首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl(4)) twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2 × 10(6)) were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively). Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl(4) treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl(4) administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl(4) demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl(4) treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl(4) alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl(4) treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established hepatic fibrosis that justifies further investigation of this potential cell-based therapy for advanced hepatic fibrosis.  相似文献   

2.
Changes in the total activity of acid phosphatase in the liver as well as changes in the enzyme activity in hepatocytes and connective tissue cells of fibrosis layers were investigated, using quantitative histochemical method, in the process of mouse cirrhosis involution. After discontinuation of CCl4 injection, the animals with cirrhosis were divided into two groups. In the first group the resection of the left lobe of the liver was performed. The animals of the second group were not subject to operation. The results demonstrate that there is a close correlation between lysosomal hydrolase activity of hepatocytes and connective tissue cells of the liver and collagen resorption during cirrhosis involution. The most intensive lysis of collagen takes place within the first three weeks of cirrhosis involution in both experimental groups. Partial resection in cirrhosis has no significant effect on the changes and level of total activity of lysosomal hydrolase enzymes in the liver during cirrhosis involution.  相似文献   

3.
Rats kept on a standard diet were subdivided into several experimental groups: group 1, control; group 2, animals receiving ethyl alcohol for 10 days; group 3, animals receiving ethyl alcohol for 3 months; group 4, animals receiving colchicine; group 5, animals receiving alcohol in combination with colchicine; group 6, animals receiving alcohol in combination with carbon tetrachloride (CCl4); and group 7, animals receiving alcohol in combination with CCl4 and colchicine. Electron microscopy of the rat liver has shown that colchicine inhibited significantly the onset of hepatic fibrosis and degenerative changes in hepatocyte organells induced by hepatotoxins (alcohol alone or alcohol in combination with CCl4). Colchicine also inhibited monooxygenase activity in the liver homogenate of experimental rats. Possible mechanisms of hepatoprotective colchicine effect are discussed.  相似文献   

4.
The role of retinoic acid (RA) in liver fibrogenesis was previously studied in cultured hepatic stellate cells (HSCs). RA suppresses the expression of alpha2(I) collagen by means of the activities of specific nuclear receptors RARalpha, RXRbeta and their coregulators. In this study, the effects of RA in fibrogenesis were examined in carbon tetrachloride (CCl4) induced liver fibrosis in mice. Mice were treated with CCl4 or RA and CCl4, along side control groups, for 12weeks. RA reduced the amount of histologically detectable fibrosis produced by CCl4. This was accompanied by a attenuation of the CCl4 induced increase in alpha2(I) collagen mRNA and a lower (2-fold versus 3-fold) increase in liver hydroxyproline. Furthermore, RA reduced the levels of 3-nitrotyrosine (3-NT) protein adducts and thiobarbituric acid (TBA) reactive substance (TBARS) in the liver, which are formed as results of oxidative stress induced by CCl4 treatment. These in vivo findings support our previous in vitro studies in cultured HSC of the inhibitory effect of RA on type I collagen expression. The data also provide evidence that RA reduces CCl4 induced oxidative stress in liver, suggesting that the anti-fibrotic role of RA is not limited to the inhibition of type I collagen expression.  相似文献   

5.
IGF-I is an anabolic hormone which has been reported to increase bone formation in several conditions of undernutrition. Advanced liver cirrhosis is associated with osteopenia and also with low serum levels of IGF-I. Previous results showed that low doses of IGF-I increase osteoblastic activity and decrease bone reabsorption in early liver cirrhosis. The aim of this study was to evaluate whether IGF-I-treatment also induces beneficial effect on osteopenia associated with advanced cirrhosis. Rats with ascitic cirrhosis were divided into two groups: group CI (n=10) which received saline and group CI+IGF (n=10) which were treated with IGF-I (2 microg/100 g bw x day, sc, during 21 days). Healthy controls which received saline were studied in parallel (CO n=10). On the 22nd day, the animals were sacrificed, and bone parameters were analyzed in femur. Posterior-anterior diameter was similar in all groups. No significant differences were observed in bone content of calcium, total proteins, collagen and hydroxyapatite in cirrhotic rats as compared with controls. However, CI rats showed significant reductions in total bone density (-13.5%, p<0.001) assessed by densitometry and radiological study. In CI+IGF rat bone density (assessed by densitometry) improved significantly as compared with CI animals. In summary, osteopenia characterized by loss of bone mass and preserved bone composition was found in rats with advanced cirrhosis induced by CCl4 and phenobarbital in drinking water. This bone disorder is partially restored by treatment with low doses of IGF-I during only three weeks. Thus, IGF-I could be considered as a possible therapy for osteopenia associated with advanced liver cirrhosis.  相似文献   

6.
Insulin-like growth factor-I (IGF-I) is produced mainly in the liver and it induces beneficial effects on the nutritional status, the liver function and oxidative hepatic damage in cirrhotic rats. The aim of this work was to analyze the effect of IGF-I on mechanisms of fibrogenesis in cirrhotic rats. Liver cirrhosis was induced by CCl(4) inhalation and phenobarbital in Wistar rats. Ten days after stopping CCl(4) administration (day 0), rats received either IGF-I (2 microg/100 g bw/day) (CI+IGF) or saline (CI) subcutaneously during 14 days. Animals were sacrificed on day 15. As control groups were used: healthy rats (CO) and healthy rats treated with IGF-I (CO+IGF). Liver histopathology, hydroxyproline content, prolyl hydroxylase activity, collagen I and III mRNA expression and the evolution of transformed Ito cells into myofibroblasts were assessed. Among the two control groups (CO+IGF), no differences were found in hydroxyproline content and these levels were lower than those found in the two cirrhotic groups. Compared with untreated cirrhotic rats, the CI+IGF-I animals showed a significant reduction in hydroxyproline content, prolyl hydroxylase activity and collagen alpha 1(I) and alpha1(III) mRNA expression. A higher number of transformed Ito cells (alpha-actin +) was observed in untreated cirrhotic animals as compared to CO and CI+IGF groups. In summary, treatment with IGF-I reduced all of the studied parameters of fibrogenesis. In conclusion, low doses of IGF-I induce in vivo an antifibrogenic effect in cirrhotic rats.  相似文献   

7.
Kang M  Jeong SJ  Park SY  Lee HJ  Kim HJ  Park KH  Ye SK  Kim SH  Lee JW 《The FEBS journal》2012,279(4):625-635
The development of liver fibrosis from chronic inflammation can involve epithelial-mesenchymal transition (EMT). Severe liver fibrosis can progress to cirrhosis, and further to hepatocellular carcinoma. Because the tetraspanin transmembrane 4 L6 family member 5 (TM4SF5) induces EMT and is highly expressed in hepatocellular carcinoma, it is of interest to investigate whether TM4SF5 expression is correlated with EMT processes during the development of fibrotic liver features. Using hepatic cells in vitro and a CCl(4) -mediated mouse liver in?vivo model, we examined whether TM4SF5 is expressed during liver fibrosis mediated by CCl(4) administration and whether treatment with anti-TM4SF5 reagent blocks the fibrotic liver features. Here, we found that TM4SF5 expression was induced by the transforming growth factor (TGF)β1 and epidermal growth factor signaling pathways in hepatocytes in vitro. In the CCl(4) -mediated mouse liver model, TM4SF5 was expressed during the liver fibrosis mediated by CCl(4) administration and correlated with α-smooth muscle actin expression, collagen I deposition, and TGFβ1 and epidermal growth factor receptor signaling activation in fibrotic septa regions. Interestingly, treatment with anti-TM4SF5 reagent blocked the TM4SF5-mediated liver fibrotic features: the formation of fibrotic septa with α-smooth muscle actin expression and collagen I deposition was attenuated by treatment with anti-TM4SF5 reagent. These results suggest that TM4SF5 expression mediated by TGFβ1 and growth factor can facilitate fibrotic processes during chronic liver injuries. TM4SF5 is thus a candidate target for prevention of liver fibrosis following chronic liver injury.  相似文献   

8.
C C Shih  Y W Wu  W C Lin 《Phytomedicine》2005,12(6-7):453-460
The aim of this study was to investigate the effects of aqueous extract of Anoectochilus formosanus (AFE) on liver fibrogenesis in carbon tetrachloride (CCl4)-induced cirrhosis. Fibrosis was induced in rats by oral administration of CCl4 (20%, 0.5 ml/rat, p.o.) twice a week for 8 weeks. AFE (0.5 and 2.0 g/kg, p.o., daily for 8 weeks) was administered to rats simultaneously. AFE showed reducing actions on the elevated levels of GOT and GPT caused by CCl4. Liver fibrosis in rats induced by CCl4 led to the drop of serum albumin concentration; the AFE increased the albumin concentration. The CCl4-induced liver fibrosis markedly caused liver atrophy and splenomegalia, while AFE increased the liver weight, and decreased the spleen weight. The CCl4-induced liver fibrosis decreased the protein content, and increased collagen contents in rat's liver. AFE significantly increased the contents of protein and reduced the amount of collagen in the liver. In CCl4-treated rats, glutathione concentrations of liver were not affected. AFE significantly increased liver glutathione concentrations. All these results clearly demonstrate that AFE can reduce the liver fibrogensis in rats induced by CCl4.  相似文献   

9.
Flk1+间充质干细胞减轻四氯化碳导致的肝纤维化的研究   总被引:5,自引:0,他引:5  
许多慢性肝脏疾病都会发生肝纤维化,但是目前尚缺乏对肝纤维化切实有效的治疗手段。实验发现,Flk1(fetal liver kinase)阳性间充质干细胞(MSC)能够减轻四氯化碳(CCl4)所致小鼠肝纤维化。取雄性BALB/c小鼠骨髓,分离培养Flk1^ MSC,用CCl4制作雌性小鼠肝纤维化模型,在CCl4损伤后立即或1周后经尾静脉注射Flk1^ MSC,2或5周后检测受体小鼠肝脏的纤维化程度和供体细胞的植入。结果发现,CCl4损伤后立即注射Flk1^ MSC,可以使肝脏损伤程度明显减轻,减少胶原沉积,使肝脏羟脯氨酸含量及血清纤维化指标显下降;而损伤1周后注射细胞则无明显变化。免疫荧光、PCR和荧光原位杂交方法证实,在受体肝脏中有供体细胞植入,呈上皮细胞形态,并表达白蛋白,但是数量很少。因此,Flk1^ MSC具有潜在的植入肝组织的能力,并可能启动肝组织的内源性修复,减轻CCl4导致的肝纤维化。  相似文献   

10.
Recent results have suggested a role for prolactin (PRL) as a regeneration factor in the liver. In order to investigate the involvement of prolactin in the pathogenesis of liver cirrhosis, we studied the expression of the prolactin receptor (PRLR) and PRL during the development of cirrhosis in an animal model. 30 male rats were exposed to CCl4 by inhalation. Phenobarbitone was added to the drinking water to accelerate the formation of toxic metabolites by enzyme induction. Two control groups of 30 animals each were treated with phenobarbitone only or received no treatment. 10 animals of each group were sacrificed 35, 55, and 70 days after initiation of treatment. Liver tissue was subjected to histological examination, which demonstrated fibrosis of different grades and cirrhosis in the CCl4-treated rats. Expression of PRLR mRNA was investigated by mRNA extraction, RT-PCR and computer-supported densitometric evaluation. Compared to control liver, PRLR mRNA was expressed at a higher level in fibrotic and cirrhotic liver specimens. In normal tissue, immunohistochemical staining showed a high concentration of PRLR around the central vein and in the epithelium of the bile ducts. This pattern of distribution was lost in fibrosis and cirrhosis. An accumulation of PRLR was demonstrated within the damaged cells. Neither PRL nor PRL mRNA was detectable in normal, fibrotic, or cirrhotic liver. We conclude that PRLR is distributed in normal rat liver in a typical pattern which is lost with increasing fibrosis. PRL is not produced by rat liver, indicating that PRL does not act through autocrine or paracrine mechanisms.  相似文献   

11.
Galectin-3 protein is critical to the development of liver fibrosis because galectin-3 null mice have attenuated fibrosis after liver injury. Therefore, we examined the ability of novel complex carbohydrate galectin inhibitors to treat toxin-induced fibrosis and cirrhosis. Fibrosis was induced in rats by intraperitoneal injections with thioacetamide (TAA) and groups were treated with vehicle, GR-MD-02 (galactoarabino-rhamnogalaturonan) or GM-CT-01 (galactomannan). In initial experiments, 4 weeks of treatment with GR-MD-02 following completion of 8 weeks of TAA significantly reduced collagen content by almost 50% based on Sirius red staining. Rats were then exposed to more intense and longer TAA treatment, which included either GR-MD-02 or GM-CT-01 during weeks 8 through 11. TAA rats treated with vehicle developed extensive fibrosis and pathological stage 6 Ishak fibrosis, or cirrhosis. Treatment with either GR-MD-02 (90 mg/kg ip) or GM-CT-01 (180 mg/kg ip) given once weekly during weeks 8–11 led to marked reduction in fibrosis with reduction in portal and septal galectin-3 positive macrophages and reduction in portal pressure. Vehicle-treated animals had cirrhosis whereas in the treated animals the fibrosis stage was significantly reduced, with evidence of resolved or resolving cirrhosis and reduced portal inflammation and ballooning. In this model of toxin-induced liver fibrosis, treatment with two galectin protein inhibitors with different chemical compositions significantly reduced fibrosis, reversed cirrhosis, reduced galectin-3 expressing portal and septal macrophages, and reduced portal pressure. These findings suggest a potential role of these drugs in human liver fibrosis and cirrhosis.  相似文献   

12.
Li C  Luo J  Li L  Cheng M  Huang N  Liu J  Waalkes MP 《Life sciences》2003,72(14):1563-1571
Han-Dan-Gan-Le (HDGL), a Chinese herb preparation composed of Stephaniat tetrandra, Salvia miltorrhiza, Radix paeoniae, Astragalus membranaceus, and Ginkgo biloba, has been used to treat human liver fibrosis. This study was designed to examine the therapeutic effect of HDGL on chemical-induced liver fibrosis in adult Wistar rats. Liver fibrosis was produced in rats by carbon tetrachloride (1.2 ml CCl(4)/kg, 2 times/week, after an initial dose of 5.0 ml CCl(4)/kg, sc), plus a diet of 20% fat, 0.05% cholesterol (continuous) and 30% alcohol in the drinking water ad libitum (every other day) for 8 weeks. HDGL (0.5 and 1.0 g/kg, ig, daily for 6 weeks) was administered to rats 72 hrs after the last dose of CCl(4) to examine its therapeutic effects on chemical-induced liver fibrosis. Upon pathological examination, the HDGL treatment had significantly reversed chemical-induced liver fibrosis and other hepatic lesions. Hepatic collagen accumulation induced by CCl(4) was markedly reduced by HDGL treatment, as evidenced by hepatic collagen content and by immunohistochemical analysis of type-I collagen in liver. HDGL appeared to stimulate the collagenolytic process in the liver, as a 30-50% increase in urinary excretion of hydroxyproline was observed with HDGL treatment as compared to rats only given CCl(4). In conclusion, HDGL can effectively reverse chemically induced liver fibrosis, and this appears to be due, at least in part, to the stimulation of hepatic collagenolysis, resulting in a resolution of hepatic fibrosis.  相似文献   

13.
We undertook a study to evaluate the correlation between morphometric evaluation and colorimetric determination of hepatic collagen content, and to analyze the variation among animals as well as among lobes of the same liver in hepatic collagen content after CCl4-induced micronodular cirrhosis. The results revealed a significant correlation (r = 0.9458; p less than 0.001) between the morphometric and colorimetric methods of collagen evaluation of liver specimens; both methods also significantly distinguished data obtained from controls and from cirrhotic rats (p less than 0.0005). After induction of micronodular cirrhosis by chronic CCl4 administration, a highly significant variation in hepatic collagen content was observed among animals (p less than 0.0001). By contrast, no significant difference in collagen content was observed (p less than 0.05) among hepatic lobes of a given animal. These results indicate that in this animal model of liver cirrhosis, interpretation of biochemical data would benefit by being related to the severity of the hepatic collagen infiltration of each animal. Our data also show that representative values for total hepatic collagen infiltration can be obtained from a single liver specimen; we suggest, however, that the specimen be taken from a major lobe of the liver and that a sufficiently large number of animals be used to avoid occasional sampling errors.  相似文献   

14.
There is a general consensus that liver fibrosis in humans is potentially reversible, while scepticism prevails on the concept that cirrhosis can be truly reversed. The availability of suitable experimental models is fundamental for disease research. The experimental murine model of liver cirrhosis induced by carbon tetrachloride (CCl(4)) reproduces both the histological picture of the postnecrotic cirrhosis and its biochemical and clinical parameters. Normal hepatic structure is modified by formation of regeneration nodules. Fibrosis represents a morphological element of disease and an effect of hepatocyte necrosis. However, the relevance for research of this well-established model of liver cirrhosis is hampered by some spontaneous cirrhosis regression reported in mice and rats. It has been reported that CCl(4) also induces experimental liver cirrhosis in rabbits, but it is not known whether the process is reversible in this species. The aim of our study was to investigate this question. Male New Zealand White rabbits were treated intragastrically with CCl(4) or the vehicle only for 19 weeks and groups were sacrificed three and five months after treatment interruption. Cirrhotic and control livers were processed for routine light microscopy and for morphometric study of fibrosis by semiquantitative evaluation. The degree of fibrosis was based on the Knodell's scoring system.  相似文献   

15.
The Gas6/Axl pathway has been increasingly implicated in regeneration and tissue repair and, recently, in the control of innate immunity. In liver, we have demonstrated that Gas6 and its receptor Axl are expressed in macrophages, progenitor cells, and myofibroblasts and that Gas6 deficiency reduced inflammation and myofibroblast activation, causing delayed liver repair in response to acute injury. All these data suggest a role of Gas6/Axl signaling in pathogenesis of chronic liver diseases. In the present study, we address the role of Gas6 in steatohepatitis and progression to liver fibrosis using Gas6-deficient mice fed a choline-deficient ethionine-supplemented diet (CDE) or receiving a chronic carbon tetrachloride (CCl(4)) treatment. Gas6 deficiency attenuated hepatic steatosis by limiting CDE-induced downregulation of genes involved in β-oxidation observed in wild-type animals. Moreover, Gas6-deficient mice displayed reduction of hepatic inflammation, revealed by limited F4/80-positive macrophage infiltration, decreased expression of IL-1β, TNF-α, lymphotoxin-β, and monocyte chemotactic protein-1, and attenuated hepatic progenitor cell response to CDE diet. Gas6 deficiency reduced CDE-induced fibrogenesis and hepatic myofibroblast activation and decreased expression of TGF-β and collagen 1 mRNAs. After chronic CCl(4) injury, Gas6-deficient mice also exhibited reduced liver fibrosis as a consequence of defective macrophage recruitment compared with wild-type animals. We conclude that improvement of steatohepatitis and fibrosis in Gas6(-/-) mice is linked to an inhibition of the inflammatory response that controls lipid metabolism and myofibroblast activation. This study highlights the deleterious effect of Gas6 in the progression of steatosis to steatohepatitis and fibrosis.  相似文献   

16.
17.
Liver fibrosis is a chronic inflammatory process characterized by the accumulation of extracellular matrix (ECM), which contributes to cirrhosis and hepatocellular carcinoma. Increasing evidence suggests that the activation of hepatic stellate cells (HSCs) under an inflammatory state leads to the secretion of collagens, which can cause cirrhosis. In this study, we analysed data from the Gene Expression Omnibus (GEO) databases to identify differentially expressed genes (DEGs) between quiescent and fibrotic HSCs. We found that Microfibril Associated Protein 2 (MFAP2) was elevated in carbon tetrachloride (CCl4)-induced liver fibrosis and Transforming Growth Factor-Beta 1 (TGF-β1)-activated HSCs. Knockdown of MFAP2 inhibited HSC proliferation and partially attenuated TGF-β-stimulated fibrogenesis markers. Bioinformatics analysis revealed that Fibrillin-1 (FBN1) was correlated with MFAP2, and the expression of FBN1 was significantly upregulated after MFAP2 overexpression. Silencing MFAP2 partially attenuated the activation of HSCs by inhibiting HSC proliferation and decreasing collagen deposits. In vitro results showed that the inhibition of MFAP2 alleviated hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in a CCl4-induced mouse model. In conclusion, our results suggest that MFAP2 is a potential target for the clinical treatment of liver fibrosis.  相似文献   

18.
In this study we investigated whether the increase of hepatic vitamin E content by intraperitoneal administration, influences chronic liver damage induced by carbon tetrachloride (CCl(4)) in rats. Thirty adult male Wistar rats were divided into three groups. The first group was used as a control and the rats in the second group were administered CCl(4) in olive oil subcutaneously. Rats in the third group were administered intraperitoneally vitamin E (dl-alpha-tocopherol acetate, 100 mg kg(-1)). This administration was performed three times per week for five weeks. Liver samples were used for the determination of vitamin E levels, glutathione peroxidase (GSHPx) activities and histological examination. Serum levels of alanine aminotransferase, lactate dehydrogenase, alkaline phosphatase, aspartate aminotransferase, gamma-glutamyltranspeptidase, total and conjugated bilirubin were significantly (p<0.05, p<0.01, p<0.001) higher in animals treated with CCl(4) than in the controls and had returned to normal values by the administration of vitamin E + CCl(4 ). Liver vitamin E levels were significantly (p<0.05) lower in the CCl(4) group than in the control group. However, the liver vitamin E content was significantly (p<0.01, p<0.001) increased in the vitamin E + CCl(4) injected group. On the other hand, liver GSHPx activity was not statistically different among the groups. On histological examination, vitamin E administered animals showed incomplete, but significant, prevention of liver necrosis and cirrhosis induced by CCl(4 ). these data indicate that intraperitoneally administered vitamin E has protective effects against CCl(4)-induced chronic liver damage and cirrhosis as evidenced by biochemical data and conventional histological examination.  相似文献   

19.
Chronic liver injury leads to the accumulation of myofibroblasts resulting in increased collagen deposition and hepatic fibrogenesis. Treatments specifically targeting fibrogenesis are not yet available. Mesenchymal stromal cells (MSCs) are fibroblast‐like stromal (stem) cells, which stimulate tissue regeneration and modulate immune responses. In the present study we assessed whether liver fibrosis and cirrhosis can be reversed by treatment with MSCs or fibroblasts concomitant to partial hepatectomy (pHx)‐induced liver regeneration. After carbon tetrachloride‐induced fibrosis and cirrhosis, mice underwent a pHx and received either systemically or locally MSCs in one of the two remaining fibrotic/cirrhotic liver lobes. Eight days after treatment, liver fibrogenesis was evaluated by Sirius‐red staining for collagen deposition. A significant reduction of collagen content in the locally treated lobes of the regenerated fibrotic and cirrhotic livers was observed in mice that received high dose MSCs. In the non‐MSC‐treated counterpart liver lobes no changes in collagen deposition were observed. Local fibroblast administration or intravenous administration of MSCs did not ameliorate fibrosis. To conclude, local administration of MSCs after pHx, in contrast to fibroblasts, results in a dose‐dependent on‐site reduction of collagen deposition in mouse models for liver fibrosis and cirrhosis.  相似文献   

20.
There are currently no approved antifibrotic therapies for liver cirrhosis. We used vitamin A-coupled liposomes to deliver small interfering RNA (siRNA) against gp46, the rat homolog of human heat shock protein 47, to hepatic stellate cells. Our approach exploits the key roles of these cells in both fibrogenesis as well as uptake and storage of vitamin A. Five treatments with the siRNA-bearing vitamin A-coupled liposomes almost completely resolved liver fibrosis and prolonged survival in rats with otherwise lethal dimethylnitrosamine-induced liver cirrhosis in a dose- and duration-dependent manner. Rescue was not related to off-target effects or associated with recruitment of innate immunity. Receptor-specific siRNA delivery was similarly effective in suppressing collagen secretion and treating fibrosis induced by CCl(4) or bile duct ligation. The efficacy of the approach using both acute and chronic models of liver fibrosis suggests its therapeutic potential for reversing human liver cirrhosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号