between daily variations of oxygen concentration and xylem sap pressure. In summer, sap flow was a major determinant for the diurnal variation of dissolved oxygen concentration. Oxygen supply to the sapwood was determined by both radial influx into the trunk through intercellular gas spaces and transport of dissolved oxygen via xylem sap flow. Radial influx seemed to be favoured during night‐time, when the trunk was warmer than ambient air. During daytime, the hypoxia of the sapwood rose and increased sharply in the evening, when sap flow velocity approximated zero. High temperature in the sapwood enhanced the respiratory oxygen consumption of the wood parenchyma while the supply of dissolved oxygen via the transpiration stream became ineffective.  相似文献   

7.
In short-term (1 h) uptake experiments GA3(10-5M) stimulated Pi uptake into maize root cortex cells by 28.7 %, Ethrel (10-3M) inhibited it by 18.5 % and BA, IAA, and ABA were inactive. In long-term (5 h) experiments ABA remained inactive, GA3 lost its stimulatory effect, and BA (5. 10-6M), IAA (10-4 -10-5M), and Ethrel (10-3 -5. 10-4M) decreased Pi uptake. When the hormones were present only during 3 h preincubation (“augmentation”) period ABA was inactive, GA3 slightly raised and BA, IAA, and Ethrel slowed down subsequent Pi uptake. BA(10-7 –10-5M) decreased xylem sap volume flow and Pi translocation. ABA in all tested concentrations (10-8 –10-5M) reduced exudation rate and Pi translocation, its effect declining with time. IAA effect strongly depended on concentration used and on application time and varied from strong inhibition to moderate stimulation of both volume flow and Pi translocation. GA3 (10-7M) slightly stimulated xylem volume flow but inhibited phosphate translocation. Ethrel (10-4 and 10-5M) increased both parameters, but Pi transloeation much more than volume flow. IAA, BA, and ABA influenced volume flow and P transloeation to the same extent leaving Pi concentration in the xylem sap unchanged. GA3 and Ethrel influence Pi concentration in the xylem sap and it is thus probable that these hormones regulate release of phosphate ions into the xylem sap.  相似文献   

8.
Effects of drought on nutrient and ABA transport in Ricinus communis   总被引:1,自引:1,他引:0  
We studied the effects of variations of water flux through the plant, of diurnal variation of water flux, and of variation of vapour pressure deficit at the leaf on compensation pressure in the Passioura-type pressure chamber, the composition of the xylem sap and leaf conductance in Ricinus communis. The diurnal pattern of compensation pressure showed stress relaxation during the night hours, while stress increased during the day, when water limitation increased. Thus compensation pressure was a good measure of the momentary water status of the root throughout the day and during drought. The bulk soil water content at which predawn compensation pressure and abscisic acid concentration in the xylem sap increased and leaf conductance decreased, was high when the water usage of the plant was high. For all xylem sap constituents analysed, variations in concentrations during the day were larger than changes in mean concentrations with drought. Mean concentrations of phosphate and the pH of the xylem sap declined with drought, while nitrate concentration remained constant. When the measurement leaf was exposed to a different VPD from the rest of the plant, leaf conductance declined by 400mmol m?2 s?1 when compensation pressure increased by 1 MPa in all treatments. The compensation pressure needed to keep the shoot turgid, leaf conductance and the abscisic acid concentration in the xylem were linearly related. This was also the case when the highly dynamic development of stress was taken into account.  相似文献   

9.
In this paper, we present an integrated account of the diurnal variation in the stable isotopes of water (δD and δ18O) and dry matter (δ15N, δ13C, and δ18O) in the long‐distance transport fluids (xylem sap and phloem sap), leaves, pod walls, and seeds of Lupinus angustifolius under field conditions in Western Australia. The δD and δ18O of leaf water showed a pronounced diurnal variation, ranging from early morning minima near 0‰ for both δD and δ18O to early afternoon maxima of 62 and 23‰, respectively. Xylem sap water showed no diurnal variation in isotopic composition and had mean values of ?13·2 and ?2·3‰ for δD and δ18O. Phloem sap water collected from pod tips was intermediate in isotopic composition between xylem sap and leaf water and exhibited only a moderate diurnal fluctuation. Isotopic compositions of pod wall and seed water were intermediate between those of phloem and xylem sap water. A model of average leaf water enrichment in the steady state (Craig & Gordon, pp. 9–130 in Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeotemperatures, Lischi and Figli, Pisa, Italy, 1965; Dongmann et al., Radiation and Environmental Biophysics 11, 41–52, 1974; Farquhar & Lloyd, pp. 47–70 in Stable Isotopes and Plant Carbon–Water Relations, Academic Press, San Diego, CA, USA, 1993) agreed closely with observed leaf water enrichment in the morning and early afternoon, but poorly during the night. A modified model taking into account non‐steady‐state effects (Farquhar and Cernusak, unpublished) gave better predictions of observed leaf water enrichments over a full diurnal cycle. The δ15N, δ13C, and δ18O of dry matter varied appreciably among components. Dry matter δ15N was highest in xylem sap and lowest in leaves, whereas dry matter δ13C was lowest in leaves and highest in phloem sap and seeds, and dry matter δ18O was lowest in leaves and highest in pod walls. Phloem sap, leaf, and fruit dry matter δ18O varied diurnally, as did phloem sap dry matter δ13C. These results demonstrate the importance of considering the non‐steady‐state when modelling biological fractionation of stable isotopes in the natural environment.  相似文献   

10.
  • Positive sap pressures are produced in the xylem of birch trees in boreal conditions during the time between the thawing of the soil and bud break. During this period, xylem embolisms accumulated during wintertime are refilled with water. The mechanism for xylem sap pressurization and its environmental drivers are not well known.
  • We measured xylem sap flow, xylem sap pressure, xylem sap osmotic concentration, xylem and whole stem diameter changes, and stem and root non‐structural carbohydrate concentrations, along with meteorological conditions at two sites in Finland during and after the sap pressurisation period.
  • The diurnal dynamics of xylem sap pressure and sap flow during the sap pressurisation period varied, but were more often opposite to the diurnal pattern after bud burst, i.e. sap pressure increased and sap flow rate mostly decreased when temperature increased. Net conversion of soluble sugars to starch in the stem and roots occurred during the sap pressurisation period. Xylem sap osmotic pressure was small in comparison to total sap pressure, and it did not follow changes in environmental conditions or tree water relations.
  • Based on these findings, we suggest that xylem sap pressurisation and embolism refilling occur gradually over a few weeks through water transfer from parenchyma cells to xylem vessels during daytime, and then the parenchyma are refilled mostly during nighttime by water uptake from soil. Possible drivers for water transfer from parenchyma cells to vessels are discussed. Also the functioning of thermal dissipation probes in conditions of changing stem water content is discussed.
  相似文献   

11.
Abscisic acid concentrations and fluxes in droughted conifer saplings   总被引:7,自引:1,他引:6  
We present the first study of abscisic acid (ABA) concentrations and fluxes in the xylem sap of conifers during a drought cycle. In both Pinus sylvestris and Picea sitchensis the concentration of ABA in the sap rose 11-fold as the drought progressed. There were clear diurnal trends in this concentration, which reached its maximum (6–8.ininol ABA m?3) near the middle of the day. The fluxes of ABA were calculated by multiplying the xylem ABA concentration by the sap flow rate. The ABA fluxes in the droughted plants in the middle of the day were usually no higher than those of the controls, as a result of the very low sap flow in the droughted plants at that time. However, the ABA flux in the droughted plants was higher than in the controls in the morning, and we postulate that the stomata are responding to these ‘morning doses’ Stomatal conductance, gs, could not be related statistically to leaf turgor or to the ABA flux. However, £s did display a negative exponential relationship with ABA concentration in the xylem. Pinus displayed more acclimation to drought than Picea, Its ABA concentration rose and its stomatal conductance fell at day 6 of the drought, as opposed to day 17 for Picea, and its osmotic potential fell during the drought treatment.  相似文献   

12.
Solute composition of root xylem sap of common native hostsof quandong (Santalum acuminatum) was compared with that ofcorresponding xylem sap and ethanolic extracts of endophytictissues of haustoria of the hemiparasite. Each host transporteda characteristic set of organic nitrogenous solutes, but littleor no nitrate, and the data indicated only limited direct flowof amino compounds between xylem streams of hosts and parasite.Proline predominated in the haustorium and xylem ofSantalum,but was at negligible levels in the xylem of most hosts. Sucrose,fructose, glucose, malate and citrate were at high levels inall saps, and fructose especially prominent inSantalum. Chloride,sulphate and phosphate were the principal inorganic anions ofthe xylem. Based on C:N ratios of xylem and dry matter ofSantalumandassuming a 70% or more dependence on the host for N, it wasestimated thatSantalumwould gain approximately one third ofits C requirement for dry matter production heterotrophicallyfrom the xylem of its hosts. Infiltration of xylem of haustoria-bearingroot segments of a major host (Acacia rostellifera) with a rangeof15N labelled substrates resulted in 40–80% of the15Nof endophytes of the attached haustoria being received as proline.Nitrate reductase activity was induced in haustoria followinghost xylem feeding of nitrate. The study concludes that haustoriaofSantalumact as a major site of synthesis and export of prolineand might therefore play an important role in osmotic adjustmentof the parasite and its related acquisition of water from hosts. Root hemiparasite; Santalum acuminatum; 15N labelled substrates; xylem transport; proline; osmoregulation  相似文献   

13.
Ma JF  Hiradate S 《Planta》2000,211(3):355-360
 The forms of Al for uptake by the roots and translocation from the root to the shoot were investigated in a buckwheat (Fagopyrum esculentum Moench, cv. Jianxi) that accumulates Al in its leaves. The Al concentration in the xylem sap was 15-fold higher in the plants exposed to AlCl3 than in those exposed to an Al-oxalate (1:3) complex, suggesting that the roots take up Al in the ionic form. The Al concentration in the xylem sap was 4-fold higher than that in the external solution after a 1-h exposure to AlCl3 solution and 10-fold higher after a 2-h exposure. The Al concentration in the xylem sap increased with increasing Al concentration in the external solution. The Al uptake was not affected by a respiratory inhibitor, hydroxylamine, but significantly inhibited by the addition of La. These results suggest that Al uptake by the root is a passive process, and La3+ competes for the binding sites for Al3+ on the plasma membrane. The form of Al in the xylem sap was identified by 27Al-nuclear magnetic resonance analysis. The chemical shift of 27Al in the xylem sap was around 10.9 ppm, which is consistent with that of the Al-citrate complex. Furthermore, the dominant organic acid in the xylem sap was citric acid, indicating that Al was translocated in the form of Al-citrate complex. Because Al is present as Al-oxalate (1:3) in the root, the present data show that ligand exchange from oxalate to citrate occurs before Al is released to xylem. Received: 10 December 1999 / Accepted: 3 February 2000  相似文献   

14.
A method for analyzing multiple plant hormone groups in small samples with a complex matrix was developed to initiate a study of the physiology of abnormal vertical growth (AVG) in Macadamia integrifolia (cv. HAES344). Cytokinins (CKs), gibberellins (GAs), abscisic acid (ABA), and auxins were detected in xylem sap and apical and lateral buds using high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (LC-QToF-MS/MS). The extraction method separated compounds with high sensitivity in positive (CKs) and negative (ABA, auxins, GAs) modes of QToF-MS/MS. CK profiles differed in xylem sap and apical and lateral buds irrespective of AVG symptoms. Trans-zeatin riboside (t-ZR) was dominant in sap of normal and AVG trees (∼4 and 6 pmol g−1 FW, respectively). In apical buds isopentenyl adenine (iP) (∼30 pmol g−1 FW) was the most abundant CK, and in lateral buds trans-zeatin (t-Z) (22–24 pmol g−1 FW) and iP (24–30 pmol g−1 FW) were the most abundant. t-Z levels of AVG trees were higher in apical buds (13.88 vs. 6.6 pmol g−1 FW, p < 0.05) and lower in sap (0.16 vs. 0.51 pmol ml−1, p < 0.005) compared to normal trees. ABA in lateral buds was 1.9 times higher (p < 0.001) in AVG. IAA was below quantification, whereas indole-3-butyric acid (IBA) was consistently present. GA7 was the dominant GA in apical and lateral buds of all trees (100–150 pmol g−1 FW). GA3, 4, & 9 were consistently present at low concentrations (<12 pmol g−1 FW) in buds. GAs1, 3, & 9 were detected in xylem sap at low concentrations (<0.5 pmol g−1 FW). Differences in sap amino acids (AA) were also assessed. In sap from AVG trees, asparagine and glutamine increased significantly (p < 0.05) in their contribution to total AA. Potential AVG hormone correlations are discussed.  相似文献   

15.
Summary Comparisons were made of the levels of various solutes in xylem (tracheal) sap and fruit tip phloem sap of Lupinus albus (L.) and Spartium junceum (L.). Sucrose was present at high concentration (up to 220 mg ml-1) in phloem but was absent from xylem whereas nitrate was detected in xylem (up to 0.14 mg ml-1) but not in phloem. Total amino acids reached 0.5–2.5 mg ml-1 (in xylem) versus 16–40 mg ml-1 in phloem. Phloem: xylem concentration ratios for mineral nutrients (K, Na, Mg, Ca, Fe, Zn, Mn, Cu) spanned the range 0.7 to 20, the ratios generally reflecting an element's phloem mobility and its availability to the xylem from the roots.The accessibility of nitrate to xylem and phloem was studied in Lupinus. Increasing the nitrate supply to roots from 100 to 1000 mg NO3–Nl-1 increased nitrate spill over into xylem, but nitrate always failed to appear in phloem. However, phloem loading of small amounts of nitrate was induced by feeding 750 or 1000 mg NO3–Nl-1 directly to cut shoots via the transpiration stream. Transfer of reduced nitrogen to phloem was demonstrated by feeding 15NO3 to shoots and recovering 15N-enriched amides and amino acids in phloem sap. Increased nitrate supply to roots led to increased amino acid levels in xylem and phloem but did not alter markedly the balance between individual amino acids.The fate of xylem-fed 14C-labelled asparagine, glutamine and aspartic acid and of photosynthetically fed 14CO2 was studied in Spartium, with reference to phloem transport to seeds. Substantial fractions of the 14C of all sources appeared in non-amino compounds. [14C]asparagine passed largely in unchanged form to the phloem whereas the 14C from aspartic acid or glutamine appeared in phloem attached to other amino acids (e.g. asparagine and glutamic acid). Serine, asparagine and glutamine were the main amino compounds labelled in phloem sap after feeding 14CO2. The wide distribution of 14C amongst free and bound amino acids of seeds suggested that extensive metabolism of phloem-borne solutes occurred in the fruits.  相似文献   

16.
Linking xylem diameter variations with sap flow measurements   总被引:1,自引:0,他引:1  
Measurements of variation in the diameter of tree stems provide a rapid response, high resolution tool for detecting changes in water tension inside the xylem. Water movement inside the xylem is caused by changes in the water tension and theoretically, the sap flow rate should be directly proportional to the water tension gradient and, therefore, also linearly linked to the xylem diameter variations. The coefficient of proportionality describes the water conductivity and elasticity of the conducting tissue. Xylem diameter variation measurements could thus provide an alternative approach for estimating sap flow rates, but currently we lack means for calibration. On the other hand, xylem diameter variation measurements could also be used as a tool for studying xylem structure and function. If we knew both the water tension in the xylem and the sap flow rate, xylem conductivity and/or elasticity could be calculated from the slope of their relationship. In this study we measured diurnal xylem diameter variation simultaneously with sap flow rates (Granier-type thermal method) in six deciduous species (Acer rubrum L., Alnus glutinosa Miller, Betula lenta L., Fagus Sylvatica L. Quercus rubra L., and Tilia vulgaris L.) for 7–91 day periods during summers 2003, 2005 and 2006 and analyzed the relationship between these two measurements. We found that in all species xylem diameter variations and sap flow rate were linearly related in daily scale (daily average R 2 = 0.61–0.87) but there was a significant variation in the daily slopes of the linear regressions. The largest variance in the slopes, however, was found between species, which is encouraging for finding a species specific calibration method for measuring sap flow rates using xylem diameter variations. At a daily timescale, xylem diameter variation and sap flow rate were related to each other via a hysteresis loop. The slopes during the morning and afternoon did not differ statistically significantly from each other, indicating no overall change in the conductivity. Because of the variance in the daily slopes, we tested three different data averaging methods to obtain calibration coefficients. The performance of the averaging methods depended on the source of variance in the data set and none of them performed best for all species. The best estimates of instantaneous sap flow rates were also given by different averaging methods than the best estimates of total daily water use. Using the linear relationship of sap flow rate and xylem diameter variations we calculated the conductance and specific conductivity of the soil–xylem–atmosphere water pathway. The conductance were of the order of magnitude 10−5 kg s−1 MPa−1 for all species, which compares well with measured water fluxes from broadleaved forests. Interestingly, because of the large sap wood area the conductance of Betula was approximately 10 times larger than in other species.  相似文献   

17.
Using the facultative root hemiparasite Rhinanthus minor and its host Hordeum vulgare several aspects of water relations have been measured in this parasitic association. Extraction of xylem sap by the parasite from the host's roots is facilitated by con siderably higher transpiration per leaf area in the parasite than in the host and by the fact that stomata of attached Rhinanthus were open all day and night despite extremely high ABA concentrations in the leaves. By comparison, another root hemiparasite, Melampyrum arvense, parasitizing various grasses in the field, showed normal diurnal stomatal behaviour. The abnormal behaviour of Rhinanthus stomata was not due to anatomical reasons as closure could be induced by applying high external ABA concentrations. Remarkable differences have been detected between the hydraulic conductance of barley seminal roots showing relatively low values and that of Rhinanthus seminal roots showing very high values. The latter could be related to the observed high ABA concentrations in these roots. Whole plant water uptake, transpirational losses, growth-dependent deposition, and the flows of water within the plants have been measured in singly growing Rhinanthus and Hordeum plants and in the parasitic association between the two. Water uptake, deposition and transpiration in Rhinanthus were dramatically increased after attachment to the barley host; most of the water used by the parasite was extracted as xylem sap from the host, thereby scavenging 20% of the total water taken up by the host's roots. This water uptake by the parasitized host, however, due to a parasite-induced reduction in the host's growth, was decreased by 22% as compared to non-parasitized barley. The overall changes in growth-related water deposition in the host and parasite pointed to decreased shoot growth and relatively favoured root growth in the host and to strongly favoured shoot growth in the parasite. These changes in the host became more severe, when more than one Rhinanthus was parasitizing one barley plant.  相似文献   

18.
The use of the relative ureide content of xylem sap [(ureide-N/total N) × 100] as an indicator of N2 fixation in soybeans (Merr.) was examined under greenhouse conditions. Acetylene treatments to inhibit N2 fixation were imposed upon the root systems of plants totally dependent upon N2 fixation as their source of N and of plants dependent upon both N2 fixation and uptake of exogenous nitrate. Significant decreases in the total N concentration of xylem sap from plants of the former type were observed, but no significant decrease was observed in the total N concentration of sap from the latter type of plants. In both types of plants, acetylene treatment caused significant decreases in the relative ureide content of xylem sap. The results provided further support for a link between the presence of ureides in the xylem and the occurrence of N2 fixation in soybeans. The relative ureide content of xylem sap from plants totally dependent upon N2 fixation was shown to be insensitive to changes in the exudation rate and total N concentration of xylem sap brought about by diurnal changes in environmental factors. There was little evidence of soybean cultivars or nodulating strains affecting the relative ureide content of xylem sap. `Ransom' soybeans nodulated with Rhizobium japonicum strain USDA 110 were grown under conditions to obtain plants exhibiting a wide range of dependency upon N2 fixation. The relative ureide content of xylem sap was shown to indicate reliably the N2 fixation of these plants during vegetative growth using a 15N method to measure N2 fixation activity. The use of the relative ureide content of xylem sap for quantification of N2 fixation in soybeans should be evaluated further.  相似文献   

19.
Endogenous indole-3-acetic acid (IAA), abscisic acid (ABA) and cytokinins [zeatin (Z) zeatin riboside, dihydrozeatin, dihydrozeatin riboside, N6-isopentenyl adenine (iP) and N6-isopentenyladenine riboside] were evaluated in hazelnut (Corylus avellana L.) cotyledons of different developmental stage and genetic source for their somatic embryogenic capacity. There was an inverse correlation between the embryogenic potential of cotyledons and the degree of maturity of zygotic embryos, the first characteristic being associated with iP-type cytokinins and the second with Z-type cytokinins. Although the differences in total cytokinin, ABA and IAA contents between the cotyledons were small, the IAA/ABA and, mainly, the iP-type/Z-type cytokinin ratios were found to be two good indexes of the embryogenic competence of explants, suggesting that the endogenous hormonal balance is a very important factor defining the in vitro potential of hazelnut cotyledons. Received: 6 January 1997 / Revision received: 3 March 1997 / Accepted 1 April 1997  相似文献   

20.
J. S. Pate  P. Lindblad  C. A. Atkins 《Planta》1988,176(4):461-471
Freshly detached coralloid roots of several cycad species were found to bleed spontaneously from xylem, permitting identification of products of nitrogen transfer from symbiotic organ to host. Structural features relevant to the export of fixed N were described for Macrozamia riedlei (Fisch. ex Gaud.) Gardn. the principal species studied. Citrulline (Cit), glutamine (Gln) and glutamic acid (Glu), the latter usually in a lesser amount, were the principal translocated solutes in Macrozamia (5 spp.), Encephalartos (4 spp.) and Lepidozamia (1 sp.), while Gln and a smaller amount of Glu, but no Cit were present in xylem sap of Bowenia (1 sp.),and Cycas (2 spp.). Time-course studies of 15N enrichment of the different tissue zones and the xylem sap of 15N2-pulse-fed coralloid roots of M. riedlei showed earlier 15N incorporation into Gln than into Cit, and a subsequent net decline in the 15N of Gln of the coralloid-root tissues, whereas Cit labeling continued to increase in inner cortex and stele and in the xylem sap. Hydrolysis of the 15N-labeled Cit and Gln consistently demonstrated much more intense labeling of the respective carbamyl and amide groups than of the other N-atoms. Coralloid roots of M. riedlei pulse-fed 14CO2 in darkness showed 14C labeling of aspartic acid (Asp) and Cit in all tissue zones and of Cit of xylem bleeding sap. Lateral roots and uninfected apogeotropic roots of M. riedlei and M. moorei also incorporated 14CO2 into Cit. The 14C of Cit was restricted to the carbamyl-C. Comparable 15N2 and CO2-feeding studies on corallid roots of Cycas revoluta showed Gln to be the dominant product of N2 fixation, with Asp and alanine as other major 14C-labeled amino compounds, but a total absence of Cit in labeled or unlabeled form.Abbreviations Ala alanine - Asp aspartic acid - Cit citrulline - Gln glutamine - Glu glutamic acid - Orn ornithine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号