首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies undergo significant conformational changes upon acidification, leading to the formation of an alternatively folded state. Here, we analyzed the conformation of MAK 33 Fab and its light chain at acidic pH, both in the reduced and oxidized form. At acidic pH, the proteins exhibited a highly structured, but non-native conformation, corresponding to the alternatively folded state, previously described for the intact antibody. However, the requirements to form this alternative structure were different for the oxidized and reduced protein. Whereas in the oxidized form of the immunoglobulin light chain the alternatively folded state could only be detected at pH<1.4, the reduced light chain already adopted this structure at pH 2. Thermal denaturation measurements revealed that, surprisingly, the alternatively folded state of the reduced light chain was more stable than that of the oxidized protein at pH 1.4. This indicates that the intradomain disulfide bonds, which stabilize the native state of antibody domains, impede the formation of the alternatively folded state.  相似文献   

2.
Conformational heterogeneity of α‐synuclein was studied with electrospray ionization mass spectrometry by analyzing protein ion charge state distributions, where the extent of multiple charging reflects compactness of the protein conformations in solution. Although α‐synuclein lacks a single well‐defined structure under physiological conditions, it was found to sample four distinct conformational states, ranging from a highly structured one to a random coil. The compact highly structured state of α‐synuclein is present across the entire range of conditions tested (pH ranging from 2.5 to 10, alcohol content from 0% to 60%), but is particularly abundant in acidic solutions. The only other protein state populated in acidic solutions is a partially folded intermediate state lacking stable tertiary structure. Another, more compact intermediate state is induced by significant amounts of ethanol used as a co‐solvent and appears to represent a partially folded conformation with high β‐sheet content. Protein dimerization is observed throughout the entire range of conditions tested, although only acidic solutions favor formation of highly structured dimers of α‐synuclein. These dimers are likely to present the earliest stages in protein aggregation leading to globular oligomers and, subsequently, protofibrils. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The acidic, partly folded states of bovine carbonic anhydrase II (BCAII) were used as an experimental system to study the interactions of partly denatured proteins with lipid membranes. The pH dependence of their interactions with palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidylglycerol (POPG) membranes was studied. A filtration binding assay shows that acidic partly folded states of BCAII bind to POPC membranes. Fluorescence emission spectra from Trp residues of the bound protein are slightly shifted to shorter wavelength and can be quenched by a water-soluble quencher of fluorescence, indicating that the binding occurs without deep penetration of Trp residues into the membrane. The content of beta-structures of the protein in solution, as revealed by FT-IR spectroscopy, decreases in the partly folded states and the binding to POPC membrane occurs without further changes of secondary structure. In the presence of 0.1 M NaCl, a partly folded state self-aggregates and does not bind to POPC membrane. At acidic pH, BCAII binds to POPG membranes both at high and low ionic strength. The binding to the anionic lipid occurs with protein self-aggregation within the lipid-protein complexes and with changes in the secondary structure; large blue shifts in the fluorescence emission spectra and the decrease in the exposure to water-soluble acrylamide quencher of Trp fluorescence strongly suggest that BCAII penetrates the hydrocarbon domain in the POPG-protein complexes.  相似文献   

4.
The molecular properties of the salt-induced partly folded acidic state of apomyoglobin as well as myoglobin were investigated by fluorescence and circular dichroism of the extrinsic fluorophore 1,8-anilinonaphthalenesulfonate. The occurrence of a fluctuating tertiary structure ("molten globule") at acidic pH in the presence of salt was suggested by the disappearance of the dichroic activity of the fluorophore bound to the partly folded protein. Moreover, the structure of the intermediate is not influenced by the presence of heme, thus suggesting that heme is not crucial in the early stage of myoglobin folding.  相似文献   

5.
Weng J  Tan C  Shen JR  Yu Y  Zeng X  Xu C  Ruan K 《Biochemistry》2004,43(16):4855-4861
In this paper, we analyzed the pH-induced changes in the conformational states of the manganese-stabilizing protein (MSP) of photosystem II. Distinct conformational states of MSP were identified using fluorescence spectra, far-UV circular dichroism, and pressure-induced unfolding at varying suspension pH values, and four different conformational states of MSP were clearly distinguished using the center of fluorescence spectra mass when suspension pH was altered from 2 to 12. MSP was completely unfolded at a suspension pH above 11 and partly unfolded below a pH of 3. Analysis of the center of fluorescence spectral mass showed that the MSP structure appears stably folded around pH 6 and 4. The conformational state of MSP at pH 4 seems more stable than that at pH 6. Studies of peak positions of tryptophan fluorescence and MSP-bound 1-anilinonaphthalene-8-sulfonic acid fluorescence spectra supported this observation. A decrease in the suspension pH to 2 resulted in significant alterations in the MSP structure possibly because of protonation of unprotonated residues at lower pH, suggesting the existence of a large number of unprotonated amino acid residues at neutral pH possibly useful for proton transport in oxygen evolution. The acidic pH-induced conformational changes of MSP were reversible upon increase of pH to neutral pH; however, N-bromosuccinimide modification of tryptophan (Trp241) blocks the recovery of pH-induced conformational changes in MSP, implying that Trp241 is a key residue for the unfolded protein to form a functional structure. Thus, pH-induced structural changes of stable MSP (pH 6-4) may be utilized to analyze its functionality as a cofactor for oxygen evolution.  相似文献   

6.
The P2 protein is a small, extrinsic protein of the myelin membrane in the peripheral nervous system that structurally belongs to the fatty acid binding proteins (FABPs) family, sharing with them a 10 strands beta-barrel structure. FABPs appear to be involved in cellular fatty acid transport, but very little is known about the role of P2 in the metabolism of peripheral myelin lipids. Study of protein conformation at different pHs is a useful tool for the characterization of the unfolding mechanisms and the intrinsic conformational properties of the protein, and may give insight into factors that guide protein folding pathways. In particular, low pH conditions have been shown to induce partially folded states in several proteins. In this paper, the acidic unfolding of purified P2 protein was studied with both spectroscopic techniques and molecular dynamics simulation. Both experimental and computational results indicate the presence of a partly folded state at low pH, which shows structural changes mainly involving the lid that is formed by the helix-turn-helix domain. The opening of the lid, together with a barrel relaxation, could regulate the ligand exchanges near the cell membrane, supporting the hypothesis that the P2 protein may transport fatty acids between Schwann cells and peripheral myelin.  相似文献   

7.
Nolan V  Perduca M  Monaco HL  Montich GG 《Biochemistry》2005,44(23):8486-8493
Chicken liver bile acid-binding protein (formerly known as chicken liver basic fatty acid-binding protein) binds to anionic lipid membranes acquiring a partly folded state [Nolan, V., Perduca, M., Monaco, H., Maggio, B., and Montich, G. (2003) Biochim. Biophys. Acta 1611, 98-106]. To understand the mechanisms of its interactions with membranes, we have investigated the presence of partly folded states in solution. Using fluorescence spectroscopy of the single Trp residue, circular dichroism in the far- and near-UV, Fourier transform infrared spectroscopy, and size-exclusion chromatography, we found that L-BABP was partly unfolded at pH 2.5 and low ionic strength, retaining some of its secondary structure. Addition of 0.1 M NaCl at pH 2.5 or decreasing the pH to 1.5 produced a more compact partly folded state, with a partial increase of secondary structure and none of tertiary structure. Fluorescence emission spectra of this state indicate that the Trp residue is within an environment of low polarity, similar to the native state. This environment is not produced by the insertion of the Trp into soluble aggregates as revealed by size-exclusion chromatography, fluorescence anisotropy, and infrared spectroscopy. The presence of partly folded states under acidic conditions in solution suggests the possibility that membrane binding of L-BABP occurs via this state.  相似文献   

8.
Prothymosin alpha has previously been shown to be unfolded at neutral pH, thus belonging to a growing family of "natively unfolded" proteins. The structural properties and conformational stability of recombinant human prothymosin alpha were characterized at neutral and acidic pH by gel filtration, SAXS, circular dichroism, ANS fluorescence, (1)H NMR, and resistance to urea-induced unfolding. Interestingly, prothymosin alpha underwent a cooperative transition from the unfolded state into a partially folded conformation on lowering the pH. This conformation of prothymosin alpha is a compact denatured state, with structural properties different from those of the molten globule. The formation of alpha-helical structure by the glutamic acid-rich elements of the protein accompanied by the partial hydrophobic collapse is expected at lower pH due to the neutralization of the negatively charged residues. It is possible that such conformational changes may be associated with the protein function.  相似文献   

9.
Bovine alpha-lactalbumin (alpha-LA) is an alpha/beta protein which adopts partly folded states when dissolved at low pH (A-state), by removal of the protein-bound calcium at neutral pH and low salt concentration (apo-state), as well as in aqueous trifluoroethanol. Previous spectroscopic studies have indicated that the A-state of alpha-LA at pH 2.0, considered a prototype molten globule, has a native-like fold in which the helical core is mostly retained, while the beta subdomain is less structured. Here, we investigate the conformational features of three derivatives of alpha-LA characterized by a single peptide bond fission or a deletion of 12 or 19/22 amino-acid residues of the beta subdomain of the native protein (approximately from residue 34 to 57). These alpha-LA derivatives were obtained by limited proteolysis of the protein in its partly folded state(s). A nicked alpha-LA species consisting of fragments 1-,3-40 and 41-123 (nicked-LA) was prepared by thermolytic digestion of the 123-residue chain of alpha-LA in 50% (v/v) aqueous trifluoroethanol. Two truncated or gapped protein species given by fragments 1-40 and 53-123 (desbeta1-LA) or fragments 1-34 and 54-,57-123 (desbeta2-LA) were obtained by digestion of alpha-LA with pepsin in acid or with proteinase K at neutral pH in its apo-state, respectively. The two protein fragments of nicked or gapped alpha-LA are covalently linked by the four disulfide bridges of the native protein. CD measurements revealed that, in aqueous solution at neutral pH and in the presence of calcium, the three protein species maintain the helical secondary structure of intact alpha-LA, while the tertiary structure is strongly affected by the proteolytic cleavages of the chain. Temperature effects of CD signals in the far- and near-UV region reveal a much more labile tertiary structure in the alpha-LA derivatives, while the secondary structure is mostly retained even upon heating. In acid solution at pH 2.0, the three alpha-LA variants adopt a conformational state essentially identical to the molten globule displayed by intact alpha-LA, as demonstrated by CD measurements. Moreover, they bind strongly the fluorescent dye 8-anilinonaphthalene-1-sulfonate, which is considered a diagnostic feature of the molten globule of proteins. Therefore, the beta subdomain can be removed from the alpha-LA molecule without impairing the capability of the rest of the chain to adopt a molten globule state. The results of this protein dissection study provide direct experimental evidence that in the alpha-LA molten globule only the alpha domain is structured.  相似文献   

10.
The isolated HIV-1 RNase H domain is inactive. This inactivity has been linked to the lack of structure in the C-terminus of the isolated domain. Thermodynamic stability experiments on the RNase H domain as well as a deletion mutant lacking the C-terminal helix have implied that this region is structured. His539 residing in a loop preceding the C-terminal helix was studied by NMR to determine the stability and conformational properties of this region. The stability of the structural environment of His539 matches that of the entire RNase H domain. Furthermore, His539 is locked into a defined tautometric state in the folded protein and its pK(a) is shifted compared to a freely accessible His, suggesting that this region is structured. The data support the view that the overall dynamics rather than the lack of structure in a small portion of the protein render activity of the isolated HIV-1 RNase H.  相似文献   

11.
The prion protein (PrP) in a living cell is associated with cellular membranes. However, all previous biophysical studies with the recombinant prion protein have been performed in an aqueous solution. To determine the effect of a membrane environment on the conformational structure of PrP, we studied the interaction of the recombinant human prion protein with model lipid membranes. The protein was found to bind to acidic lipid-containing membrane vesicles. This interaction is pH-dependent and becomes particularly strong under acidic conditions. Spectroscopic data show that membrane binding of PrP results in a significant ordering of the N-terminal part of the molecule. The folded C-terminal domain, on the other hand, becomes destabilized upon binding to the membrane surface, especially at low pH. Overall, these results show that the conformational structure and stability of the recombinant human PrP in a membrane environment are substantially different from those of the free protein in solution. These observations have important implications for understanding the mechanism of the conversion between the normal (PrP(C)) and pathogenic (PrP(Sc)) forms of prion protein.  相似文献   

12.
Abstract: Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.  相似文献   

13.
H de Cock  D Hekstra  J Tommassen 《Biochimie》1990,72(2-3):177-182
The folding of outer membrane protein PhoE of E coli into its native trimeric structure was studied in vitro by using monoclonal antibodies, which recognize cell-surface exposed, conformational epitopes of the protein. These antibodies were able to precipitate the in vitro synthesized PhoE protein, showing that the conformational epitopes are formed in vitro. From analysis by SDS--polyacrylamide gel electrophoresis, it appeared that the precipitated protein represents a folded monomer. The signal sequence interferes with the formation of the conformational epitopes. Outer membranes were required to induce the formation of the stable trimeric form of the protein. This trimerization was not accompanied by insertion into the outer membranes.  相似文献   

14.
Despite their evident importance for function, dynamics of intrinsically unstructured proteins are poorly understood. Sendai virus phosphoprotein, cofactor of the RNA polymerase, contains a partly unstructured protein domain. The phosphoprotein X domain (PX) is responsible for binding the polymerase to the nucleocapsid assembling the viral RNA. For RNA synthesis, the interplay of the dynamics of the unstructured and structured PX subdomains is thought to drive progression of the RNA polymerase along the nucleocapsid. Here we present a detailed study of the dynamics of PX using hydrogen/deuterium exchange and different NMR relaxation measurements. In the unstructured subdomain, large amplitude fast motions were found to be fine-tuned by the presence of residues with short side chains. In the structured subdomain, where fast motions of both backbone and side chains are fairly restricted, the first helix undergoes slow conformational exchange corresponding to a local unfolding event. The other two helices, which represent the nucleocapsid binding site, were found to be more stable and to reorient with respect to each other, as probed by slow conformational exchange identified for residues on the third helix. The study illustrates the intrinsically differential dynamics of this partly unstructured protein and proposes the relation between these dynamics and its function.  相似文献   

15.
Prion diseases are associated with conformational conversion of the cellular prion protein, PrPC, into a misfolded form, PrPSc. We have investigated the equilibrium unfolding of the structured domain of recombinant murine prion protein, comprising residues 121-231 (mPrP-(121-231)). The equilibrium unfolding of mPrP-(121-231) by urea monitored by intrinsic fluorescence and circular dichroism (CD) spectroscopies indicated a two-state transition, without detectable folding intermediates. The fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5-disulfonic acid (bis-ANS) binds to native mPrP-(121-231), indicating exposure of hydrophobic domains on the protein surface. Increasing concentrations of urea (up to 4 M) caused the release of bound bis-ANS, whereas changes in intrinsic fluorescence and CD of mPrP took place only above 4 M urea. This indicates the existence of a partially unfolded conformation of mPrP, characterized by loss of bis-ANS binding and preservation of the overall structure of the protein, stabilized at low concentrations of urea. Hydrostatic pressure and low temperatures were also used to stabilize partially folded intermediates that are not detectable in the presence of chemical denaturants. Compression of mPrP to 3.5 kbar at 25 degrees C and pH 7 caused a slight decrease in intrinsic fluorescence emission and an 8-fold increase in bis-ANS fluorescence. Lowering the temperature to -9 degrees C under pressure reversed the decrease in intrinsic fluorescence and caused a marked (approximately 40-fold) increase in bis-ANS fluorescence. The increase in bis-ANS fluorescence at low temperatures was similar to that observed for mPrP at 1 atm at pH 4. These results suggest that pressure-assisted cold denaturation of mPrP stabilizes a partially folded intermediate that is qualitatively similar to the state obtained at acidic pH. Compression of mPrP in the presence of a subdenaturing concentration of urea stabilized another partially folded intermediate, and cold denaturation under these conditions led to complete unfolding of the protein. Possible implications of the existence of such partially folded intermediates in the folding of the prion protein and in the conversion to the PrPSc conformer are discussed.  相似文献   

16.
High-risk papillomaviruses are known to exert their transforming activity mainly through E7, one of their two oncoproteins. Despite its relevance, no structural information has been obtained that could explain the apparent broad binding specificity of E7. Recombinant E7 from HPV-16 purified to near homogeneity showed two species in gel filtration chromatography, one of these corresponding to a dimer with a molecular weight of 22 kDa, determined by multiangle light scattering. The E7 dimer was isolated for characterization and was shown to undergo a substantial conformational transition when changing from pH 7.0 to 5.0, with an increase in helical structure and increased solvent accessibility to hydrophobic surfaces. The protein was resistant to thermal denaturation even in the presence of SDS, and we show that persistent residual structure in the monomer is responsible for its reported anomalous electrophoretic behavior. The dimer also displays a nonglobular hydrodynamic volume based on gel filtration experiments and becomes more globular in the presence of 0.3 M guanidinium chloride, with hydrophobic surfaces becoming accessible to the solvent, as indicated by the large increase in ANS binding. At low protein concentration, dissociation of the globular E7 dimer was observed, preceding the cooperative unfolding of the structured and extended monomer. Although E7 bears properties that resemble natively unfolded polypeptides, its far-UV circular dichroism spectrum, cooperative unfolding, and exposure of ANS binding sites support a folded and extended, as opposed to disordered and fluctuating, conformation. The large increase in solvent accessibility to hydrophobic surfaces upon small pH decrease within physiological range and in mild denaturant concentrations suggests conformational properties that could have evolved to enable protein-protein recognition of the large number of cellular binding partners reported.  相似文献   

17.
The activity and structural integrity of the tumor suppressor protein p53 is of crucial importance for the prevention of cancer. p53 is a conformational flexible and labile protein, in which structured and unstructured regions function in a synergistic manner. The molecular chaperone Hsp90 is known to bind to mutant and wild type p53 in vivo. Using highly purified proteins we analyzed the interaction and the binding sites between both proteins in detail. Our results demonstrate that Hsp90 binds to a folded, native-like conformation of p53 in vitro with micromolar affinity. Specifically, the DNA-binding domain of p53 and the middle and carboxy-terminal domains of Hsp90 are responsible for this interaction, which is essential to stabilize p53 at physiological temperatures and to prevent it from irreversible thermal inactivation. Our results are in agreement with a model in which Hsp90 is required to maintain the folded, active state of p53 by a reversible interaction, thus introducing an additional level of regulation.  相似文献   

18.
The endoprotease furin, which belongs to the family of mammalian proprotein convertase (PC), is synthesized as a zymogen with an N-terminal, 81-residue inhibitory prodomain. It has been shown that the proenzyme form of furin undergoes a multistep 'autocatalytic' removal of the prodomain at the C-terminal side of the two consensus sites, R(78)-T-K-R(81) approximately and R(44)-G-V-T-K-R(49) approximately. The furin-mediated cleavage at R(44)-G-V-T-K-R(49) approximately, in particular, is significantly accelerated in an 'acidic' environment. Here, we show that under neutral pH conditions, the inhibitory prodomain of furin is partially folded and undergoes conformational exchanges as indicated by extensive broadening of the NMR spectra. Presence of many ring-current shifted methyl resonances suggests that the partially folded state of the prodomain may still possess a 'semirigid' protein core with specific packing interactions among amino acid side chains. Measurements of the hydrodynamic radii and compaction factors indicate that this partially folded state is significantly more compact than a random chain. The conformational stability of the prodomain appears to be pH sensitive, in that the prodomain undergoes an unfolding transition towards acidic conditions. Our NMR analyses establish that the acid-induced unfolding is mainly experienced by the residues from the C-terminal half of the prodomain (residues R(44)-R(81)) that contains the two furin cleavage sites. A 38-residue peptide fragment derived from the entire pH-sensitive C-terminal region (residues R(44)-R(81)) does not exhibit any exchange-induced line broadening and adopts flexible conformations. We propose that at neutral pH, the cleavage site R(44)-G-V-T-K-R(49) approximately is buried within the protein core that is formed in part by residues from the N-terminal region, and that the cleavage site becomes exposed under acidic conditions, leading to a facile cleavage by the furin enzyme.  相似文献   

19.
Clusterin is an extracellular mammalian chaperone protein which inhibits stress-induced precipitation of many different proteins. The conformational state(s) of proteins that interact with clusterin and the stage(s) along the folding and off-folding (precipitation-bound) pathways where this interaction occurs were previously unknown. We investigated this by examining the interactions of clusterin with different structural forms of alpha-lactalbumin, gamma-crystallin and lysozyme. When assessed by ELISA and native gel electrophoresis, clusterin did not bind to various stable, intermediately folded states of alpha-lactalbumin nor to the native form of this protein, but did bind to and inhibit the slow precipitation of reduced alpha-lactalbumin. Reduction-induced changes in the conformation of alpha-lactalbumin, in the absence and presence of clusterin, were monitored by real-time (1)H NMR spectroscopy. In the absence of clusterin, an intermediately folded form of alpha-lactalbumin, with some secondary structure but lacking tertiary structure, aggregated and precipitated. In the presence of clusterin, this form of alpha-lactalbumin was stabilised in a non-aggregated state, possibly via transient interactions with clusterin prior to complexation. Additional experiments demonstrated that clusterin potently inhibited the slow precipitation, but did not inhibit the rapid precipitation, of lysozyme and gamma-crystallin induced by different stresses. These results suggest that clusterin interacts with and stabilises slowly aggregating proteins but is unable to stabilise rapidly aggregating proteins. Collectively, our results suggest that during its chaperone action, clusterin preferentially recognises partly folded protein intermediates that are slowly aggregating whilst venturing along their irreversible off-folding pathway towards a precipitated protein.  相似文献   

20.
Mukherjee S  Kuchroo K  Chary KV 《Biochemistry》2005,44(34):11636-11645
One of the calcium binding proteins from Entamoeba histolytica (EhCaBP) is a 134 amino acid residue long (M(r) approximately 14.9 kDa) double domain EF-hand protein containing four Ca(2+) binding sites. CD and NMR studies reveal that the Ca(2+)-free form (apo-EhCaBP) exists in a partially collapsed form compared to the Ca(2+)-bound (holo) form, which has an ordered structure (PDB ID ). Deuterium exchange studies on the partially structured apo-EhCaBP reveal that the C-terminal domain is better structured than the N-terminal domain. The protein can be reversibly folded and unfolded upon addition of Ca(2+) and EGTA, respectively. Titration shows a slow initial folding of the apo form with increasing Ca(2+) concentration, followed by a highly cooperative folding to its final state at a certain threshold of Ca(2+). Ca(2+) and the EGTA titration taken together show that site II in the N-terminal domain has the highest affinity for Ca(2+) contrary to earlier studies. Further, this study has thrown light on the relative Ca(2+) binding affinity and specificity of each site in the intact protein. A structural model for the partially collapsed form of apo-EhCaBP and its equilibrium folding to its completely folded holo state has been suggested. Large conformational changes seen in transforming from the apo to holo form of EhCaBP suggest that this protein should be functioning as a sensor protein and might have a significant role in host-parasite recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号