首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Melatonin induces pigment granule aggregation in amphibian melanophores. In the studies reported here, we have used fluorescence microscopic techniques to test the hypothesis that such melatonin-induced pigment movement is correlated with alterations in either the actin or tubulin cytoskeletal patterns of cultured Xenopus melanophores. In general, the cytoplasmic domains of the cultured melanophores were flat and thin except in the perinuclear region (especially when the pigment was aggregated). The microtubules and microfilaments were usually found in the same focal plane; however, on occasion, microfilaments were closer to the substratum. Microtubules were arranged in arrays radiating from what are presumed to be cytocenters. A small percentage of the melanophores were very large, had actin-rich circular perimeters and did not respond as rapidly to melatonin treatment as did the other melanophores. Melanophores with either aggregated or dispersed melanosomes had low intensity rhodamine-phalloidin staining of actin filaments compared to nonpigmented cells, whereas the FITC anti-tubulin intensities were comparable in magnitude to that seen in nonpigmented cells. When cells were fixed prior to complete melatonin-induced pigment granule aggregation there was no abrupt diminution in either the tubulin or actin staining at the boundary between pigment granule-rich and pigment granule-poor cytoplasmic domains. Nor could the actin and tubulin patterns in cells with partially aggregated melanosomes be reliably distinguished from those in melanophores in which the melanosomes were either completely dispersed or completely aggregated. These data argue against the hypothesis that melatonin causes consistent large-scale rearrangements of tubulin and actin polymers as it induces pigment aggregation in Xenopus melanophores.  相似文献   

2.
Responses of melanophores of the teleost, Zacco temmincki, to local light stimulation were examined in preparations of isolated scales. The melanophores induced the aggregation of melanosomes in darkness and their dispersion in light. Local illumination of a melanophore in the melanosome-dispersed state inhibited centripetal migration of melanosomes only in the stimulated area. Local illumination of a pigment-free branch of a melanophore with aggregated melanosomes generally brought about pigment dispersion into the stimulated area. However, when that area was at a significant distance from the edge of the central melanosome mass, the melanosomes never migrated into the irradiated area. Local illumination of the centrosphere of a cell inhibited the full aggregation of melanosomes in the dispersed and aggregated state. The degree of the inhibition depended on the size of the irradiated area. The results suggest that photoreceptive sites are distributed over the whole of a cell, and that the movements of melanosomes are regulated locally in a very precise manner.  相似文献   

3.
An electron microscopy study showed that in melanophores with dispersed and aggregated pigment the sensitivity of the centrosome and the stability of microtubules were different and depended on the colcemid concentration. The structure of the centrosome didn't change upon exposure to colcemid in dispersed melanophores. In aggregated melanophores, on exposure to 10(-6) M colcemid, the centrosome retained its structure; colcemid at 10(-5)-10(-3) M caused a dramatic collapse of the centrosome. Treatment of aggregated melanophores with colcemid resulted in the complete disassembly of the microtubules; though microtubules in dispersed melanophores appear to be colcemid resistant. Light microscopy studies indicated that in Xenopus melanophores with aggregated or dispersed pigment melanosomes didn't change their location after exposure to 10(-3)-10(-6) M colcemid. Subsequent incubation in colcemid-free medium revealed that the cells retained their ability to translocate melanosomes in response to hormone stimulation. Electron microscopy data revealed the inactivation of the centrosome as MTOC (microtubule-organizing center) in dispersed melanophores with melatonin substituted for MSH in the presence of colcemid. In contrast, with melanocyte-stimulating hormone (MSH) substituted for melatonin, we observed the activation of the centrosome in aggregated cells. We showed that in aggregated melanophores pigment movement proceeded in the complete absence of microtubules, suggesting the involvement of a microtubule-independent component in the hormone-induced melanosome dispersion. However, we observed abnormal aggregation along colcemid-resistent microtubules in dispersed melanophores, suggesting the involvement of not only stable but also labile microtubules in the centripetal movement of melanosomes. The results raise the intriguing questions about the mechanism of the hormone and colcemid action on the centrosome structure and microtubule network in melanophores with dispersed and aggregated pigment.  相似文献   

4.
The integumental melanophores of Australina lungfish, Neoceratodus forsteri, were examined by light and electron microscopy and found to possess essentially the same structural characteristics observed in other vertebrates. The epidermal melanophores are located in the intermediate epidermis and possess round perikarya and slender dendrites extending into nearby intercellular spaces. The dermal melanophores are found immediately below the basement membrane as well as in the deeper dermis. These cells possess flattened nuclei and dendrites running parallel to the basement membrane. Each melanophore contains numerous oval or elliptical, intensely electron-dense melanosomes, relatively large mitochondria, systems of vacuolar endoplasmic reticulum, groups of free RNP particles, and some microfilaments. Only a few, short microtubules could be demonstrated in the perinuclear cytoplasm of the dermal melanophore, while a relatively large number of late premelanosomes are found both in perikarya and dendritic processes of epidermal melanophores. These premelanosomes exhibit a particulate internal structure in cross section. Both melanosomes and premelanosomes occur singly in the cytoplasm of epidermal cells, thereby confirming the existence of the epidermal melanin unit in the lowest vertebrates thus far examined electron microscopically.  相似文献   

5.
A perfusion technique is described for the study of melanosome response in ventral tailfin melanophores of Xenopus laevis tadpoles. The melanosomes remain aggregated (punctate melanophores) in Ringer's. Theophylline (15 mM) and caffeine (30 mM) cause a reversible dispersion (stellate melanophores) of melanosomes which is partly blocked by cytochalasin B (10 μg/ml). When added with theophylline or caffeine to stellate cells, cytochalasin B causes a disrupted distribution of pigment granules, characterized by a melanosome free central region. C-AMP (20 mM) and dibutyryl c-AMP (1 mM) cause a reversible dispersion of melanosomes which is partly inhibited by cytochalasin. When cytochalasin plus a nucleotide are added to stellate cells, some show the disrupted distribution of melanosomes. Colchicine (5 mM) causes irreversible, while griseofulvin (0.2 mM) causes a slight, but reversible dispersion of melanosomes, and cytochalasin has little effect on these reactions. Perfused tailfin melanophores remain capable of responding to reversible reagents for at least 12 hours and are unresponsive to changes in illumination.  相似文献   

6.
The transport of cell cargo, such as organelles and protein complexes in the cytoplasm, is determined by cooperative action of molecular motors stepping along polar cytoskeletal elements. Analysis of transport of individual organelles generated useful information about the properties of the motor proteins and underlying cytoskeletal elements. In this work, for the first time (to our knowledge), we study collective movement of multiple organelles using Xenopus melanophores, pigment cells that translocate several thousand of pigment granules (melanosomes), spherical organelles of a diameter of ∼1 μm. These cells disperse melanosomes in the cytoplasm in response to high cytoplasmic cAMP, while at low cAMP melanosomes cluster at the cell center. Obtained results suggest spatial and temporal organization, characterized by strong correlations between movement of neighboring organelles, with correlation length of ∼4 μm and pair lifetime ∼5 s. Furthermore, velocity statistics revealed strongly non-Gaussian velocity distribution with high velocity tails demonstrating exponential behavior suggestive of strong velocity correlations. Depolymerization of vimentin intermediate filaments using a dominant-negative vimentin mutant or actin with cytochalasin B reduced correlation of behavior of individual particles. Based on our analysis, we concluded that steric repulsion is dominant, but both intermediate filaments and actin microfilaments are involved in dynamic cross-linking organelles in the cytoplasm.  相似文献   

7.
The structure of the cytoskeleton in cultured melanophores of the fish Gymnocorymbus ternetzi during aggregation of melanosomes was studied. It has been shown that the motion of pigment granules is accompanied by a reorganization of microtubules and intermediate filament systems. In melanophores with dispersed pigment granules, microtubules are wavy and form a loose network whilst intermediate filaments in such cells form a dense network around the dispersed melanosomes. During aggregation microtubules and intermediate filaments become radially oriented. It was also shown that the surface area of melanophores increased during aggregation.  相似文献   

8.
The dispersion of melanosomes in the dermal melanophores of the Xenopus laevis larvae has been studied by time--lapse cinematography. The process began with the appearance of distally directed melanosome flows in the cell cytoplasm. During the subsequent migration of pigment granules, the flows branched forming branches of the 2nd and higher orders. The whole cytoplasm became filled with a layer of melanosomes. During the dispersion, the movement of melanosomes in a flow is replaced by their dispersion all over the cytoplasm; these processes alternated. In the peripheral part of the cell devoid of melanosomes, membrane vesicles appeared and the cytoplasm was distinctly divided into ecto- and endoplasm. The ectoplasm contained numerous microfilaments and single microtubules, the endoplasm did not contain any cell organelles, except single electron-dense melanosomes. The active role of plasma membrane in the intracellular movement of melanin granules is suggested.  相似文献   

9.
Fish chromatophores serve as excellent study models for cytoskeleton-dependent organelle translocations because the distribution of pigmentary organelles can be observed against a time frame by microscopy. In this study the distribution of microfilaments along with microtubules in cultured melanophores of the killifish (Fundulus heteroclitus Linneaus) are examined using whole-cell transmission electron microscopy (WCTEM), fluorescence, and laser scanning confocal microscopy. Dispersing, dispersed, aggregating and aggregated states of pigment are induced by adding either caffeine (for dispersion) or epinephrine (for aggregation) to the cells in a standard culture medium. The cells that exhibited a random melanosome distribution in the standard culture media without these two reagents, served as the control. The results indicate that: (i) a structure considered to be the actin-filament organizing center (AFOC) is in close proximity to the microtubule-organizing center (MTOC); (ii) the radial layout of microfilaments remains similar over four physiological states of pigmentary response with the exception of epinephrine-aggregated pigment, in which the aggregate blocks the viewing of the AFOC and central microfilament rays, yet radial microfilaments, whether central and/or peripheral, are apparent in all physiological states of distribution; and (iii) microfilaments serve, together with microtubules, as scaffolding for melanosomes which migrate in bi-directional rows on cross-bridges, thus shedding light on the mechanisms for orderly melanosome translocations in a structural continuum.  相似文献   

10.
Frog melanophores rapidly change colour by dispersion or aggregation of melanosomes. A long-term colour change exists where melanosomes are released from melanophores and transferred to surrounding skin cells. No in vitro model for pigment transfer exists for lower vertebrates. Frog melanophores of different morphology exist both in epidermis where keratinocytes are present and in dermis where fibroblasts dominate. We have examined whether release and transfer of melanosomes can be studied in a melanophore-fibroblast co-culture, as no frog keratinocyte cell line exists. Xenopus laevis melanophores are normally cultured in conditioned medium from fibroblasts and fibroblast-derived factors may be important for melanophore morphology. Melanin was exocytosed as membrane-enclosed melanosomes in a process that was upregulated by alpha-melanocyte-stimulating hormone (alpha-MSH), and melanosomes where taken up by fibroblasts. Melanosome membrane-proteins seemed to be of importance, as the cluster-like uptake pattern of pigment granules was distinct from that of latex beads. In vivo results confirmed the ability of dermal fibroblasts to engulf melanosomes. Our results show that cultured frog melanophores can not only be used for studies of rapid colour change, but also as a model system for long-term colour changes and for studies of factors that affect pigmentation.  相似文献   

11.
Pigment cells of the iris, pecten, retinal pigment epithelium, and choroid of the wild-type jungle fowl (JF) and the barred Plymouth rock (BPR) breeds of adult chickens were studied at both light and electron microscopic levels. BPR choroidal tissues had 2.8 times fewer melanophores than the JF choroid, and BPR melanophores also contained 2.4 times fewer melanosomes, which tended to clump together in variously sized clusters. The melanosomes were often irregular in shape, smaller in diameter, and less mature (stage III) than those granules in the JF. The retinal pigment epithelium of both JF and BPR breeds contained a single epithelial layer of columnar cells. Rod-shaped melanosomes were present in the more apical regions of this cell type in both breeds. Both JF and BPR irides contained a multilayered posterior pigmented epithelium of columnar shaped cells that were densely filled with large spherical granules. Intercellular spaces with interdigitating cytoplasmic projections were present between pigment cells of both breeds. The pecten melanophores of both breeds were dendritic with melanosomes that were larger and fewer in numbers than those pigment cells of the iris and choroid. Intercellular spaces were present between cells in both breeds, with numerous villous-like pigment cell extensions. Choroid melanophores contained very little, if any, acid phosphatase activity. Approximately one-half of the retinal pigment epithelial cells observed contained small amounts of diffuse acid phosphatase activity in both breeds. The iris and pecten melanophores of both breeds contained profuse acid phosphatase activity scattered throughout their cytoplasms. Sparse tyrosinase activity was seen in iris and pecten pigment cells, whereas no tyrosine activity was observed in choroid melanophores or in retinal pigment epithelial cells in the two breeds, indicating that little new melanogenesis occurs in adult pigmented eye tissues. The results show that the barring gene reduces the number and melanin content of the choroidal melanophores in homozygous male BPR chickens as compared to the wild-type JF chickens. Whether this gene prevents the initial migration of embryonic neural crest cells (future melanophores) to the choroid or whether some of the choroidal melanophores prematurely degenerate in the embryo of young birds is yet to be determined. If the latter is the case, this choroid system may serve as a model for a genetic hypomelanotic disease such as vitiligo.  相似文献   

12.
Iridophoroma and melanophoroma were diagnosed in an adult male pine snake. Light microscopic examination of irregularly thickened white and black portions of abnormal scales demonstrated two distinctive populations of pigment-containing cells. Pigment cells within abnormal-appearing white scales had needle-shaped granules that were dark amber in color while black portions were composed of pigment cells typical of melanophores, with dark black, round granules. Both populations of cells showed junctional activity, and clusters of both neoplastic pigment cell types were found in adjoining areas of the epidermis. By electron microscopy, the pigment cell with amber-colored granules contained reflecting platelet profiles typical of iridophores while pigment cells with dark round granules contained melanosomes. At a junctional area between abnormal white and black scales, mosaic chromatophores containing reflecting platelet profiles and melanosomes were observed. At 1 1/2 years following initial diagnosis, the snake died and neoplastic iridophores were found at multiple visceral sites; there was no evidence of metastases of melanophores to any organ. The two pigment cell tumors are believed to have developed from either stem cells destined to become iridophores and melanophores or from prexisting iridophores and melanophores in the dermis.  相似文献   

13.
Gravitropic response is a plant growth response against changing its position relative to the gravity vector. In the present work we studied actin cytoskeleton rearrangements during Arabidopsis root gravitropic response. Two alternative approaches were used to visualize actin microfilaments: histochemical staining of fixed roots with rhodamine-phalloidin and live imaging of microfilaments in GFP-fABD2 transgenic plants. The curvature of actin microfilaments was shown to be increased within 30–60 min of gravistimulation, the fraction of axially oriented microfilaments decreased with a concomitant increase in the fraction of oblique and transversally oriented microfilaments. Methodological issues of actin cytoskeleton visualization in the study of Arabidopsis root gravitropic response, as well as the role of microfilaments at the stages of gravity perception, signal transduction and gravitropic bending formation are discussed. It is concluded that the actin cytoskeleton rearrangements observed are associated with the regulation of basic mechanisms of cell extension growth by which the gravitropic bending is formed.  相似文献   

14.
When microtubules in teleost melanophores are disrupted with antimitotic agents, colchicine, high hydrostatic pressure, low temperature, and vinblastine, the alignment and movement of the pigment granules in these cells disappear; during recovery, the return of alignment and movement corresponds in both time and space with the repolymerization of microtubules. Furthermore, analysis of nearest neighbor distances in untreated melanophores reveals that pigment granules are closely associated with microtubules. Other structures such as microfilaments, the endoplasmic reticulum, and the cytoplasmic matrix do not appear to be involved. Thus we conclude that microtubules determine the alignment and are essential for the selective movements of the pigment granules in these cells. Investigations of the mechanism of movement show that microtubules are required for both centrifugal and centripetal migrations and that they do not change in number or location during redistribution of pigment. Our results further indicate that microtubules in melanophores behave as semistable organelles as determined by investigation with colchicine and hydrostatic pressure. These observations and others rule out a push-pull mechanism based on the polymerization and depolymerization of microtubules or one which distinguishes two operationally different sets of microtubules. We propose instead that particles move by sliding along a fixed array of microtubules.  相似文献   

15.
Frog melanophores rapidly change colour by dispersion or aggregation of melanosomes. A long‐term colour change exists where melanosomes are released from melanophores and transferred to surrounding skin cells. No in vitro model for pigment transfer exists for lower vertebrates. Frog melanophores of different morphology exist both in epidermis where keratinocytes are present and in dermis where fibroblasts dominate. We have examined whether release and transfer of melanosomes can be studied in a melanophore‐fibroblast co‐culture, as no frog keratinocyte cell line exists. Xenopus laevis melanophores are normally cultured in conditioned medium from fibroblasts and fibroblast‐derived factors may be important for melanophore morphology. Melanin was exocytosed as membrane‐enclosed melanosomes in a process that was upregulated by α‐melanocyte‐stimulating hormone (α‐MSH), and melanosomes where taken up by fibroblasts. Melanosome membrane‐proteins seemed to be of importance, as the cluster‐like uptake pattern of pigment granules was distinct from that of latex beads. In vivo results confirmed the ability of dermal fibroblasts to engulf melanosomes. Our results show that cultured frog melanophores can not only be used for studies of rapid colour change, but also as a model system for long‐term colour changes and for studies of factors that affect pigmentation.  相似文献   

16.
Ezrin, Radixin and Moesin (ERM) proteins are thought to constitute a bridge between the actin cytoskeleton and the plasma membrane (PM). Here we report a genetic analysis of Dmoesin, the sole member of the ERM family in Drosophila. We show that Dmoesin is required during oogenesis for anchoring microfilaments to the oocyte cortex. Alteration of the actin cytoskeleton resulting from Dmoesin mutations impairs the localization of maternal determinants, thus disrupting antero-posterior polarity. This study also demonstrates the requirement of Dmoesin for the specific organization of cortical microfilaments in nurse cells and, consequently, mutations in Dmoesin produce severe defects in cell shape.  相似文献   

17.
The melanophores in the dermis on scales in the bitterling, Acheilognathus lanceolatus were studies to obtain information about the control mechanism of aggregation and dispersion using intact, membrane-permeabilized and cultured cells. The cultured melanophores showed supersensitivity, namely, they responded to norepinephrine with much higher sensitivity than intact cells. The cultured melanophores failed to respond to high KCl. Melatonin aggregated and adenosine dispersed melanosomes within a cell. Digitonin permeabilized cells showed aggregation with Ca ions and dispersion by cyclic adenosine 3',5'-monophosphate (cAMP) in the presence of ATP. Movement of melanosomes was observed under the high magnification of light microscope and the tracks of each pigment granule were followed. The granules moved fast and linearly during aggregation, whereas they showed to-and-fro movement during dispersion.  相似文献   

18.
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immunostained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase.  相似文献   

19.
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immuno-stained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase.  相似文献   

20.
Summary The distribution of actin filaments in pyloric gland cells of cattle was studied with respect to their functional significance in the process of exocrine secretion by use of rhodamine-phalloidin labelling and immunogold-electron microscopy based on the biotinstreptavidin bridge technique. Actin concentrates on the filamentous network of the luminal cell cortex. Membranes of secretory vesicles accumulating in the cell cortex are also labelled for actin. The present results support the concept of a barrier function of cortical microfilaments entrapping vesicles and linking them to the cytoskeleton. In addition, intracellular localization of calcium-ATPase activity was determined. Enzyme activity associated with the microfilamentous cortical matrix is supposed to be of cytoskeletal nature indicating participation of myosin (-like) structures in the dynamic secretion event. Deposition on the interior aspect of secretory vesicle membranes points to an ATPase transporting calcium into these organelles and enabling them to participate via storage of the cation in intracellular calcium homeostasis, thereby influencing the functional architecture of the cortical cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号