首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deep sequencing technologies enable the study of the effects of rare variants in disease risk. While methods have been developed to increase statistical power for detection of such effects, detecting subtle associations requires studies with hundreds or thousands of individuals, which is prohibitively costly. Recently, low-coverage sequencing has been shown to effectively reduce the cost of genome-wide association studies, using current sequencing technologies. However, current methods for disease association testing on rare variants cannot be applied directly to low-coverage sequencing data, as they require individual genotype data, which may not be called correctly due to low-coverage and inherent sequencing errors. In this article, we propose two novel methods for detecting association of rare variants with disease risk, using low coverage, error-prone sequencing. We show by simulation that our methods outperform previous methods under both low- and high-coverage sequencing and under different disease architectures. We use real data and simulation studies to demonstrate that to maximize the power to detect associations for a fixed budget, it is desirable to include more samples while lowering coverage and to perform an analysis using our suggested methods.  相似文献   

2.
Family-based study design will play a key role in identifying rare causal variants, because rare causal variants can be enriched in families with multiple affected subjects. Furthermore, different from population-based studies, family studies are robust to bias induced by population substructure. It is well known that rare causal variants are difficult to detect from single-locus tests. Therefore, burden tests and non-burden tests have been developed, by combining signals of multiple variants in a chromosomal region or a functional unit. This inevitably incorporates some neutral variants into the test statistics, which can dilute the power of statistical methods. To guard against the noise caused by neutral variants, we here propose an ‘adaptive combination of P-values method’ (abbreviated as ‘ADA’). This method combines per-site P-values of variants that are more likely to be causal. Variants with large P-values (which are more likely to be neutral variants) are discarded from the combined statistic. In addition to performing extensive simulation studies, we applied these tests to the Genetic Analysis Workshop 17 data sets, where real sequence data were generated according to the 1000 Genomes Project. Compared with some existing methods, ADA is more robust to the inclusion of neutral variants. This is a merit especially when dichotomous traits are analyzed. However, there are some limitations for ADA. First, it is more computationally intensive. Second, pedigree structures and founders'' sequence data are required for the permutation procedure. Third, unrelated controls cannot be included. We here show that, for family-based studies, the application of ADA is limited to dichotomous trait analyses with full pedigree information.  相似文献   

3.
Advances in next-generation sequencing technology have enabled systematic exploration of the contribution of rare variation to Mendelian and complex diseases. Although it is well known that population stratification can generate spurious associations with common alleles, its impact on rare variant association methods remains poorly understood. Here, we performed exhaustive coalescent simulations with demographic parameters calibrated from exome sequence data to evaluate the performance of nine rare variant association methods in the presence of fine-scale population structure. We find that all methods have an inflated spurious association rate for parameter values that are consistent with levels of differentiation typical of European populations. For example, at a nominal significance level of 5%, some test statistics have a spurious association rate as high as 40%. Finally, we empirically assess the impact of population stratification in a large data set of 4,298 European American exomes. Our results have important implications for the design, analysis, and interpretation of rare variant genome-wide association studies.  相似文献   

4.
This article focuses on conducting global testing for association between a binary trait and a set of rare variants (RVs), although its application can be much broader to other types of traits, common variants (CVs), and gene set or pathway analysis. We show that many of the existing tests have deteriorating performance in the presence of many nonassociated RVs: their power can dramatically drop as the proportion of nonassociated RVs in the group to be tested increases. We propose a class of so-called sum of powered score (SPU) tests, each of which is based on the score vector from a general regression model and hence can deal with different types of traits and adjust for covariates, e.g., principal components accounting for population stratification. The SPU tests generalize the sum test, a representative burden test based on pooling or collapsing genotypes of RVs, and a sum of squared score (SSU) test that is closely related to several other powerful variance component tests; a previous study (Basu and Pan 2011) has demonstrated good performance of one, but not both, of the Sum and SSU tests in many situations. The SPU tests are versatile in the sense that one of them is often powerful, although its identity varies with the unknown true association parameters. We propose an adaptive SPU (aSPU) test to approximate the most powerful SPU test for a given scenario, consequently maintaining high power and being highly adaptive across various scenarios. We conducted extensive simulations to show superior performance of the aSPU test over several state-of-the-art association tests in the presence of many nonassociated RVs. Finally we applied the SPU and aSPU tests to the GAW17 mini-exome sequence data to compare its practical performance with some existing tests, demonstrating their potential usefulness.  相似文献   

5.
BackgroundIt has become common practice to analyse large scale sequencing data with statistical approaches based around the aggregation of rare variants within the same gene. We applied a novel approach to rare variant analysis by collapsing variants together using protein domain and family coordinates, regarded to be a more discrete definition of a biologically functional unit.MethodsUsing Pfam definitions, we collapsed rare variants (Minor Allele Frequency ≤ 1%) together in three different ways 1) variants within single genomic regions which map to individual protein domains 2) variants within two individual protein domain regions which are predicted to be responsible for a protein-protein interaction 3) all variants within combined regions from multiple genes responsible for coding the same protein domain (i.e. protein families). A conventional collapsing analysis using gene coordinates was also undertaken for comparison. We used UK10K sequence data and investigated associations between regions of variants and lipid traits using the sequence kernel association test (SKAT).ResultsWe observed no strong evidence of association between regions of variants based on Pfam domain definitions and lipid traits. Quantile-Quantile plots illustrated that the overall distributions of p-values from the protein domain analyses were comparable to that of a conventional gene-based approach. Deviations from this distribution suggested that collapsing by either protein domain or gene definitions may be favourable depending on the trait analysed.ConclusionWe have collapsed rare variants together using protein domain and family coordinates to present an alternative approach over collapsing across conventionally used gene-based regions. Although no strong evidence of association was detected in these analyses, future studies may still find value in adopting these approaches to detect previously unidentified association signals.  相似文献   

6.
7.
Biological evidence suggests that multiple causal variants in a gene may cluster physically. Variants within the same protein functional domain or gene regulatory element would locate in close proximity on the DNA sequence. However, spatial information of variants is usually not used in current rare variant association analyses. We here propose a clustering method (abbreviated as “CLUSTER”), which is extended from the adaptive combination of P-values. Our method combines the association signals of variants that are more likely to be causal. Furthermore, the statistic incorporates the spatial information of variants. With extensive simulations, we show that our method outperforms several commonly-used methods in many scenarios. To demonstrate its use in real data analyses, we also apply this CLUSTER test to the Dallas Heart Study data. CLUSTER is among the best methods when the effects of causal variants are all in the same direction. As variants located in close proximity are more likely to have similar impact on disease risk, CLUSTER is recommended for association testing of clustered rare causal variants in case-control studies.  相似文献   

8.
BackgroundThe success of collapsing methods which investigate the combined effect of rare variants on complex traits has so far been limited. The manner in which variants within a gene are selected prior to analysis has a crucial impact on this success, which has resulted in analyses conventionally filtering variants according to their consequence. This study investigates whether an alternative approach to filtering, using annotations from recently developed bioinformatics tools, can aid these types of analyses in comparison to conventional approaches.ConclusionIncorporating variant annotations from non-coding bioinformatics tools should prove to be a valuable asset for rare variant analyses in the future. Filtering by variant consequence is only possible in coding regions of the genome, whereas utilising non-coding bioinformatics annotations provides an opportunity to discover unknown causal variants in non-coding regions as well. This should allow studies to uncover a greater number of causal variants for complex traits and help elucidate their functional role in disease.  相似文献   

9.
In spite of the success of genome-wide association studies (GWASs), only a small proportion of heritability for each complex trait has been explained by identified genetic variants, mainly SNPs. Likely reasons include genetic heterogeneity (i.e., multiple causal genetic variants) and small effect sizes of causal variants, for which pathway analysis has been proposed as a promising alternative to the standard single-SNP-based analysis. A pathway contains a set of functionally related genes, each of which includes multiple SNPs. Here we propose a pathway-based test that is adaptive at both the gene and SNP levels, thus maintaining high power across a wide range of situations with varying numbers of the genes and SNPs associated with a trait. The proposed method is applicable to both common variants and rare variants and can incorporate biological knowledge on SNPs and genes to boost statistical power. We use extensively simulated data and a WTCCC GWAS dataset to compare our proposal with several existing pathway-based and SNP-set-based tests, demonstrating its promising performance and its potential use in practice.  相似文献   

10.
Although variations in allele frequencies at common SNPs have been extensively studied in different populations, little is known about the stratification of rare variants and its impact on association tests. In this paper, we used Affymetrix 500K genotype data from the WTCCC to investigate if variants in three different frequency categories (below 1%, between 1 and 5%, above 5%) show different stratification patterns in the UK population. We found that these patterns are indeed different. The top principal component extracted from the rare variant category shows poor correlations with any principal component or combination of principal components from the low frequency or common variant categories. These results could suggest that a suitable solution to avoid false positive association due to population stratification would involve adjusting for the respective PCs when testing for variants in different allele frequency categories. However, we found this was not the case both on type 2 diabetes data and on simulated data. Indeed, adjusting rare variant association tests on PCs derived from rare variants does no better to correct for population stratification than adjusting on PCs derived from more common variants. Mixed models perform slightly better for low frequency variants than PC based adjustments but less well for the rarest variants. These results call for the need of new methodological developments specifically devoted to address rare variant stratification issues in association tests.  相似文献   

11.
A fundamental challenge to contemporary genetics is to distinguish rare missense alleles that disrupt protein functions from the majority of alleles neutral on protein activities. High-throughput experimental tools to securely discriminate between disruptive and non-disruptive missense alleles are currently missing. Here we establish a scalable cell-based strategy to profile the biological effects and likely disease relevance of rare missense variants in vitro. We apply this strategy to systematically characterize missense alleles in the low-density lipoprotein receptor (LDLR) gene identified through exome sequencing of 3,235 individuals and exome-chip profiling of 39,186 individuals. Our strategy reliably identifies disruptive missense alleles, and disruptive-allele carriers have higher plasma LDL-cholesterol (LDL-C). Importantly, considering experimental data refined the risk of rare LDLR allele carriers from 4.5- to 25.3-fold for high LDL-C, and from 2.1- to 20-fold for early-onset myocardial infarction. Our study generates proof-of-concept that systematic functional variant profiling may empower rare variant-association studies by orders of magnitude.  相似文献   

12.
《Plains anthropologist》2013,58(78):14-20
Abstract

Taxa in the Middle Missouri subarea are differentiated largely on the basis of cultural content and time; thus, the creation of a new taxon (the Modified Initial Middle Missouri Variant of the Middle Missouri Tradition) implies change within the Initial Middle Missouri Variant - change which is implied but not documented. The objective of the present study is to examine the validity of the new taxon. The analysis relies primarily on ceramics, supplemented by a new series of radiocarbon dates. The investigation failed to support the hypothesized ceramic tradition change, and the radiocarbon dates suggest these sites do not fit the Modified Initial Middle Missouri time period. This study concludes the Modified Initial Middle Missouri Variant is not a valid taxon.  相似文献   

13.
14.
15.
《PloS one》2014,9(8)
Bipolar disorder is one of the most common and devastating psychiatric disorders whose mechanisms remain largely unknown. Despite a strong genetic contribution demonstrated by twin and adoption studies, a polygenic background influences this multifactorial and heterogeneous psychiatric disorder. To identify susceptibility genes on a severe and more familial sub-form of the disease, we conducted a genome-wide association study focused on 211 patients of French origin with an early age at onset and 1,719 controls, and then replicated our data on a German sample of 159 patients with early-onset bipolar disorder and 998 controls. Replication study and subsequent meta-analysis revealed two genes encoding proteins involved in phosphoinositide signalling pathway (PLEKHA5 and PLCXD3). We performed additional replication studies in two datasets from the WTCCC (764 patients and 2,938 controls) and the GAIN-TGen cohorts (1,524 patients and 1,436 controls) and found nominal P-values both in the PLCXD3 and PLEKHA5 loci with the WTCCC sample. In addition, we identified in the French cohort one affected individual with a deletion at the PLCXD3 locus and another one carrying a missense variation in PLCXD3 (p.R93H), both supporting a role of the phosphatidylinositol pathway in early-onset bipolar disorder vulnerability. Although the current nominally significant findings should be interpreted with caution and need replication in independent cohorts, this study supports the strategy to combine genetic approaches to determine the molecular mechanisms underlying bipolar disorder.  相似文献   

16.
Advances in next-generation sequencing technologies have enabled the identification of multiple rare single nucleotide polymorphisms involved in diseases or traits. Several strategies for identifying rare variants that contribute to disease susceptibility have recently been proposed. An important feature of many of these statistical methods is the pooling or collapsing of multiple rare single nucleotide variants to achieve a reasonably high frequency and effect. However, if the pooled rare variants are associated with the trait in different directions, then the pooling may weaken the signal, thereby reducing its statistical power. In the present paper, we propose a backward support vector machine (BSVM)-based variant selection procedure to identify informative disease-associated rare variants. In the selection procedure, the rare variants are weighted and collapsed according to their positive or negative associations with the disease, which may be associated with common variants and rare variants with protective, deleterious, or neutral effects. This nonparametric variant selection procedure is able to account for confounding factors and can also be adopted in other regression frameworks. The results of a simulation study and a data example show that the proposed BSVM approach is more powerful than four other approaches under the considered scenarios, while maintaining valid type I errors.  相似文献   

17.
18.
Complex disorders are typically characterized by multiple phenotypes. Analyzing these phenotypes jointly is expected to be more powerful than dealing with one of them at a time. A recent approach (O''Reilly et al. 2012) is to regress the genotype at a SNP marker on multiple phenotypes and apply the proportional odds model. In the current research, we introduce an explicit expression for the score test statistic and its non-centrality parameter that determines its power. Same simulation studies as those reported in Galesloot et al. (2014) were conducted to assess its performance. We demonstrate by theoretical arguments and simulation studies that, despite its potential usefulness for multiple phenotypes, the proportional odds model method can be less powerful than regular methods for univariate traits. We also introduce an implementation of the proposed score statistic in an R package named iGasso.  相似文献   

19.
Assessment of non-HLA variants alongside standard HLA testing was previously shown to improve the identification of potential coeliac disease (CD) patients. We intended to identify new genetic variants associated with CD in the Polish population that would improve CD risk prediction when used alongside HLA haplotype analysis. DNA samples of 336 CD and 264 unrelated healthy controls were used to create DNA pools for a genome wide association study (GWAS). GWAS findings were validated with individual HLA tag single nucleotide polymorphism (SNP) typing of 473 patients and 714 healthy controls. Association analysis using four HLA-tagging SNPs showed that, as was found in other populations, positive predicting genotypes (HLA-DQ2.5/DQ2.5, HLA-DQ2.5/DQ2.2, and HLA-DQ2.5/DQ8) were found at higher frequencies in CD patients than in healthy control individuals in the Polish population. Both CD-associated SNPs discovered by GWAS were found in the CD susceptibility region, confirming the previously-determined association of the major histocompatibility (MHC) region with CD pathogenesis. The two most significant SNPs from the GWAS were rs9272346 (HLA-dependent; localized within 1 Kb of DQA1) and rs3130484 (HLA-independent; mapped to MSH5). Specificity of CD prediction using the four HLA-tagging SNPs achieved 92.9%, but sensitivity was only 45.5%. However, when a testing combination of the HLA-tagging SNPs and the MSH5 SNP was used, specificity decreased to 80%, and sensitivity increased to 74%. This study confirmed that improvement of CD risk prediction sensitivity could be achieved by including non-HLA SNPs alongside HLA SNPs in genetic testing.  相似文献   

20.
We describe a method for pooling and sequencing DNA from a large number of individual samples while preserving information regarding sample identity. DNA from 576 individuals was arranged into four 12 row by 12 column matrices and then pooled by row and by column resulting in 96 total pools with 12 individuals in each pool. Pooling of DNA was carried out in a two-dimensional fashion, such that DNA from each individual is present in exactly one row pool and exactly one column pool. By considering the variants observed in the rows and columns of a matrix we are able to trace rare variants back to the specific individuals that carry them. The pooled DNA samples were enriched over a 250 kb region previously identified by GWAS to significantly predispose individuals to lung cancer. All 96 pools (12 row and 12 column pools from 4 matrices) were barcoded and sequenced on an Illumina HiSeq 2000 instrument with an average depth of coverage greater than 4,000×. Verification based on Ion PGM sequencing confirmed the presence of 91.4% of confidently classified SNVs assayed. In this way, each individual sample is sequenced in multiple pools providing more accurate variant calling than a single pool or a multiplexed approach. This provides a powerful method for rare variant detection in regions of interest at a reduced cost to the researcher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号