首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.  相似文献   

2.
Neutrophil extracellular traps (NETs) are a recently discovered addition to the defensive armamentarium of neutrophils, assisting in the immune response against rapidly dividing bacteria. Although older adults are more susceptible to such infections, no study has examined whether aging in humans influences NET formation. We report that TNF‐α‐primed neutrophils generate significantly more NETs than unprimed neutrophils and that lipopolysaccharide (LPS)‐ and interleukin‐8 (IL‐8)‐induced NET formation exhibits a significant age‐related decline. NET formation requires generation of reactive oxygen species (ROS), and this was also reduced in neutrophils from older donors identifying a mechanism for reduced NET formation. Expression of IL‐8 receptors (CXCR1 and CXCR2) and the LPS receptor TLR4 was similar on neutrophils from young and old subjects, and neutrophils challenged with phorbol‐12‐myristate‐13‐acetate (PMA) showed no age‐associated differences in ROS or NET production. Taken together, these data suggest a defect in proximal signalling underlies the age‐related decline in NET and ROS generation. TNF‐α priming involves signalling through p38 MAP kinase, but activation kinetics were comparable in neutrophils from young and old donors. In a clinical setting, we assessed the capacity of neutrophils from young and older patients with chronic periodontitis to generate NETs in response to PMA and hypochlorous acid (HOCL). Neutrophil extracellular trap generation to HOCL, but not PMA, was lower in older periodontitis patients but not in comparison with age‐matched controls. Impaired NET formation is thus a novel defect of innate immunity in older adults but does not appear to contribute to the increased incidence of periodontitis in older adults.  相似文献   

3.
Reactive oxygen species (ROS) primarily produced via NADPH oxidase play an important role for killing microorganisms in neutrophils. In this study we examined if ROS production in Human promyelocytic leukemia cells (HL60) differentiated into neutrophil-like cells (dHL60) induces ER stress and activates the unfolded protein response (UPR). To cause ROS production cells were treated with PMA or by chronic hyperglycemia. Chronic hyperglycemia failed to induce ROS production and did not cause activation of the UPR in dHL60 cells. PMA, a pharmacologic NADPH oxidase activator, induced ER stress in dHL60 cells as monitored by IRE-1 and PERK pathway activation, and this was independent of calcium signaling. The NADPH oxidase inhibitor, DPI, abolished both ROS production and UPR activation. These results show that ROS produced by NADPH oxidase induces ER stress and suggests a close association between the redox state of the cell and the activation of the UPR in neutrophil-like HL60 cells.  相似文献   

4.
Neutrophil extracellular traps (NETs) are composed of extracellular DNA fibers with antimicrobial peptides that capture and kill microbes. NETs play a critical role in innate host defense and in autoimmune and inflammatory diseases. While the mechanism of NET formation remains unclear, reactive oxygen species (ROS) produced via activation of NADPH oxidase (Nox) are known to be an important requirement. In this study, we investigated the effect of uric acid (UA) on NET formation. UA, a well-known ROS scavenger, was found to suppress Nox-dependent ROS release in a dose-dependent manner. Low concentrations of UA significantly inhibited Nox-dependent NET formation. However, high concentrations of UA unexpectedly induced, rather than inhibited, NET formation. NETs were directly induced by UA alone in a Nox-independent manner, as revealed by experiments using control neutrophils treated with ROS inhibitors or neutrophils of patients with chronic granulomatous disease who have a congenital defect in ROS production. Furthermore, we found that UA-induced NET formation was partially mediated by NF-κB activation. Our study is the first to demonstrate the novel function of UA in NET formation and may provide insight into the management of patients with hyperuricemia.  相似文献   

5.
Formation of neutrophil extracellular traps (NETs) can perpetuate sterile inflammation; thus, it is important to clarify their pathophysiological characteristics. Free heme, derived via hemolysis, is a major contributor to organ damage, and reportedly induces neutrophil activation as well as reactive oxygen species (ROS) production and NET formation. For this study, we examined hemin (Fe3+ -protoporphyrin IX)-induced NET formation quantitatively in vitro as well as the effects of oxidative stress.NETs formed in vitro from cultured neutrophils were quantitatively detected by using nuclease treatment and Sytox Green, a nucleic acid stain. Hemin-induced NET production was found to be in a dose-dependent manner, NADPH oxidase-dependent and toll-like receptor (TLR)-4 independent. Additionally, the iron molecule in the porphyrin ring was considered essential for the formation of NETs. In the presence of low concentrations of hydrogen peroxide, low concentrations of hemin-induced NETs were enhanced, unlike those of phorbol myristate acetate (PMA)-induced NETs.Quantitative analysis of NET formation may prove to be a useful tool for investigating NET physiology, and hemin could function as a possible therapeutic target for hemolysis-related events.  相似文献   

6.
Neutrophils/polymorphonuclear leukocytes (PMNs), an important component of innate immune system, release extracellular traps (NETs) to eliminate invaded pathogens; however understanding of the role of signaling molecules/proteins need to be elucidated. In the present study role of p38 MAPK and extracellular signal regulated kinase (ERK) against phorbol 12‐myristate 13‐acetate (PMA) induced reactive oxygen species (ROS) generation and NETs formation has been investigated. Human neutrophils were treated with PMA to induce free radical generation and NETs release, which were monitored by NBT reduction and elastase/DNA release, respectively. PMA treatment led to the time dependent phosphorylation of p38 MAPK and ERK in PMNs. Pretreatment of PMNs with SB202190 or U0126 did not significantly reduce PMA induce free radical generation, but prevented NETs release. Pretreatment of PMNs with NADPH oxidase inhibitor (diphenyleneiodonium chloride) significantly reduced free radical generation, p38 MAPK and ERK phosphorylation as well as NETs release, suggesting that p38 MAPK and ERK activation was downstream to free radical generation. The present study thus demonstrates ROS dependent activation of ERK and p38 MAPK, which mediated PMA induced NETs release from human neutrophils. J. Cell. Biochem. 114: 532–540, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Neutrophil extracellular traps (NETs) that bind invading microbes are pivotal for innate host defense. There is a growing body of evidence for the significance of NETs in the pathogenesis of infectious and inflammatory diseases, but the mechanism of NET formation remains unclear. Previous observation in neutrophils of chronic granulomatous disease (CGD) patients, which defect NADPH oxidase (Nox) and fail to produce reactive oxygen species (ROS), revealed that ROS contributed to the formation of NETs. However, the active species were not identified. In this study, we discovered that singlet oxygen, one of the ROS, mediated Nox-dependent NET formation upon stimulation with phorbol myristate acetate. We also revealed that singlet oxygen itself could induce NET formation by a distinct system generating singlet oxygen with porfimer sodium (Photofrin) in CGD neutrophils, as well as healthy neutrophils. This was independent of Nox activation. These results show that singlet oxygen is essential for NET formation, and provide novel insights into the pathogenesis of infectious and inflammatory diseases.  相似文献   

8.
Kaempferol (kaem) is a dietary flavonoid found in a variety of fruits and vegetables. The inhibitory effects of kaem on primary tumour growth have been extensively investigated; however, its effects on tumour metastasis are largely unknown. In the present study, we found that kaem significantly suppresses both primary tumour growth and lung metastasis in mouse breast tumour model. Furthermore, decreased expression of citrullinated histone H3 (H3‐cit), a biomarker of neutrophil extracellular traps (NETs), had been founded in metastatic lung upon treated with kaem. The reduction of H3‐cit is not, however, due to the cytotoxicity of kaem on neutrophils since the frequency of CD11b+Ly6G+ neutrophils did not change in lung, tumour or blood in the presence of kaem. We then confirm the anti‐NETs effects of kaem in vitro by co‐culturing mouse neutrophils and kaem. Supplementing the neutrophils with GSK484, a potent NET inhibitor, totally abrogated the inhibitory effects of kaem on tumour metastasis while having little or no impact on primary tumour growth, indicating the specificity of kaem acting on NET formation and tumour metastasis. We also found that kaem suppressed ROS production in mouse bone‐marrow derived neutrophils. Supplementing with the ROS scavenger DPI abrogated kaem's effects on NET formation, suggesting the involvement of kaempferol in NADPH/ROS‐NETs signalling. Finally, we applied the kaem on NET‐deficient PAD4‐/‐ mice and found decreased primary tumour volume and weight but similar lung metastatic tumour with kaempferol treatment. Therefore, our findings reveal a novel mechanism of kaem in breast cancer development by targeting NETs induced tumour metastasis.  相似文献   

9.
Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest that it does not play a major role in killing this fungus. Instead, NETs may have a fungistatic effect and may prevent further spreading.  相似文献   

10.
Neutrophil extracellular traps (NETs) are extracellular chromatin structures that can trap and degrade microbes. They arise from neutrophils that have activated a cell death program called NET cell death, or NETosis. Activation of NETosis has been shown to involve NADPH oxidase activity, disintegration of the nuclear envelope and most granule membranes, decondensation of nuclear chromatin and formation of NETs. We report that in phorbol myristate acetate (PMA)-stimulated neutrophils, intracellular chromatin decondensation and NET formation follow autophagy and superoxide production, both of which are required to mediate PMA-induced NETosis and occur independently of each other. Neutrophils from patients with chronic granulomatous disease, which lack NADPH oxidase activity, still exhibit PMA-induced autophagy. Conversely, PMA-induced NADPH oxidase activity is not affected by pharmacological inhibition of autophagy. Interestingly, inhibition of either autophagy or NADPH oxidase prevents intracellular chromatin decondensation, which is essential for NETosis and NET formation, and results in cell death characterized by hallmarks of apoptosis. These results indicate that apoptosis might function as a backup program for NETosis when autophagy or NADPH oxidase activity is prevented.  相似文献   

11.
Neutrophil extracellular traps (NETs) have recently been described as an important innate defense mechanism that leads to immobilization and killing of invading pathogens. NETs have been identified in several species, but the mechanisms involved in NET formation and their role in infection have not been well determined yet. Here we show that upon in vitro stimulation with different immunostimulants of bacterial, fungal or viral origin, carp neutrophilic granulocytes rapidly release NET structures. We analyzed the composition of these structures and the kinetics of their formation by confocal microscopy, by quantifying the levels of extracellular DNA and the release of enzymes originating from neutrophilic granules: myeloperoxidase, neutrophil elastase and matrix metalloproteinase 9 (MMP-9). Profiles of NET release by carp neutrophils as well as their enzyme composition are stimulus- and time-dependent. This study moreover provides evidence for a stimulus-dependent selective requirement of reactive oxygen species in the process of NET formation. Collectively the results support an evolutionary conserved and strictly regulated mechanism of NET formation in teleost fish.  相似文献   

12.
《Free radical research》2013,47(9):699-709
Abstract

In response to infection, neutrophils employ various strategies to defend against the invading microbes. One of such defense mechanisms is the formation of neutrophil extracellular traps (NETs). Recent studies suggest that reactive oxygen species is a signal critical to NET formation. This prompts us to examine whether neutrophils from individuals with glucose-6-phosphate dehydrogenase (G6PD) Taiwan-Hakka variant, which are prone to oxidative stress generation, have altered ability to form NET. We adopted an image-based method to study the NET formation potential in neutrophils from G6PD-deficient patients. Neutrophils from either normal or G6PD-deficient individuals underwent NETosis in response to phorbol 12-myristate 13-acetate (PMA). The extent of NETosis in the former did not significantly differ from that of the latter. Diphenyleneiodonium sulfate (DPI) and 3-methyladenine (MA) inhibited PMA-stimulated NET formation in these cells, suggesting the involvement of NADPH oxidase and autophagy in the process. Glucose oxidase (GO) and xanthine oxidase/xanthine (XO/X) could induce a similar extent of NET formation in normal and G6PD-deficient neutrophils. GO- or XO-induced NETosis was not inhibitable by MA, implying that reactive oxygen species (ROS) can act as an independent signal for activation of NETosis. Mechanistically, enhanced superoxide production in neutrophils was associated with increases in levels of NAD+ and NADP+, as well as activation of NAD+ kinase. Taken together, these findings suggest that G6PD-deficient neutrophils are as equally efficient as normal cells in NET formation, and their deficiency in G6PD-associated NADPH regeneration capacity is largely compensated for by nicotinamide nucleotide biosynthesis.  相似文献   

13.
Acute viral bronchiolitis by Respiratory Syncytial Virus (RSV) is the most common respiratory illness in children in the first year of life. RSV bronchiolitis generates large numbers of hospitalizations and an important burden to health systems. Neutrophils and their products are present in the airways of RSV-infected patients who developed increased lung disease. Neutrophil Extracellular Traps (NETs) are formed by the release of granular and nuclear contents of neutrophils in the extracellular space in response to different stimuli and recent studies have proposed a role for NETs in viral infections. In this study, we show that RSV particles and RSV Fusion protein were both capable of inducing NET formation by human neutrophils. Moreover, we analyzed the mechanisms involved in RSV Fusion protein-induced NET formation. RSV F protein was able to induce NET release in a concentration-dependent fashion with both neutrophil elastase and myeloperoxidase expressed on DNA fibers and F protein-induced NETs was dismantled by DNase treatment, confirming that their backbone is chromatin. This viral protein caused the release of extracellular DNA dependent on TLR-4 activation, NADPH Oxidase-derived ROS production and ERK and p38 MAPK phosphorylation. Together, these results demonstrate a coordinated signaling pathway activated by F protein that led to NET production. The massive production of NETs in RSV infection could aggravate the inflammatory symptoms of the infection in young children and babies. We propose that targeting the binding of TLR-4 by F protein could potentially lead to novel therapeutic approaches to help control RSV-induced inflammatory consequences and pathology of viral bronchiolitis.  相似文献   

14.
Beyond intracellular killing, a novel neutrophil-based antimicrobial mechanism has been recently discovered: entrapment and killing by neutrophil extracellular traps (NETs). NETs consist of extruded nuclear DNA webs decorated with granule proteins. Although NET formation is an important innate immune mechanism, uncontrolled NET release damages host tissues and has been linked to several diseases including cystic fibrosis (CF). The major CF airway pathogen Pseudomonas aeruginosa establishes chronic infection. Pseudomonas imbedded within biofilms is protected against the immune system, but maintains chronic inflammation that worsens disease symptoms. Aberrant NET release from recruited neutrophils was found in CF, but the underlying mechanisms remain unclear. One of the most important Pseudomonas virulence factors is pyocyanin, a redox-active pigment that has been associated with diminished lung function in CF. Here we show that pyocyanin promotes NET formation in a time- and dose-dependent manner. Most CF Pseudomonas clinical isolates tested produce pyocyanin in vitro. Pyocyanin-derived reactive oxygen species are required for its NET release. Inhibitor experiments demonstrated involvement of Jun N-terminal Kinase (JNK) and phosphatidylinositol 3-Kinase (PI3K) in pyocyanin-induced NET formation. Pyocyanin-induced NETs also require the NADPH oxidase because NET release in chronic granulomatous disease neutrophils was greatly reduced. Comparison of neutrophils from gp91phox- and p47phox-deficient patients revealed that pyocyanin-triggered NET formation is proportional to their residual superoxide production. Our studies identify pyocyanin as the first secreted bacterial toxin that enhances NET formation. The involvement of NADPH oxidase in pyocyanin-induced NET formation represents a novel mechanism of pyocyanin toxicity.  相似文献   

15.
目的:建立佛波酯(PMA)诱导人中性粒细胞NETS形成的方法,并研究NETS的结构组成。方法:提取人中性粒细胞,使用10、30、90 n M的PMA分别刺激细胞2、3、4 h,采用核酸染料sytox green染色后,通过共聚焦显微镜检测和比较各组NETS的形成情况,并通过活性氧(ROS)探针对NETS进行荧光染色,对弹性蛋白酶(Elastase)、髓过氧化物酶(MPO)和组蛋白H3(Histone H3)进行免疫荧光染色。结果:PMA低于30 n M刺激细胞4 h都不会产生NETS,90 n M刺激3 h就会形成NETS,使用90 n M刺激中性粒细胞4 h后,其形成的NETS含量最高,显著高于30 n M刺激4 h及90 n M刺激3h(P0.05)。免疫荧光染色结果显示NETS结构上含有大量ROS和Elastase,含有少量MPO,几乎不含Histone H3。结论:90 n M PMA刺激中性粒细胞4 h可促进NETS形成,其含有大量ROS和Elastase。  相似文献   

16.
Despite the widespread use of antiplatelets and anticoagulants, women with antiphospholipid syndrome (APS) may face pregnancy complications associated with placental dysplasia. Neutrophil extracellular traps (NETs) are involved in the pathogenesis of many autoimmune diseases, including vascular APS; however, their role in obstetric APS is unclear. Herein, we investigated the role of NETs by quantifying cell‐free DNA and NET marker levels. Live‐cell imaging was used to visualize NET formation, and MAPK signalling pathway proteins were analysed. Cell migration, invasion and tube formation assays were performed to observe the effects of NETs on trophoblasts and human umbilical vein endothelial cells (HUVECs). The concentrations of cell‐free DNA and NETs in sera of pregnant patients with APS were elevated compared with that of healthy controls (HCs) matched to gestational week. APS neutrophils were predisposed to spontaneous NET release and IgG purified from the patients (APS‐IgG) induced neutrophils from HCs to release NETs. Additionally, APS‐IgG NET induction was abolished with inhibitors of reactive oxygen species, AKT, p38 MAPK and ERK1/2. Moreover, NETs were detrimental to trophoblasts and HUVECs. In summary, APS‐IgG‐induced NET formation deserves further investigation as a potential novel therapeutic target in obstetrical APS.  相似文献   

17.
Neutrophil Extracellular Traps (NETs) have been recently identified as part of the neutrophil’s antimicrobial armamentarium. Apart from their role in fighting infections, recent research has demonstrated that they may be involved in many other disease processes, including cancer progression. Isolating purified NETs is a crucial element to allow the study of these functions.In this video, we demonstrate a simplified method of cell free NET isolation from human whole blood using readily available reagents. Isolated NETs can then be used for immunofluorescence staining, blotting or various functional assays. This enables an assessment of their biologic properties in the absence of the potential confounding effects of neutrophils themselves.A density gradient separation technique is employed to isolate neutrophils from healthy donor whole blood. Isolated neutrophils are then stimulated by phorbol 12-myristate 13-acetate (PMA) to induce NETosis. Activated neutrophils are then discarded, and a cell-free NET stock is obtained.We then demonstrate how isolated NETs can be used in an adhesion assay with A549 human lung cancer cells. The NET stock is used to coat the wells of a 96 well cell culture plate O/N, and after ensuring an adequate NET monolayer formation on the bottom of the wells, CFSE labeled A549 cells are added. Adherent cells are quantified using a Nikon TE300 fluorescent microscope. In some wells, 1000U DNAse1 is added 10 min before counting to degrade NETs  相似文献   

18.
Mannan-binding lectin (MBL), a lectin homologous to C1q, greatly facilitates C3/C4-mediated opsonophagocytosis of Candida albicans (C. albicans) by human neutrophils, and has the capacity to bind to CR1 (CD35) expressed on circulating neutrophils. The intracellular pool of neutrophil Dectin-1 plays a critical role in stimulating the reactive oxygen species (ROS) generation through recognition of β-1,3-glucan component of phagocytized zymosan or yeasts. However, little is known about whether MBL can mediate the opsonophagocytosis of Candida albicans by neutrophils independent of complement activation, and whether MBL-mediated opsonophagocytosis influence the intracellular expression of Dectin-1 and ROS production. Here we showed that the inhibited phagocytic efficiency of neutrophils as a result of blockage of Dectin-1 was compensated by exogenous MBL alone in a dose-dependent manner. Furthermore, the expressions of Dectin-1 at mRNA and intracellular protein levels were significantly up-regulated in neutrophils stimulated by MBL-pre-incubated C. albicans, while the expression of surface Dectin-1 remained almost unchanged. Nevertheless, the stimulated ROS production in neutrophils was partly and irreversibly inhibited by blockage of Dectin-1 in the presence of exogenous MBL. Confocal microscopy examination showed that intracellular Dectin-1 was recruited and co-distributed with ROS on the surface of some phagocytized yeasts. The β-1,3-glucanase digestion test further suggested that the specific recognition and binding site of human Dectin-1 is just the β-1,3-glucan moiety on the cell wall of C. albicans. These data demonstrate that MBL has an ability to mediate the opsonophagocytosis of Candida albicans by human neutrophils independent of complement activation, which is coupled with intracellular Dectin-1-triggered ROS production.  相似文献   

19.
Neutrophils are multifaceted cells that are often the immune system's first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system.  相似文献   

20.
Neutrophil extracellular traps (NETs) are critical for anti-bacterial activity of the innate immune system. We have previously shown that mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA (mtDNA), are released into the circulation after injury. We therefore questioned whether mtDNA is involved in trauma-induced NET formation. Treatment of human polymorphoneutrophils (PMN) with mtDNA induced robust NET formation, though in contrast to phorbol myristate acetate (PMA) stimulation, no NADPH-oxidase involvement was required. Moreover, formation of mtDNA-induced NETs was completely blocked by TLR9 antagonist, ODN-TTAGGG. Knowing that infective outcomes of trauma in elderly people are more severe than in young people, we measured plasma mtDNA and NET formation in elderly and young trauma patients and control subjects. MtDNA levels were significantly higher in the plasma of elderly trauma patients than young patients, despite lower injury severity scores in the elderly group. NETs were not visible in circulating PMN isolated from either young or old control subjects. NETs were however, detected in PMN isolated from young trauma patients and to a lesser extent from elderly patients. Stimulation by PMA induced widespread NET formation in PMN from both young volunteers and young trauma patients. NET response to PMA was much less pronounced in both elderly volunteers’ PMN and in trauma patients’ PMN. We conclude that mtDNA is a potent inducer of NETs that activates PMN via TLR9 without NADPH-oxidase involvement. We suggest that decreased NET formation in the elderly regardless of higher mtDNA levels in their plasma may result from decreased levels of TLR9 and/or other molecules, such as neutrophil elastase and myeloperoxidase that are involved in NET generation. Further study of the links between circulating mtDNA and NET formation may elucidate the mechanisms of trauma-related organ failure as well as the greater susceptibility to secondary infection in elderly trauma patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号