首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Recently, it was found that Aquaporin 1 (AQP1) is expressed strongly in proliferating microvessels, but the role of AQP1 in retinal neovascularization remains unknown. Here, we report the distribution of AQP1 expression during neovascularization of the retina in a mouse model of retinopathy of prematurity. AQP1 was expressed in all of the samples examined in P15 mouse and P17 mouse, including experimental and control groups. Immunostaining results showed that AQP1 is located in microvessel endothelia in retinas with proliferative retinopathy and prominently in the outer retina. Expression of AQP1 was significantly increased in experimental animals at P17, compared with control mice. No significant difference was seen in the levels of AQP1 on P12 or P15, compared with control mice. These results suggest that AQP1 may play an important role in retinal neovascularization.  相似文献   

2.
The paraneoplastic retinopathies (PRs) are a group of eye diseases characterized by a sudden and progressive dysfunction of the retina caused by an antibody against a protein in a neoplasm. Evidence has been obtained that the transient receptor potential melastatin 1 (TRPM1) protein was one of the antigens for the autoantibody against the ON bipolar cells in PR patients. However, it has not been determined how the autoantibody causes the dysfunction of the ON bipolar cells. We hypothesized that the antibody against TRPM1 in the serum of patients with PR causes a degeneration of retinal ON bipolar cells. To test this hypothesis, we injected the serum from the PR patient, previously shown to contain anti-TRPM1 antibodies by westerblot, intravitreally into mice and examined the effects on the retina. We found that the electroretinograms (ERGs) of the mice were altered acutely after the injection, and the shape of the ERGs resembled that of the patient with PR. Immunohistochemical analysis of the eyes injected with the serum showed immunoreactivity against bipolar cells only in wild-type animals and not in TRPM1 knockout mice,consistent with the serum containing anti-TRPM1 antibodies. Histology also showed that some of the bipolar cells were apoptotic by 5 hours after the injection in wild type mice, but no bipolar cell death was found in TRPM1 knockout mice, . At 3 months, the inner nuclear layer was thinner and the amplitudes of the ERGs were still reduced. These results indicate that the serum of a patient with PR contained an antibody against TRPM1 caused an acute death of retinal ON bipolar cells of mice.  相似文献   

3.

Purpose

To evaluate the effect of metformin on vascular changes in oxygen-induced retinopathy (OIR) in mouse, and to elucidate the possible underlying mechanism.

Methods

OIR mice were treated with metformin by intraperitoneal injection from postnatal day 12 (P12) to P17 or P21. At P17 and P21, vessel formation and avascular areas were assessed using retinal flat mounts. Levels of vascular endothelial growth factor (VEGF) were measured by enzyme-linked immunosorbent assays, and the effects of metformin on VEGF-induced proliferation of human umbilical vein endothelial cells (HUVECs) were assessed. The effects of metformin on the levels of Flk1 (VEGF receptor-2) and phosphorylated Flk1 (pFlk1) were measured by Western blotting (HUVECs) and immunohistochemistry (retinal tissue).

Results

Retinal morphologic changes were analyzed between two groups (saline-treated OIR; metformin-treated OIR). Metformin treatment did not change the extent of avascular areas at P17. However, at P21, when OIR pathology was markedly improved in the saline-treated group, OIR pathology still remained in the metformin-treated OIR group. VEGF expression levels did not differ between metformin- and saline-treated OIR groups at P17 and P21, but Flk1 levels were significantly reduced in the metformin group compared with saline-treated OIR group. Moreover, metformin inhibited VEGF-induced cell proliferation and decreased levels of Flk1 and pFlk1, consistent with the interpretation that metformin inhibits vascular growth by reducing Flk1 levels.

Conclusion

Metformin exerts anti-angiogenesis effects and delays the normal vessel formation in the recovery phase of OIR in mice, likely by suppressing the levels of Flk1.  相似文献   

4.

Background

Retinitis pigmentosa (RP) is characterized by progressive night blindness, visual field loss, altered vascular permeability and loss of central vision. Currently there is no effective treatment available except gene replacement therapy has shown promise in a few patients with specific gene defects. There is an urgent need to develop therapies that offer generic neuro-and vascular-protective effects with non-invasive intervention. Here we explored the potential of systemic administration of pluripotent bone marrow-derived mesenchymal stem cells (MSCs) to rescue vision and associated vascular pathology in the Royal College Surgeons (RCS) rat, a well-established animal model for RP.

Methodology/Principal Findings

Animals received syngeneic MSCs (1×106 cells) by tail vein at an age before major photoreceptor loss. Principal results: both rod and cone photoreceptors were preserved (5–6 cells thick) at the time when control animal has a single layer of photoreceptors remained; Visual function was significantly preserved compared with controls as determined by visual acuity and luminance threshold recording from the superior colliculus; The number of pathological vascular complexes (abnormal vessels associated with migrating pigment epithelium cells) and area of vascular leakage that would ordinarily develop were dramatically reduced; Semi-quantitative RT-PCR analysis indicated there was upregulation of growth factors and immunohistochemistry revealed that there was an increase in neurotrophic factors within eyes of animals that received MSCs.

Conclusions/Significance

These results underscore the potential application of MSCs in treating retinal degeneration. The advantages of this non-invasive cell-based therapy are: cells are easily isolated and can be expanded in large quantity for autologous graft; hypoimmunogenic nature as allogeneic donors; less controversial in nature than other stem cells; can be readministered with minor discomfort. Therefore, MSCs may prove to be the ideal cell source for auto-cell therapy for retinal degeneration and other ocular vascular diseases.  相似文献   

5.
Background - Chronic cerebral hypoperfusion (CCH) is an important pathophysiological mechanism of vascular cognitive impairment (VCI). The heterogeneous effects of CCH complicate establishing single target therapies against VCI and its more severe form, vascular dementia (VaD). Intermittent fasting (IF) has multiple targets and is neuroprotective across a range of disease conditions including stroke, but its effects against CCH-induced neurovascular pathologies remain to be elucidated. We therefore assessed the effect of IF against CCH-associated neurovascular pathologies and investigated its underlying mechanisms.Methods - Male C57BL/6NTac mice were subjected to either ad libitum feeding (AL) or IF (16 hours of fasting per day) for 4 months. In both groups, CCH was experimentally induced by the bilateral common carotid artery stenosis (BCAS) method. Sham operated groups were used as controls. Measures of leaky microvessels, blood-brain barrier (BBB) permeability, protein expression of tight junctions, extracellular matrix components and white matter changes were determined to investigate the effect of IF against CCH-induced neurovascular pathologies.Results - IF alleviated CCH-induced neurovascular pathologies by reducing the number of leaky microvessels, BBB breakdown and loss of tight junctional proteins. In addition, IF mitigated the severity of white matter lesions, and maintained myelin basic protein levels, while concurrently reducing hippocampal neuronal cell death. Furthermore, IF reduced the CCH-induced increase in levels of matrix metalloproteinase (MMP)-2 and its upstream activator MT1-MMP, which are involved in the breakdown of the extracellular matrix that is a core component of the BBB. Additionally, we observed that IF reduced CCH-induced increase in the oxidative stress marker malondialdehyde, and increased antioxidant markers glutathione and superoxide dismutase. Overall, our data suggest that IF attenuates neurovascular damage, metalloproteinase and oxidative stress-associated pathways, and cell death in the brain following CCH in a mouse model of VCI.Conclusion - Although IF has yet to be assessed in human patients with VaD, our data suggest that IF may be an effective means of preventing the onset or suppressing the development of neurovascular pathologies in VCI and VaD.  相似文献   

6.
Attempts to delineate the mechanisms of estrogen action have promoted the creation of several estrogen receptor alpha (ER) mouse models in the past decade. These traditional models are limited by the fact that the receptors are either absent or present throughout all stages of development. The purpose of this work was to develop a conditional transgenic model that would provide an in vivo method of controlling the spatial and temporal regulation of ER expression. The tetracycline responsive system was utilized. Three lines of transgenic mice carrying a transgene composed of the coding sequence for murine ER placed under the regulatory control of a tet operator promoter (tet-op) were generated. These three lines of tet-op-mER mice were each mated to an established line of transgenic mice expressing a tetracycline-dependent transactivator protein (tTA) from the mouse mammary tumor virus-long terminal repeat (MMTV-LTR). Double transgenic MMTV-tTA/tet-op-mER mice were produced. All three lines demonstrated dominant gain of ER shown by RT-PCR, immunoprecipitation, and immunohistochemistry. Transgene-specific ER was expressed in numerous tissues including the mammary gland, salivary gland, testis, seminal vesicle, and epididymis. Expression was silenced by administration of doxycycline in the drinking water. This model can be utilized to evaluate the consequences of ER dominant gain in targeted tissues at specific times during development. In this study dominant gain of ER was associated with a reduction in epididymal/vas deferens and seminal vesicle weights consistent with the proposed action of ER on fluid transport in the male reproductive tract. Combining this model with other dominant gain and gene knockout mouse models will be useful for testing effects of ER action in combination with specific gene products and to evaluate if developmental and stage-specific expression of ER can rescue identified phenotypes in gene knockout mice.  相似文献   

7.
8.
Following photoreceptor degeneration, ON and OFF retinal ganglion cells (RGCs) in the rd-1/rd-1 mouse receive rhythmic synaptic input that elicits bursts of action potentials at ∼10 Hz. To characterize the properties of this activity, RGCs were targeted for paired recording and morphological classification as either ON alpha, OFF alpha or non-alpha RGCs using two-photon imaging. Identified cell types exhibited rhythmic spike activity. Cross-correlation of spike trains recorded simultaneously from pairs of RGCs revealed that activity was correlated more strongly between alpha RGCs than between alpha and non-alpha cell pairs. Bursts of action potentials in alpha RGC pairs of the same type, i.e. two ON or two OFF cells, were in phase, while bursts in dissimilar alpha cell types, i.e. an ON and an OFF RGC, were 180 degrees out of phase. This result is consistent with RGC activity being driven by an input that provides correlated excitation to ON cells and inhibition to OFF cells. A2 amacrine cells were investigated as a candidate cellular mechanism and found to display 10 Hz oscillations in membrane voltage and current that persisted in the presence of antagonists of fast synaptic transmission and were eliminated by tetrodotoxin. Results support the conclusion that the rhythmic RGC activity originates in a presynaptic network of electrically coupled cells including A2s via a Na+-channel dependent mechanism. Network activity drives out of phase oscillations in ON and OFF cone bipolar cells, entraining similar frequency fluctuations in RGC spike activity over an area of retina that migrates with changes in the spatial locus of the cellular oscillator.  相似文献   

9.
Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative lysosomal storage disorders characterized by vision loss, mental and motor deficits, and spontaneous seizures. Neuropathological analyses of autopsy material from NCL patients and animal models revealed brain atrophy closely associated with glial activity. Earlier reports also noticed loss of retinal cells and reactive gliosis in some forms of NCL. To study this phenomenon in detail, we analyzed the ocular phenotype of CLN6nclf mice, an established mouse model for variant-late infantile NCL. Retinal morphometry, immunohistochemistry, optokinetic tracking, electroretinography, and mRNA expression were used to characterize retinal morphology and function as well as the responses of Müller cells and microglia. Our histological data showed a severe and progressive degeneration in the CLN6nclf retina co-inciding with reactive Müller glia. Furthermore, a prominent phenotypic transformation of ramified microglia to phagocytic, bloated, and mislocalized microglial cells was identified in CLN6nclf retinas. These events overlapped with a rapid loss of visual perception and retinal function. Based on the strong microglia reactivity we hypothesized that dietary supplementation with immuno-regulatory compounds, curcumin and docosahexaenoic acid (DHA), could ameliorate microgliosis and reduce retinal degeneration. Our analyses showed that treatment of three-week-old CLN6nclf mice with either 5% DHA or 0.6% curcumin for 30 weeks resulted in a reduced number of amoeboid reactive microglia and partially improved retinal function. DHA-treatment also improved the morphology of CLN6nclf retinas with a preserved thickness of the photoreceptor layer in most regions of the retina. Our results suggest that microglial reactivity closely accompanies disease progression in the CLN6nclf retina and both processes can be attenuated with dietary supplemented immuno-modulating compounds.  相似文献   

10.
Rabies is one of the most dangerous and widespread zoonosis and is characterized by severe neurological signs and a high case-mortality rate of nearly 100%. Vaccination is the most effective way to prevent rabies in humans and animals. In this study, the relationship between exhaustive exercise and the humoral immune response after immunization with inactivated rabies vaccine was investigated in a mouse model with one-time exhaustive exercise. It was found that compared with the mice with no exercise after vaccination, no significant differences were found in those with exhaustive exercise after vaccination on body-weight changes, virus-neutralizing antibody (VNA) titers, antibody subtypes and survivor ratio after lethal rabies virus (RABV) challenge. This study indicated that exhaustive exercise does not reduce the effects of the rabies inactivated vaccine.  相似文献   

11.
Retinal neovascularization (RNV) is an eye disease that can cause retinal detachment and even lead to blindness. RNV mainly occurs in the elderly population. The pathogenesis of RNV has been previously reported to be highly related to the expression of vascular endothelial growth factor A (VEGFA), basic fibroblast growth factor (bFGF) and other angiogenic factors. It has also been reported that VEGFA and other factors associated with RNV could be regulated by certain microRNAs (miRNA), a group of small non-coding RNAs which are able to regulate the expression of many genes in vivo. Here, we demonstrate that the miRNA miR-410 is highly expressed in mice within two weeks after birth. miR-410 could suppress VEGFA expression through interaction with the 3′UTR of the VEGFA messenger RNA. Overexpressing a miR-410 mimic effectively suppresses VEGFA expression in various cell lines. Further experiments on oxygen-induced retinopathy (OIR) in mice revealed that eye drops containing large amounts of miR-410 efficiently downregulate VEGFA expression, prevent retinal angiogenesis and effectively treat RNV. These results not only show the underlying mechanism of how miR-410 targets VEGFA but also provide a potential treatment strategy for RNV that might be used in the near future.  相似文献   

12.
13.
糖尿病视网膜疾病是导致成年人失明的主要因素,是糖尿病的一种令人恐惧的并发症,高血糖被认为是促进其发展的主要原因。高血糖不断地破坏视网膜的微血管系统最终导致视网膜的许多代谢,结构和功能的紊乱。视网膜微血管内皮细胞在微脉管系统中形成树枝状供应视网膜神经,这些内皮细胞的解剖和生理符合重要视觉保护的营养需求[1]。一方面,内皮组织务必确保氧的供应和代谢活跃的视网膜营养供应;另一方面,内皮细胞有助于血-视网膜屏障将循环产生的毒素分子,白细胞促炎性物质排出体外来保护视网膜,这种特性也可能会引起疾病,比如:视网膜血管的渗漏和新生血管,炎性物质转移,因此,视网膜内皮细胞在视网膜缺血性病变,血管炎中起到重要作用,包括糖尿病视网膜病变和视网膜炎症或感染尤其是后葡萄膜炎。使用基因表达和蛋白质组学分析等研究方法,有助于了解这些疾病的发病机制。为了进一步开展对糖尿病视网膜疾病的研究,有必要就目前有关糖尿病视网膜病变患者微血管内皮细胞的研究进展予以综述,旨在为糖尿病视网膜病变的深入研究提供参考依据。  相似文献   

14.
BackgroundExperimental models of intermittent hypoxia (IH) have been developed during the last decade to investigate the consequences of obstructive sleep apnea. IH is usually associated with detrimental metabolic and vascular outcomes. However, paradoxical protective effects have also been described depending of IH patterns and durations applied in studies. We evaluated the impact of short-term IH on vascular and metabolic function in a diet-induced model of metabolic syndrome (MS).MethodsMice were fed either a standard diet or a high fat diet (HFD) for 8 weeks. During the final 14 days of each diet, animals were exposed to either IH (1 min cycle, FiO2 5% for 30s, FiO2 21% for 30s; 8 h/day) or intermittent air (FiO2 21%). Ex-vivo vascular reactivity in response to acetylcholine was assessed in aorta rings by myography. Glucose, insulin and leptin levels were assessed, as well as serum lipid profile, hepatic mitochondrial activity and tissue nitric oxide (NO) release.ResultsMice fed with HFD developed moderate markers of dysmetabolism mimicking MS, including increased epididymal fat, dyslipidemia, hepatic steatosis and endothelial dysfunction. HFD decreased mitochondrial complex I, II and IV activities and increased lactate dehydrogenase (LDH) activity in liver. IH applied to HFD mice induced a major increase in insulin and leptin levels and prevented endothelial dysfunction by restoring NO production. IH also restored mitochondrial complex I and IV activities, moderated the increase in LDH activity and liver triglyceride accumulation in HFD mice.ConclusionIn a mouse model of MS, short-term IH increases insulin and leptin levels, restores endothelial function and mitochondrial activity and limits liver lipid accumulation.  相似文献   

15.
16.

Background

Vision loss due to vascular disease of the retina is a leading cause of blindness in the world. Retinal angiomatous proliferation (RAP) is a subgroup of neovascular age-related macular degeneration (AMD), whereby abnormal blood vessels develop in the retina leading to debilitating vision loss and eventual blindness. The novel mouse strain, neoretinal vascularization 2 (NRV2), shows spontaneous fundus changes associated with abnormal neovascularization. The purpose of this study is to characterize the induction of pathologic angiogenesis in this mouse model.

Methods

The NRV2 mice were examined from postnatal day 12 (p12) to 3 months. The phenotypic changes within the retina were evaluated by fundus photography, fluorescein angiography, optical coherence tomography, and immunohistochemical and electron microscopic analysis. The pathological neovascularization was imaged by confocal microscopy and reconstructed using three-dimensional image analysis software.

Results

We found that NRV2 mice develop multifocal retinal depigmentation in the posterior fundus. Depigmented lesions developed vascular leakage observed by fluorescein angiography. The spontaneous angiogenesis arose from the retinal vascular plexus at postnatal day (p)15 and extended toward retinal pigment epithelium (RPE). By three months of age, histological analysis revealed encapsulation of the neovascular lesion by the RPE in the photoreceptor cell layer and subretinal space.

Conclusions

The NRV2 mouse strain develops early neovascular lesions within the retina, which grow downward towards the RPE beginning at p15. This retinal neovascularization model mimics early stages of human retinal angiomatous proliferation (RAP) and will likely be a useful in elucidating targeted therapeutics for patients with ocular neovascular disease.  相似文献   

17.
The potassium channel antagonist 4-aminopyridine (4-AP) improves a variety of motor abnormalities associated with disorders of the cerebellum. The most rigorous quantitative data relate to 4-AP''s ability to improve eye movement deficits in humans referable to dysfunction of the cerebellar flocculus. Largely based on work in the ataxic mouse mutant tottering (which carries a mutation of the Cacna1a gene of the P/Q voltage-activated calcium channel), 4-AP is hypothesized to function by enhancing excitability or rhythmicity of floccular Purkinje cells. We tested this hypothesis by determining whether systemic or intrafloccular administration of 4-AP would ameliorate the eye movement deficits in tottering that are attributable to flocculus dysfunction, including the reductions in amplitude of the yaw-axis vestibulo-ocular reflex (VOR) and vision-enhanced vestibulo-ocular reflex (VVOR), and the optokinetic reflex (OKR) about yaw and roll axes. Because tottering''s deficits increase with age, both young and elderly mutants were tested to detect any age-dependent 4-AP effects. 4-AP failed to improve VOR, VVOR, and OKR gains during sinusoidal stimuli, although it may have reduced the tendency of the mutants'' responses to VOR and VVOR to decline over the course of a one-hour recording session. For constant-velocity optokinetic stimuli, 4-AP generated some enhancement of yaw OKR and upward-directed roll OKR, but the effects were also seen in normal C57BL/6 controls, and thus do not represent a specific reversal of the electrophysiological consequences of the tottering mutation. Data support a possible extra-floccular locus for the effects of 4-AP on habituation and roll OKR. Unilateral intrafloccular 4-AP injections did not affect ocular motility, except to generate mild eye elevations, consistent with reduced floccular output. Because 4-AP did not produce the effects expected if it normalized outputs of floccular Purkinje cells, there is a need for further studies to elucidate the drug''s mechanism of action on cerebellar motor dysfunction.  相似文献   

18.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive paralysis due to motor neuron death. Several lines of published evidence suggested that inhibition of epidermal growth factor receptor (EGFR) signaling might protect neurons from degeneration. To test this hypothesis in vivo, we treated the SOD1 transgenic mouse model of ALS with erlotinib, an EGFR inhibitor clinically approved for oncology indications. Although erlotinib failed to extend ALS mouse survival it did provide a modest but significant delay in the onset of multiple behavioral measures of disease progression. However, given the lack of protection of motor neuron synapses and the lack of survival extension, the small benefits observed after erlotinib treatment appear purely symptomatic, with no modification of disease course.  相似文献   

19.

Background

The recruitment of macrophages accompanies almost every pathogenic state of the retina, and their excessive activation in the subretinal space is thought to contribute to the progression of diseases including age-related macular degeneration. Previously, we have shown that macrophages aggregate in the outer retina following damage elicited by photo-oxidative stress, and that inhibition of their recruitment reduces photoreceptor death. Here, we look for functional insight into macrophage activity in this model through the spatiotemporal interplay of macrophage polarisation over the course of degeneration.

Methods

Rats were exposed to 1000 lux light damage (LD) for 24hrs, with some left to recover for 3 and 7 days post-exposure. Expression and localisation of M1- and M2- macrophage markers was investigated in light-damaged retinas using qPCR, ELISA, flow cytometry, and immunohistochemistry.

Results

Expression of M1- (Ccl3, Il-6, Il-12, Il-1β, TNFα) and M2- (CD206, Arg1, Igf1, Lyve1, Clec7a) related markers followed discrete profiles following light damage; up-regulation of M1 genes peaked at the early phase of cell death, while M2 genes generally exhibited more prolonged increases during the chronic phase. Moreover, Il-1β and CD206 labelled accumulations of microglia/macrophages which differed in their morphological, temporal, and spatial characteristics following light damage.

Conclusions

The data illustrate a dynamic shift in macrophage polarisation following light damage through a broad swathe of M1 and M2 markers. Pro-inflammatory M1 activation appears to dominate the early phase of degeneration while M2 responses appear to more heavily mark the chronic post-exposure period. While M1/M2 polarisation represents two extremes amongst a spectrum of macrophage activity, knowledge of their predominance offers insight into functional consequences of macrophage activity over the course of damage, which may inform the spatiotemporal employment of therapeutics in retinal disease.  相似文献   

20.
Insulin-like growth factor I (IGF-I) exerts multiple effects on different retinal cell types in both physiological and pathological conditions. Despite the growth factor''s extensively described neuroprotective actions, transgenic mice with increased intraocular levels of IGF-I showed progressive impairment of electroretinographic amplitudes up to complete loss of response, with loss of photoreceptors and bipolar, ganglion, and amacrine neurons. Neurodegeneration was preceded by the overexpression of genes related to retinal stress, acute-phase response, and gliosis, suggesting that IGF-I altered normal retinal homeostasis. Indeed, gliosis and microgliosis were present from an early age in transgenic mice, before other alterations occurred, and were accompanied by signs of oxidative stress and impaired glutamate recycling. Older mice also showed overproduction of pro-inflammatory cytokines. Our results suggest that, when chronically increased, intraocular IGF-I is responsible for the induction of deleterious cellular processes that can lead to neurodegeneration, and they highlight the importance that this growth factor may have in the pathogenesis of conditions such as ischemic or diabetic retinopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号