首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The BCL-2 (B cell CLL/Lymphoma) family is comprised of approximately twenty proteins that collaborate to either maintain cell survival or initiate apoptosis1. Following cellular stress (e.g., DNA damage), the pro-apoptotic BCL-2 family effectors BAK (BCL-2 antagonistic killer 1) and/or BAX (BCL-2 associated X protein) become activated and compromise the integrity of the outer mitochondrial membrane (OMM), though the process referred to as mitochondrial outer membrane permeabilization (MOMP)1. After MOMP occurs, pro-apoptotic proteins (e.g., cytochrome c) gain access to the cytoplasm, promote caspase activation, and apoptosis rapidly ensues2.In order for BAK/BAX to induce MOMP, they require transient interactions with members of another pro-apoptotic subset of the BCL-2 family, the BCL-2 homology domain 3 (BH3)-only proteins, such as BID (BH3-interacting domain agonist)3-6. Anti-apoptotic BCL-2 family proteins (e.g., BCL-2 related gene, long isoform, BCL-xL; myeloid cell leukemia 1, MCL-1) regulate cellular survival by tightly controlling the interactions between BAK/BAX and the BH3-only proteins capable of directly inducing BAK/BAX activation7,8. In addition, anti-apoptotic BCL-2 protein availability is also dictated by sensitizer/de-repressor BH3-only proteins, such as BAD (BCL-2 antagonist of cell death) or PUMA (p53 upregulated modulator of apoptosis), which bind and inhibit anti-apoptotic members7,9. As most of the anti-apoptotic BCL-2 repertoire is localized to the OMM, the cellular decision to maintain survival or induce MOMP is dictated by multiple BCL-2 family interactions at this membrane. Large unilamellar vesicles (LUVs) are a biochemical model to explore relationships between BCL-2 family interactions and membrane permeabilization10. LUVs are comprised of defined lipids that are assembled in ratios identified in lipid composition studies from solvent extracted Xenopus mitochondria (46.5% phosphatidylcholine, 28.5% phosphatidylethanoloamine, 9% phosphatidylinositol, 9% phosphatidylserine, and 7% cardiolipin)10. This is a convenient model system to directly explore BCL-2 family function because the protein and lipid components are completely defined and tractable, which is not always the case with primary mitochondria. While cardiolipin is not usually this high throughout the OMM, this model does faithfully mimic the OMM to promote BCL-2 family function. Furthermore, a more recent modification of the above protocol allows for kinetic analyses of protein interactions and real-time measurements of membrane permeabilization, which is based on LUVs containing a polyanionic dye (ANTS: 8-aminonaphthalene-1,3,6-trisulfonic acid) and cationic quencher (DPX: p-xylene-bis-pyridinium bromide)11. As the LUVs permeabilize, ANTS and DPX diffuse apart, and a gain in fluorescence is detected. Here, commonly used recombinant BCL-2 family protein combinations and controls using the LUVs containing ANTS/DPX are described.  相似文献   

2.
MCL-1 (myeloid cell leukemia-1), a member of the BCL-2 family, has three splicing variants, antiapoptotic MCL-1L, proapoptotic MCL-1S, and MCL-1ES. We previously reported cloning MCL-1ES and characterizing it as an apoptotic molecule. Here, we investigated the molecular mechanism by which MCL-1ES promotes cell death. MCL-1ES was distinct from other proapoptotic BCL-2 members that induce apoptosis by promoting BAX or BAK oligomerization, leading to mitochondrial outer membrane permeabilization (MOMP), in that MCL-1ES promoted mitochondrial apoptosis independently of both BAX and BAK. Instead, MCL-1L was crucial for the apoptotic activity of MCL-1ES by facilitating its proper localization to the mitochondria. MCL-1ES did not interact with any BCL-2 family proteins except for MCL-1L, and antiapoptotic BCL-2 members failed to inhibit apoptosis induced by MCL-1ES. The BCL-2 homology 3 (BH3) domain of MCL-1ES was critical for both MCL-1ES association with MCL-1L and apoptotic activity. MCL-1ES formed mitochondrial oligomers, and this process was followed by MOMP and cytochrome c release in a MCL-1L-dependent manner. These findings indicate that MCL-1ES, as a distinct proapoptotic BCL-2 family protein, may be useful for intervening in diseases that involve uncontrolled MCL-1L.  相似文献   

3.
The mitochondrial pathway of apoptosis proceeds when molecules sequestered between the outer and inner mitochondrial membranes are released to the cytosol by mitochondrial outer membrane permeabilization (MOMP). This process is controlled by the BCL-2 family, which is composed of both pro- and anti-apoptotic proteins. Although there is no disagreement that BCL-2 proteins regulate apoptosis, the mechanism leading to MOMP remains controversial. Current debate focuses on what interactions within the family are crucial to initiate MOMP. Specifically, do the BH3-only proteins directly engage BAX and/or BAK activation or do these proteins solely promote apoptosis by neutralization of anti-apoptotic BCL-2 proteins? We describe these models and contend that BH3-only proteins must perform both functions to efficiently engage MOMP and apoptosis.  相似文献   

4.
Axonal degeneration and neuronal cell death are fundamental processes in development and contribute to the pathology of neurological disease in adults. Both processes are regulated by BCL-2 family proteins which orchestrate the permeabilization of the mitochondrial outer membrane (MOM). MOM permeabilization (MOMP) results in the activation of pro-apoptotic molecules that commit neurons to either die or degenerate. With the success of small-molecule inhibitors targeting anti-apoptotic BCL-2 proteins for the treatment of lymphoma, we can now envision the use of inhibitors of apoptosis with exquisite selectivity for BCL-2 family protein regulation of neuronal apoptosis in the treatment of nervous system disease. Critical to this development is deciphering which subset of proteins is required for neuronal apoptosis and axon degeneration, and how these two different outcomes are separately regulated. Moreover, noncanonical BCL-2 family protein functions unrelated to the regulation of MOMP, including impacting necroptosis and other modes of cell death may reveal additional potential targets and/or confounders. This review highlights our current understanding of BCL-2 family mediated neuronal cell death and axon degeneration, while identifying future research questions to be resolved to enable regulating neuronal survival pharmacologically.Subject terms: Cell biology, Chemical tools, Neuroscience, Neurological disorders  相似文献   

5.
During apoptosis, the BCL-2 protein family controls mitochondrial outer membrane permeabilization (MOMP), but the dynamics of this regulation remain controversial. We employed chimeric proteins composed of exogenous BH3 domains inserted into a tBID backbone that can activate the proapoptotic effectors BAX and BAK to permeabilize membranes without being universally sequestered by all antiapoptotic BCL-2 proteins. We thus identified two "modes" whereby prosurvival BCL-2 proteins can block MOMP, by sequestering direct-activator BH3-only proteins ("MODE 1") or by binding active BAX?and BAK ("MODE 2"). Notably, we found that MODE 1 sequestration is less efficient and more easily derepressed to promote MOMP than MODE 2. Further, MODE 2 sequestration prevents mitochondrial fusion. We provide a unified model of BCL-2 family function that helps to explain otherwise paradoxical observations relating to MOMP, apoptosis, and mitochondrial dynamics.  相似文献   

6.
The B cell lymphoma-2 (BCL-2) family is the key mediator of cellular sensitivity to apoptosis during pharmacological interventions for numerous human pathologies, including cancer. There is tremendous interest to understand how the proapoptotic BCL-2 effector members (e.g. BCL-2-associated X protein, BAX) cooperate with the BCL-2 homology domain only (BH3-only) subclass (e.g. BCL-2 interacting mediator of death, BIM; BCL-2 interacting-domain death agonist, BID) to induce mitochondrial outer membrane permeabilization (MOMP) and apoptosis and whether these mechanisms may be pharmacologically exploited to enhance the killing of cancer cells. Indeed, small molecule inhibitors of the anti-apoptotic BCL-2 family members have been designed rationally. However, the success of these “BH3 mimetics” in the clinic has been limited, likely due to an incomplete understanding of how these drugs function in the presence of multiple BCL-2 family members. To increase our mechanistic understanding of how BH3 mimetics cooperate with multiple BCL-2 family members in vitro, we directly compared the activity of several BH3-mimetic compounds (i.e. ABT-263, ABT-737, GX15-070, HA14.1, TW-37) in biochemically defined large unilamellar vesicle model systems that faithfully recapitulate BAX-dependent mitochondrial outer membrane permeabilization. Our investigations revealed that the presence of BAX, BID, and BIM differentially regulated the ability of BH3 mimetics to derepress proapoptotic molecules from anti-apoptotic proteins. Using mitochondria loaded with fluorescent BH3 peptides and cells treated with inducers of cell death, these differences were supported. Together, these data suggest that although the presence of anti-apoptotic BCL-2 proteins primarily dictates cellular sensitivity to BH3 mimetics, additional specificity is conferred by proapoptotic BCL-2 proteins.  相似文献   

7.
Execution of the intrinsic apoptotic pathway is controlled by the BCL-2 proteins at the level of the mitochondrial outer membrane (MOM). This family of proteins consists of prosurvival (e.g., BCL-2, MCL-1) and proapoptotic (e.g., BIM, BAD, HRK) members, the functional balance of which dictates the activation of BAX and BAK. Once activated, BAX/BAK form pores in the MOM, resulting in cytochrome c release from the mitochondrial intermembrane space, leading to apoptosome formation, caspase activation, and cleavage of intracellular targets. This pathway is induced by cellular stress including DNA damage, cytokine and growth factor withdrawal, and chemotherapy/drug treatment. A well-documented defense of leukemia cells is to shift the balance of the BCL-2 family in favor of the prosurvival proteins to protect against such intra- and extracellular stimuli. Small molecule inhibitors targeting the prosurvival proteins, named ‘BH3 mimetics’, have come to the fore in recent years to treat hematological malignancies, both as single agents and in combination with standard-of-care therapies. The most significant example of these is the BCL-2-specific inhibitor venetoclax, given in combination with standard-of-care therapies with great success in AML in clinical trials. As the number and variety of available BH3 mimetics increases, and investigations into applying these novel inhibitors to treat myeloid leukemias continue apace the need to evaluate where we currently stand in this rapidly expanding field is clear.Subject terms: Targeted therapies, Acute myeloid leukaemia, Chronic myeloid leukaemia  相似文献   

8.
Endophilin B1/BAX-interacting factor 1 (Bif-1) is a protein that cooperates with dynamin-like protein 1 (DLP1/Drp1) to maintain normal mitochondrial outer membrane (MOM) dynamics in healthy cells and also contributes to BAX-driven MOM permeabilization (MOMP), the irreversible commitment point to cell death for the majority of apoptotic stimuli. However, despite its importance, exactly how Bif-1 fulfils its proapoptotic role is unknown. Here, we demonstrate that the stimulatory effect of Bif-1 on BAX-driven MOMP and on BAX conformational activation observed in intact cells during apoptosis can be recapitulated in a simplified system consisting of purified proteins and MOM-like liposomes. In this reconstituted model system the N-BAR domain of Bif-1 reproduced the stimulatory effect of Bif-1 on functional BAX activation. This process was dependent on physical interaction between Bif-1 N-BAR and BAX as well as on the presence of the mitochondrion-specific lipid cardiolipin. Despite that Bif-1 N-BAR produced large scale morphological rearrangements in MOM-like liposomes, this phenomenon could be separated from functional BAX activation. Furthermore, DLP1 also caused global morphological changes in MOM-like liposomes, but DLP1 did not stimulate BAX-permeabilizing function in the absence or presence of Bif-1. Taken together, our findings not only provide direct evidence for a functional interplay between Bif-1, BAX, and cardiolipin during MOMP but also add significantly to the growing body of evidence indicating that components of the mitochondrial morphogenesis machinery possess proapoptotic functions that are independent from their recognized roles in normal mitochondrial dynamics.MOMP3 is a key event in the intrinsic pathway of mammalian apoptosis, resulting in the release of several apoptogenic proteins from the mitochondrial intermembrane space into the cytosol (1). Released intraorganellar components, including cytochrome c, Smac/DIABLO, and AIF, then act as mediators for activating executioner caspase proteases or for other downstream events in the intracellular apoptosis cascade. MOMP is tightly regulated by BCL-2 family members, whose core components are proapoptotic BAX-type proteins that directly effect MOMP and antiapoptotic BCL-2-type proteins which inhibit MOMP (2, 3). In a currently popular model, a third subgroup of BCL-2 family proteins, the BH3-only proteins, trigger a set of conformational changes in BAX and/or its close homologue BAK that activates their permeabilizing function, thereby causing MOMP.Multiple proteins implicated in mitochondrial morphogenesis during normal growth conditions can cross-talk with BCL-2 family members to affect the mitochondrial pathway of apoptosis (4). For example, the large dynamin-like GTPase DLP1/Drp1 and hFis1, two essential components of the mitochondrial fission machinery, have been shown to modulate pro-apoptotic BAX function and mitochondrial cytochrome c release by acting at the level of the MOM (57). However, although excessive mitochondrial fragmentation is characteristic in mammalian apoptosis, controversy persists as to whether this phenomenon is merely coincident with or causatively linked to MOMP induction (48). In addition, a considerable body of evidence has amassed indicating that DLP1/Drp1 and hFis1 are multifunctional proteins that do not use the same mechanisms to reshape mitochondria in healthy conditions and to promote release of mitochondrial intermembrane space proteins during apoptosis (710).Endophilin B1/BAX-interacting factor 1 (Bif-1) is another protein linking mitochondrial morphological changes and BCL-2-regulated programmed cell death (4). On the one hand, Bif-1 is known to participate downstream of DLP1/Drp1, modulating normal MOM morphological dynamics in healthy cells (11). On the other hand, in response to specific apoptotic signals, a significant portion of Bif-1 binds BAX at the MOM in close temporal correlation with BAX conformational change and cytochrome c release (12). In addition, increasing the levels of Bif-1 has been shown to accelerate BAX conformational change, caspase activation, and apoptotic cell death, whereas loss of Bif-1 delays all these processes (12, 13). Together, these previous findings point to an important contributing role of Bif-1 in BAX-driven MOMP during apoptosis, but the underlying molecular mechanism remains unknown.As other members of the endophilin family, Bif-1 contains an N-BAR (Bin-amphiphysin-Rvs) domain that has been shown to confer ability to these proteins for transforming flat lipid bilayers into high curvature buds, tubules, and vesicles in vitro (1417). Crystallographic studies of the N-BAR domain of endophilin A1, a close homologue of Bif-1, revealed a crescent-shape homodimer with a positively charged concave surface which is believed to act like a molecular scaffold that impresses its own curvature on binding to negatively charged membranes (16, 18). Another distinguishing feature of endophilin N-BAR domains is the presence of two distinct amphipathic segments referred to as “Helix 0” (H0) and “Helix 1 insert” (H1I) that penetrate only partway into the external leaflet and are thought to create a wedge effect that also increases membrane curvature. This dual curvature-generating mechanism has been linked to the shared capacity of endophilins to operate in membrane tubulovesicular dynamics during normal cell growth together with dynamin/dynamin-like proteins (1618). However, exactly how the molecular-scale perturbation of membrane curvature induced by N-BAR domains translates into large scale membrane remodeling processes (e.g. tubulation and vesiculation) is not well understood (1925). In addition, it is unclear whether the ability of Bif-1 to produce global changes in membrane morphology is functionally connected to its apoptotic mode of action.The complexity of the network of intermolecular interactions that controls the BCL-2-regulated MOMP pathway constitutes a major hurdle for gaining a molecular-level understanding of Bif-1 pro-death function in intact cells. Another complicating factor is that Bif-1 can interact with binding partners other than BAX at intracellular membranes distinct from the MOM depending on environmental conditions (14, 2629). In previous studies this and other laboratories have shown that the BCL-2-regulated MOMP pathway can be reconstituted in a simplified system consisting of purified recombinant proteins and chemically defined MOM-like large unilamellar vesicles (LUV) in a manner that faithfully reflects the basic physiological functions of BCL-2 family proteins at the MOM (3033). Here, we have used this minimal cell-free system to advance our understanding of the pro-death role of Bif-1. We provide strong evidence for a direct implication of Bif-1 in functional BAX activation at the membrane level and novel insights concerning the mechanism through which Bif-1 achieves this effect.  相似文献   

9.
BH3 only proteins trigger cell death by interacting with pro- and anti-apoptotic members of the BCL-2 family of proteins. Here we report that BH3 peptides corresponding to the death domain of BH3-only proteins, which bind all the pro-survival BCL-2 family proteins, induce cell death in the absence of BAX and BAK. The BH3 peptides did not cause the release of cytochrome c from isolated mitochondria or from mitochondria in cells. However, the BH3 peptides did cause a decrease in mitochondrial membrane potential but did not induce the opening of the mitochondrial permeability transition pore. Interestingly, the BH3 peptides induced mitochondria to undergo fission in the absence of BAX and BAK. The binding of BCL-XL with dynamin-related protein 1 (DRP1), a GTPase known to regulate mitochondrial fission, increased in the presence of BH3 peptides. These results suggest that pro-survival BCL-2 proteins regulate mitochondrial fission and cell death in the absence of BAX and BAK.  相似文献   

10.
The BCL-2 family includes both pro- and anti-apoptotic proteins, which regulate programmed cell death during development and in response to various apoptotic stimuli. The BH3-only subgroup of pro-apoptotic BCL-2 family members is critical for the induction of apoptotic signaling, by binding to and neutralizing anti-apoptotic BCL-2 family members. During embryonic development, the anti-apoptotic protein BCL-X(L) plays a critical role in the survival of neuronal populations by regulating the multi-BH domain protein BAX. In this study, the authors investigated the role of Harakiri (HRK), a relatively recently characterized BH3-only molecule in disrupting the BAX-BCL-X(L) interaction during nervous system development. Results indicate that HRK deficiency significantly reduces programmed cell death in the nervous system. However, HRK deficiency does not significantly attenuate the widespread apoptosis seen in the Bcl-x (-/-) embryonic nervous system, indicating that other BH3-only molecules, alone or in combination, may regulate BAX activation in immature neurons.  相似文献   

11.
The mitochondrial pathway of apoptosis constitutes one of the main safeguards against tumorigenesis. The BCL-2 family includes the central players of this pathway that regulate cell fate through the control of mitochondrial outer membrane permeabilization (MOMP), and important progress has been made in understanding the dynamic interactions between pro-apoptotic and anti-apoptotic BCL-2 proteins. In particular, recent studies have delineated a stepwise model for the induction of MOMP. BCL-2 proteins are often dysregulated in cancer, leading to increased survival of abnormal cells; however, recent studies have paradoxically shown that apoptosis induction can under some circumstances drive tumor formation, perhaps by inducing compensatory proliferation under conditions of cellular stress. These observations underline the complexity of BCL-2 protein function in oncogenesis.  相似文献   

12.
Morphological changes associated with apoptosis are closely correlated with the expression of specific proteins. However, the cause-effect relationships between the expression of these proteins and DNA degradation are barely known. For studying expression of apoptosis-related proteins in relation to different degrees of DNA fragmentation, the small intestine with its spatially organized continuum of proliferation, differentiation and death is a very useful preparation. Enterocytes towards the apex of the villi become increasingly susceptible to apoptosis. Here, this "apoptotic gradient" is used to demonstrate the presence of BAX and BCL-2 proteins in the cytoplasm of cells at the onset of apoptosis. In semithin serial sections of the small intestine, BAX, BCL-2 and DNA fragmentation were demonstrated. BAX and BCL-2 are always colocalized and only in cells with fragmented DNA. The gradient of BAX or BCL-2 staining is similar to the gradient of DNA fragmentation. Immunoreactivity for BCL-2 or BAX is most intense in cells that are prone to become apoptotic next in the course of cellular turnover but not in cells in an advanced apoptotic state, showing strongly condensed chromatin. When using the same technique on semithin sections of kidney biopsies, containing epithelia with low cellular turnover, we found DNA fragmentation mainly in the epithelial cells of the distal tubules. Similar to the situation in the enterocytes, BAX staining was confined to the cytoplasm of epithelial cells with a moderate degree of DNA fragmentation and reduced in epithelial cells with a high degree of DNA fragmentation. In contrast to the situation in the small intestine, very low levels of BCL-2 were found. The results suggest that expression of BCL-2 and BAX is related to cell damage as indicated by DNA fragmentation but not to advanced stages of cellular death, as indicated by chromatin condensation and cellular shrinkage.  相似文献   

13.
Mitochondrial outer membrane permeabilization (MOMP) is a critical step in apoptosis and is regulated by Bcl-2 family proteins. In vitro systems using cardiolipin-containing liposomes have demonstrated the key features of MOMP induced by Bax and cleaved Bid; however, the nature of the “pores” and how they are formed remain obscure. We found that mitochondrial outer membranes contained very little cardiolipin, far less than that required for liposome permeabilization, despite their responsiveness to Bcl-2 family proteins. Strikingly, the incorporation of isolated mitochondrial outer membrane (MOM) proteins into liposomes lacking cardiolipin conferred responsiveness to cleaved Bid and Bax. Cardiolipin dependence was observed only when permeabilization was induced with cleaved Bid but not with Bid or Bim BH3 peptide or oligomerized Bax. Therefore, we conclude that MOM proteins specifically assist cleaved Bid in Bax-mediated permeabilization. Cryoelectron microscopy of cardiolipin-liposomes revealed that cleaved Bid and Bax produced large round holes with diameters of 25–100 nm, suggestive of lipidic pores. In sum, we propose that activated Bax induces lipidic pore formation and that MOM proteins assist cleaved Bid in this process in the absence of cardiolipin.  相似文献   

14.
In multicellular organisms the regulated cell death apoptosis is critically important for both ontogeny and homeostasis. Mitochondria are indispensable for stress-induced apoptosis. The BCL-2 protein family controls mitochondrial apoptosis and initiates cell death through the pro-apoptotic activities of BAX and BAK at the outer mitochondrial membrane (OMM). Cellular survival is ensured by the retrotranslocation of mitochondrial BAX and BAK into the cytosol by anti-apoptotic BCL-2 proteins. BAX/BAK-dependent OMM permeabilization releases the mitochondrial cytochrome c (cyt c), which initiates activation of caspase-9. The caspase cascade leads to cell shrinkage, plasma membrane blebbing, chromatin condensation, and apoptotic body formation. Although it is clear that ultimately complexes of active BAX and BAK commit the cell to apoptosis, the nature of these complexes is still enigmatic. Excessive research has described a range of complexes, varying from a few molecules to several 10,000, in different systems. BAX/BAK complexes potentially form ring-like structures that could expose the inner mitochondrial membrane. It has been suggested that these pores allow the efflux of small proteins and even mitochondrial DNA. Here we summarize the current state of knowledge for mitochondrial BAX/BAK complexes and the interactions between these proteins and the membrane.  相似文献   

15.
Mitochondrial outer membrane permeabilization (MOMP) is considered the 'point of no return' as this event is responsible for engaging the apoptotic cascade in numerous cell death pathways. MOMP is directly governed by a subset of the BCL-2 family of proapoptotic proteins, which induce disruptions in the outer mitochondrial membrane (OMM) and subsequent release of death-promoting proteins like cytochrome c. The proposal here is centered on our hypothesis that MOMP is dictated by an interaction between the cytosol and the OMM, and although proteins of the OMM may be important in the process, the 'decision' to undergo apoptosis originates within the cytosol with no participation (in terms of yes, no and when) by mitochondria.  相似文献   

16.
BCL-2 family proteins are key regulators of the apoptotic pathway. Antiapoptotic members sequester the BCL-2 homology 3 (BH3) death domains of proapoptotic members such as BAX to maintain cell survival. The antiapoptotic BH3-binding groove has been successfully targeted to reactivate apoptosis in cancer. We recently identified a geographically distinct BH3-binding groove that mediates direct BAX activation, suggesting a new strategy for inducing apoptosis by flipping BAX's 'on switch'. Here we applied computational screening to identify a BAX activator molecule that directly and selectively activates BAX. We demonstrate by NMR and biochemical analyses that the molecule engages the BAX trigger site and promotes the functional oligomerization of BAX. The molecule does not interact with the BH3-binding pocket of antiapoptotic proteins or proapoptotic BAK and induces cell death in a BAX-dependent fashion. To our knowledge, we report the first gain-of-function molecular modulator of a BCL-2 family protein and demonstrate a new paradigm for pharmacologic induction of apoptosis.  相似文献   

17.
Cellular proteins that regulate apoptotic cell death can modulate the outcome of Sindbis virus (SV) encephalitis in mice. Both endogenous and overexpressed BCL-2 and BAX proteins protect newborn mice from fatal SV infection by blocking apoptosis in infected neurons. To determine the effects of these cellular factors on the course of infection in older animals, a more neurovirulent SV vector (dsNSV) was constructed from a viral strain that causes both prominent spinal cord infection with hind-limb paralysis and death in weanling mice. This vector has allowed assessment of the effects of BCL-2 and BAX on both mortality and paralysis in these hosts. Similar to newborn hosts, weanling mice infected with dsNSV encoding BCL-2 or BAX survived better than animals infected with control viruses. This finding indicates that BCL-2 and BAX both protect neurons that mediate host survival. Neither cellular factor, however, could suppress the development of hind-limb paralysis or prevent the degeneration of motor neurons in the lumbar spinal cord. Infection of BAX knockout mice with dsNSV demonstrated that endogenous BAX also enhances the survival of animals but has no effect on paralysis. These findings for the spinal cord are consistent with earlier data showing that dying lumbar motor neurons do not exhibit an apoptotic morphology. Thus, divergent cell death pathways are activated in different target populations of neurons during neurovirulent SV infection of weanling mice.  相似文献   

18.
Ku B  Liang C  Jung JU  Oh BH 《Cell research》2011,21(4):627-641
Interactions between the BCL-2 family proteins determine the cell's fate to live or die. How they interact with each other to regulate apoptosis remains as an unsettled central issue. So far, the antiapoptotic BCL-2 proteins are thought to interact with BAX weakly, but the physiological significance of this interaction has been vague. Herein, we show that recombinant BCL-2 and BCL-w interact potently with a BCL-2 homology (BH) 3 domain-containing peptide derived from BAX, exhibiting the dissociation constants of 15 and 23 nM, respectively. To clarify the basis for this strong interaction, we determined the three-dimensional structure of a complex of BCL-2 with a BAX peptide spanning its BH3 domain. It revealed that their interactions extended beyond the canonical BH3 domain and involved three nonconserved charged residues of BAX. A novel BAX variant, containing the alanine substitution of these three residues, had greatly impaired affinity for BCL-2 and BCL-w, but was otherwise indistinguishable from wild-type BAX. Critically, the apoptotic activity of the BAX variant could not be restrained by BCL-2 and BCL-w, pointing that the observed tight interactions are critical for regulating BAX activation. We also comprehensively quantified the binding affinities between the three BCL-2 subfamily proteins. Collectively, the data show that due to the high affinity of BAX for BCL-2, BCL-w and A1, and of BAK for BCL-X(L), MCL-1 and A1, only a subset of BH3-only proteins, commonly including BIM, BID and PUMA, could be expected to free BAX or BAK from the antiapoptotic BCL-2 proteins to elicit apoptosis.  相似文献   

19.
The intrinsic pathway of apoptotic cell death is mainly mediated by the BCL-2-associated X (BAX) protein through permeabilization of the mitochondrial outer membrane (MOM) and the concomitant release of cytochrome c into the cytosol. In healthy, non-apoptotic cells, BAX is predominantly localized in the cytosol and exhibits a dynamic shuttle cycle between the cytosol and the mitochondria. Thus, the initial association with mitochondria represents a critical regulatory step enabling BAX to insert into MOMs, promoting the release of cytochrome c and ultimately resulting in apoptosis. However, the molecular mode of how BAX associates with MOMs and whether a cellular regulatory mechanism governs this process is poorly understood. Here we show that in both primary tissues and cultured cells, the association with MOMs and the proapoptotic action of BAX is controlled by its S-palmitoylation at Cys-126. A lack of BAX palmitoylation reduced BAX mitochondrial translocation, BAX oligomerization, caspase activity and apoptosis. Furthermore, ectopic expression of specific palmitoyl transferases in cultured healthy cells increases BAX S-palmitoylation and accelerates apoptosis, whereas malignant tumor cells show reduced BAX S-palmitoylation consistent with their reduced BAX-mediated proapoptotic activity. Our findings suggest that S-palmitoylation of BAX at Cys126 is a key regulatory process of BAX-mediated apoptosis.  相似文献   

20.
Cell death by apoptosis is indispensable for proper development and tissue homeostasis in all multicellular organisms, and its deregulation plays a key role in cancer and many other diseases. A crucial event in apoptosis is the formation of protein-permeable pores in the outer mitochondrial membrane that release cytochrome c and other apoptosis-promoting factors into the cytosol. Research efforts over the past two decades have established that apoptotic pores require BCL-2 family proteins, with the proapoptotic BAX-type proteins being direct effectors of pore formation. Accumulating evidence indicates that other cellular components also cooperate with BCL-2 family members to regulate the apoptotic pore. Despite this knowledge, the molecular pathway leading to apoptotic pore formation at the outer mitochondrial membrane and the precise nature of this outer membrane pore remain enigmatic. In this issue of PLOS Biology, Kushnareva and colleagues describe a novel kinetic analysis of the dynamics of BAX-dependent apoptotic pore formation recapitulated in native mitochondrial outer membranes. Their study reveals the existence of a hitherto unknown outer mitochondrial membrane factor that is critical for BAX-mediated apoptotic pore formation, and challenges the currently popular view that the apoptotic pore is a purely proteinaceous multimeric assembly of BAX proteins. It also supports the notion that membrane remodeling events are implicated in the formation of a lipid-containing apoptotic pore.Apoptosis is the orderly sequence of events that leads to the death of a cell without releasing harmful substances into the surrounding tissue; it is indispensable for normal embryonic development and maintenance of healthy tissues in all multicellular organisms and important in many pathologies. The death of neurons and lymphocytes by apoptosis, for example, contributes to neurodegeneration and AIDS, respectively. By ensuring the death of damaged cells, apoptosis also plays key roles in cancer prevention and in successful cancer treatment. Over 25 years of apoptosis research have led to the broadly accepted notion that mitochondria, traditionally viewed as the “powerhouses” of the cell, are also intimately linked to cell death.Apoptosis can be initiated either by the activation of cell-surface-expressed death receptors or by diverse intracellular signals that impinge on the mitochondria. In vertebrates, the commitment step in the mitochondrial pathway of apoptosis is the assembly of a supramolecular structure called the apoptotic pore in the outer mitochondrial membrane [1]. This outer membrane pore allows for rapid diffusion out of the mitochondria of cytochrome c and other proteins that promote the irreversible dismantling of the cell. Despite intense research efforts, our understanding of the molecular machinery and mechanisms implicated in this crucial aspect of apoptosis is still incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号