共查询到20条相似文献,搜索用时 15 毫秒
1.
Katie E. Olson Pranesh Narayanaswami Pamela D. Vise David F. Lowry Marc S. Wold Gary W. Daughdrill 《Journal of biomolecular structure & dynamics》2013,31(2):113-124
Abstract The transient secondary structure and dynamics of an intrinsically unstructured linker domain from the 70 kDa subunit of human replication protein A was investigated using solution state NMR. Stable secondary structure, inferred from large secondary chemical shifts, was observed for a segment of the intrinsically unstructured linker domain when it is attached to an N-terminal protein interaction domain. Results from NMR relaxation experiments showed the rotational diffusion for this segment of the intrinsically unstructured linker domain to be correlated with the N-terminal protein interaction domain. When the N-terminal domain is removed, the stable secondary structure is lost and faster rotational diffusion is observed. The large secondary chemical shifts were used to calculate phi and psidihedral angles and these dihedral angles were used to build a backbone structural model. Restrained molecular dynamics were performed on this new structure using the chemical shift based dihedral angles and a single NOE distance as restraints. In the resulting family of structures a large, solvent exposed loop was observed for the segment of the intrinsically unstructured linker domain that had large secondary chemical shifts. 相似文献
2.
Liubov Tupikina Nora Molkenthin Cristóbal López Emilio Hernández-García Norbert Marwan Jürgen Kurths 《PloS one》2016,11(4)
Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network links in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate network’s structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet. 相似文献
3.
We describe and analyze a model for a stochastic pulse-coupled neuronal network with many sources of randomness: random external
input, potential synaptic failure, and random connectivity topologies. We show that different classes of network topologies
give rise to qualitatively different types of synchrony: uniform (Erdős–Rényi) and “small-world” networks give rise to synchronization
phenomena similar to that in “all-to-all” networks (in which there is a sharp onset of synchrony as coupling is increased);
in contrast, in “scale-free” networks the dependence of synchrony on coupling strength is smoother. Moreover, we show that
in the uniform and small-world cases, the fine details of the network are not important in determining the synchronization
properties; this depends only on the mean connectivity. In contrast, for scale-free networks, the dynamics are significantly
affected by the fine details of the network; in particular, they are significantly affected by the local neighborhoods of
the “hubs” in the network. 相似文献
4.
Mari CF 《Journal of computational neuroscience》2004,17(1):57-79
A model of columnar networks of neocortical association areas is studied. The neuronal network is composed of many Hebbian autoassociators, or modules, each of which interacts with a relatively small number of the others, randomly chosen. Any module encodes and stores a number of elementary percepts, or features. Memory items, or patterns, are peculiar combinations of features sparsely distributed over the multi-modular network. Any feature stored in any module can be involved in several of the stored patterns; feature-sharing is in fact source of local ambiguities and, consequently, a potential cause of erroneous memory retrieval spreading through the model network in pattern completion tasks.The memory retrieval dynamics of the large modular autoassociator is investigated by combining mathematical analysis and numerical simulations. An oscillatory retrieval process is proposed that is very efficient in overcoming feature-sharing drawbacks; it requires a mechanism that modulates the robustness of local attractors to noise, and neuronal activity sparseness such that quiescent and active modules are about equally noisy to any post-synaptic module.Moreover, it is shown that statistical correlation between 'kinds' of features across the set of memory patterns can be exploited to obtain a more efficient achievement of memory retrieval capabilities.It is also shown that some spots of the network cannot be reached by retrieval activity spread if they are not directly cued by the stimulus. The locations of these activity isles depend on the pattern to retrieve, while their extension only depends (in large networks) on statistics of inter-modular connections and stored patterns. The existence of activity isles determines an upper-bound to retrieval quality that does not depend on the specific retrieval dynamics adopted, nor on whether feature-sharing is permitted. The oscillatory retrieval process nearly saturates this bound. 相似文献
5.
Helmut Schmidt George Petkov Mark P. Richardson John R. Terry 《PLoS computational biology》2014,10(11)
Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of computational modeling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit, which in the field of complexity sciences is known as dynamics on networks. In this study we describe the development and application of this framework using modular networks of Kuramoto oscillators. We use this framework to understand functional networks inferred from resting state EEG recordings of a cohort of 35 adults with heterogeneous idiopathic generalized epilepsies and 40 healthy adult controls. Taking emergent synchrony across the global network as a proxy for seizures, our study finds that the critical strength of coupling required to synchronize the global network is significantly decreased for the epilepsy cohort for functional networks inferred from both theta (3–6 Hz) and low-alpha (6–9 Hz) bands. We further identify left frontal regions as a potential driver of seizure activity within these networks. We also explore the ability of our method to identify individuals with epilepsy, observing up to 80 predictive power through use of receiver operating characteristic analysis. Collectively these findings demonstrate that a computer model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which should ultimately enable a more appropriate mechanistic stratification of people with epilepsy leading to improved diagnostics and therapeutics. 相似文献
6.
We explore and analyze the nonlinear switching dynamics of neuronal networks with non-homogeneous connectivity. The general significance of such transient dynamics for brain function is unclear; however, for instance decision-making processes in perception and cognition have been implicated with it. The network under study here is comprised of three subnetworks of either excitatory or inhibitory leaky integrate-and-fire neurons, of which two are of the same type. The synaptic weights are arranged to establish and maintain a balance between excitation and inhibition in case of a constant external drive. Each subnetwork is randomly connected, where all neurons belonging to a particular population have the same in-degree and the same out-degree. Neurons in different subnetworks are also randomly connected with the same probability; however, depending on the type of the pre-synaptic neuron, the synaptic weight is scaled by a factor. We observed that for a certain range of the “within” versus “between” connection weights (bifurcation parameter), the network activation spontaneously switches between the two sub-networks of the same type. This kind of dynamics has been termed “winnerless competition”, which also has a random component here. In our model, this phenomenon is well described by a set of coupled stochastic differential equations of Lotka-Volterra type that imply a competition between the subnetworks. The associated mean-field model shows the same dynamical behavior as observed in simulations of large networks comprising thousands of spiking neurons. The deterministic phase portrait is characterized by two attractors and a saddle node, its stochastic component is essentially given by the multiplicative inherent noise of the system. We find that the dwell time distribution of the active states is exponential, indicating that the noise drives the system randomly from one attractor to the other. A similar model for a larger number of populations might suggest a general approach to study the dynamics of interacting populations of spiking networks. 相似文献
7.
For the analysis of neuronal networks it is an important yet unresolved task to relate the neurons' activities to their morphology. Here we introduce activity correlation imaging to simultaneously visualize the activity and morphology of populations of neurons. To this end we first stain the network's neurons using a membrane-permeable [Ca2+] indicator (e.g., Fluo-4/AM) and record their activities. We then exploit the recorded temporal activity patterns as a means of intrinsic contrast to visualize individual neurons' dendritic morphology. The result is a high-contrast, multicolor visualization of the neuronal network. Taking the Xenopus olfactory bulb as an example we show the activities of the mitral/tufted cells of the olfactory bulb as well as their projections into the olfactory glomeruli. This method, yielding both functional and structural information of neuronal populations, will open up unprecedented possibilities for the investigation of neuronal networks. 相似文献
8.
Epileptic seizure dynamics span multiple scales in space and time. Understanding seizure mechanisms requires identifying the relations between seizure components within and across these scales, together with the analysis of their dynamical repertoire. Mathematical models have been developed to reproduce seizure dynamics across scales ranging from the single neuron to the neural population. In this study, we develop a network model of spiking neurons and systematically investigate the conditions, under which the network displays the emergent dynamic behaviors known from the Epileptor, which is a well-investigated abstract model of epileptic neural activity. This approach allows us to study the biophysical parameters and variables leading to epileptiform discharges at cellular and network levels. Our network model is composed of two neuronal populations, characterized by fast excitatory bursting neurons and regular spiking inhibitory neurons, embedded in a common extracellular environment represented by a slow variable. By systematically analyzing the parameter landscape offered by the simulation framework, we reproduce typical sequences of neural activity observed during status epilepticus. We find that exogenous fluctuations from extracellular environment and electro-tonic couplings play a major role in the progression of the seizure, which supports previous studies and further validates our model. We also investigate the influence of chemical synaptic coupling in the generation of spontaneous seizure-like events. Our results argue towards a temporal shift of typical spike waves with fast discharges as synaptic strengths are varied. We demonstrate that spike waves, including interictal spikes, are generated primarily by inhibitory neurons, whereas fast discharges during the wave part are due to excitatory neurons. Simulated traces are compared with in vivo experimental data from rodents at different stages of the disorder. We draw the conclusion that slow variations of global excitability, due to exogenous fluctuations from extracellular environment, and gap junction communication push the system into paroxysmal regimes. We discuss potential mechanisms underlying such machinery and the relevance of our approach, supporting previous detailed modeling studies and reflecting on the limitations of our methodology. 相似文献
9.
Cellular functions are based on the complex interplay of proteins, therefore the structure and dynamics of these protein-protein interaction (PPI) networks are the key to the functional understanding of cells. In the last years, large-scale PPI networks of several model organisms were investigated. A number of theoretical models have been developed to explain both the network formation and the current structure. Favored are models based on duplication and divergence of genes, as they most closely represent the biological foundation of network evolution. However, studies are often based on simulated instead of empirical data or they cover only single organisms. Methodological improvements now allow the analysis of PPI networks of multiple organisms simultaneously as well as the direct modeling of ancestral networks. This provides the opportunity to challenge existing assumptions on network evolution. We utilized present-day PPI networks from integrated datasets of seven model organisms and developed a theoretical and bioinformatic framework for studying the evolutionary dynamics of PPI networks. A novel filtering approach using percolation analysis was developed to remove low confidence interactions based on topological constraints. We then reconstructed the ancient PPI networks of different ancestors, for which the ancestral proteomes, as well as the ancestral interactions, were inferred. Ancestral proteins were reconstructed using orthologous groups on different evolutionary levels. A stochastic approach, using the duplication-divergence model, was developed for estimating the probabilities of ancient interactions from today''s PPI networks. The growth rates for nodes, edges, sizes and modularities of the networks indicate multiplicative growth and are consistent with the results from independent static analysis. Our results support the duplication-divergence model of evolution and indicate fractality and multiplicative growth as general properties of the PPI network structure and dynamics. 相似文献
10.
培养海马神经元网络学习模型的构建 总被引:1,自引:0,他引:1
对于培养的神经元网络而言,学习是外界刺激与网络响应之间联系建立和调控的过程.为构建合适的神经元网络学习模型,采用闭环低频(1 Hz)成对电极的电刺激模拟认知任务,在多通道微电极阵列系统中对培养的海马神经元网络进行训练,使其发生网络层次上的学习行为.经过训练后,神经元网络在刺激后20~80ms内的早期突触后响应明显增加,响应/刺激比(在闭环训练中,电极上任一阶段连续10次刺激的早期突触后响应的个数/10)增大,响应时延减小,并且响应具有选择性,即表明,神经元网络与外界刺激之间已建立可调控的联系,该可调控联系是通过网络的响应来表现的,建立神经元网络与外界刺激之间的可调控联系即网络层次的学习. 相似文献
11.
The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies. 相似文献
12.
Rosslyn Grosely Jennifer L. Kopanic Sarah Nabors Fabien Kieken Ga?lle Spagnol Mona Al-Mugotir Sydney Zach Paul L. Sorgen 《The Journal of biological chemistry》2013,288(34):24857-24870
Phosphorylation of the connexin43 C-terminal (Cx43CT) domain regulates gap junction intercellular communication. However, an understanding of the mechanisms by which phosphorylation exerts its effects is lacking. Here, we test the hypothesis that phosphorylation regulates Cx43 gap junction intercellular communication by mediating structural changes in the C-terminal domain. Circular dichroism and nuclear magnetic resonance were used to characterize the effects of phosphorylation on the secondary structure and backbone dynamics of soluble and membrane-tethered Cx43CT domains. Cx43CT phospho-mimetic isoforms, which have Asp substitutions at specific Ser/Tyr sites, revealed phosphorylation alters the α-helical content of the Cx43CT domain only when attached to the membrane. The changes in secondary structure are due to variations in the conformational preference and backbone flexibility of residues adjacent and distal to the site(s) of modification. In addition to the known direct effects of phosphorylation on molecular partner interactions, the data presented here suggest phosphorylation may also indirectly regulate binding affinity by altering the conformational preference of the Cx43CT domain. 相似文献
13.
A typical property of isolated cultured neuronal networks of dissociated rat cortical cells is synchronized spiking, called bursting, starting about one week after plating, when the dissociated cells have sufficiently sent out their neurites and formed enough synaptic connections. This paper is the third in a series of three on simulation models of cultured networks. Our two previous studies [26], [27] have shown that random recurrent network activity models generate intra- and inter-bursting patterns similar to experimental data. The networks were noise or pacemaker-driven and had Izhikevich-neuronal elements with only short-term plastic (STP) synapses (so, no long-term potentiation, LTP, or depression, LTD, was included). However, elevated pre-phases (burst leaders) and after-phases of burst main shapes, that usually arise during the development of the network, were not yet simulated in sufficient detail. This lack of detail may be due to the fact that the random models completely missed network topology .and a growth model. Therefore, the present paper adds, for the first time, a growth model to the activity model, to give the network a time dependent topology and to explain burst shapes in more detail. Again, without LTP or LTD mechanisms. The integrated growth-activity model yielded realistic bursting patterns. The automatic adjustment of various mutually interdependent network parameters is one of the major advantages of our current approach. Spatio-temporal bursting activity was validated against experiment. Depending on network size, wave reverberation mechanisms were seen along the network boundaries, which may explain the generation of phases of elevated firing before and after the main phase of the burst shape.In summary, the results show that adding topology and growth explain burst shapes in great detail and suggest that young networks still lack/do not need LTP or LTD mechanisms. 相似文献
14.
15.
Both ecological and evolutionary timescales are of importance when considering an ecological system; population dynamics affect the evolution of species traits, and vice versa. Recently, these two timescales have been used to explain structural patterns in host-parasite networks, where the evolution of the manner in which species balance the use of their resources in interactions with each other was examined. One of these patterns was nestedness, in which the set of parasite species within a particular host forms a subset of those within a more species-rich host. Patterns of both nestedness and anti-nestedness have been observed significantly more often than expected due to chance in host-parasite networks. In contrast, mutualistic networks tend to display a significant degree of nestedness, but are rarely anti-nested. Within networks with different interaction types, therefore, there appears to be a feature promoting non-random structural patterns, such as nestedness and anti-nestedness, depending on the interaction types involved. Here, we invoke the co-evolution of species trait-values when allocating resources to interactions to explain the structural pattern of nestedness in a mutualistic community. We look at a bipartite, multi-species system, in which the strength of an interaction between two species is determined by the resources that each species invests in that relationship. We then analyze the evolution of these interactions using adaptive dynamics. We found that the evolution of these interactions, reflecting the trade-off of resources, could be used to accurately predict that nestedness occurs significantly more often than expect due to chance alone in a mutualistic network. This complements previous results applying the same concept to an antagonistic network. We conclude that population dynamics and resource trade-offs could be important promoters of structural patterns in ecological networks of different types. 相似文献
16.
The endoplasmic reticulum (ER) in live cells is a highly mobile network whose structure dynamically changes on a number of timescales. The role of such drastic changes in any system is unclear, although there are correlations with ER function. A better understanding of the fundamental biophysical constraints on the system will allow biologists to determine the effects of molecular factors on ER dynamics. Previous studies have identified potential static elements that the ER may remodel around. Here, we use these structural elements to assess biophysical principles behind the network dynamics. By analyzing imaging data of tobacco leaf epidermal cells under two different conditions, i.e., native state (control) and latrunculin B (treated), we show that the geometric structure and dynamics of ER networks can be understood in terms of minimal networks. Our results show that the ER network is well modeled as a locally minimal-length network between the static elements that potentially anchor the ER to the cell cortex over longer timescales; this network is perturbed by a mixture of random and deterministic forces. The network need not have globally minimum length; we observe cases where the local topology may change dynamically between different Euclidean Steiner network topologies. The networks in the treated cells are easier to quantify, because they are less dynamic (the treatment suppresses actin dynamics), but the same general features are found in control cells. Using a Langevin approach, we model the dynamics of the nonpersistent nodes and use this to show that the images can be used to estimate both local viscoelastic behavior of the cytoplasm and filament tension in the ER network. This means we can explain several aspects of the ER geometry in terms of biophysical principles. 相似文献
17.
The endoplasmic reticulum (ER) in live cells is a highly mobile network whose structure dynamically changes on a number of timescales. The role of such drastic changes in any system is unclear, although there are correlations with ER function. A better understanding of the fundamental biophysical constraints on the system will allow biologists to determine the effects of molecular factors on ER dynamics. Previous studies have identified potential static elements that the ER may remodel around. Here, we use these structural elements to assess biophysical principles behind the network dynamics. By analyzing imaging data of tobacco leaf epidermal cells under two different conditions, i.e., native state (control) and latrunculin B (treated), we show that the geometric structure and dynamics of ER networks can be understood in terms of minimal networks. Our results show that the ER network is well modeled as a locally minimal-length network between the static elements that potentially anchor the ER to the cell cortex over longer timescales; this network is perturbed by a mixture of random and deterministic forces. The network need not have globally minimum length; we observe cases where the local topology may change dynamically between different Euclidean Steiner network topologies. The networks in the treated cells are easier to quantify, because they are less dynamic (the treatment suppresses actin dynamics), but the same general features are found in control cells. Using a Langevin approach, we model the dynamics of the nonpersistent nodes and use this to show that the images can be used to estimate both local viscoelastic behavior of the cytoplasm and filament tension in the ER network. This means we can explain several aspects of the ER geometry in terms of biophysical principles. 相似文献
18.
19.
Human social interaction is often intermittent. Two acquainted persons can have extended periods without social interaction punctuated by periods of repeated interaction. In this case, the repeated interaction can be characterized by a seed initiative by either of the persons and a number of follow-up interactions. The tendency to initiate social interaction plays an important role in the formation of social networks and is in general not symmetric between persons. In this paper, we study the dynamics of initiative by analysing and modeling a detailed call and text message network sampled from a group of 700 individuals. We show that in an average relationship between two individuals, one part is almost twice as likely to initiate communication compared to the other part. The asymmetry has social consequences and ultimately might lead to the discontinuation of a relationship. We explain the observed asymmetry by a positive feedback mechanism where individuals already taking initiative are more likely to take initiative in the future. In general, people with many initiatives receive attention from a broader spectrum of friends than people with few initiatives. Lastly, we compare the likelihood of taking initiative with the basic personality traits of the five factor model. 相似文献
20.
Ramakrishnan Iyer Vilas Menon Michael Buice Christof Koch Stefan Mihalas 《PLoS computational biology》2013,9(10)
The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-and-fire neurons with shot-noise synapses. We develop fast semi-analytic numerical methods to solve this equation for either current or conductance synapses, with and without synaptic depression. We show that its solutions match simulations of equivalent neuronal networks better than those of the Fokker-Planck equation and we compute bounds on the network response to non-instantaneous synapses. We apply these methods to study different synaptic weight distributions in feed-forward networks. We characterize the synaptic amplitude distributions using a set of measures, called tail weight numbers, designed to quantify the preponderance of very strong synapses. Even if synaptic amplitude distributions are equated for both the total current and average synaptic weight, distributions with sparse but strong synapses produce higher responses for small inputs, leading to a larger operating range. Furthermore, despite their small number, such synapses enable the network to respond faster and with more stability in the face of external fluctuations. 相似文献