首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Autophagy is a major intracellular degradative pathway that is involved in various human diseases. The role of autophagy, however, is complex; although the process is generally considered to be cytoprotective, it can also contribute to cellular dysfunction and disease progression. Much progress has been made in our understanding of autophagy, aided in large part by the identification of the autophagy-related (ATG) genes. Nonetheless, our understanding of the molecular mechanism remains limited. In this study, we generated a Saccharomyces cerevisiae multiple-knockout strain with 24 ATG genes deleted, and we used it to carry out an in vivo reconstitution of the autophagy pathway. We determined minimum requirements for different aspects of autophagy and studied the initial protein assembly steps at the phagophore assembly site. In vivo reconstitution enables the study of autophagy within the context of the complex regulatory networks that control this process, an analysis that is not possible with an in vitro system.  相似文献   

2.
3.
4.
5.
6.
Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies.  相似文献   

7.
Autophagy is a critical regulator of organellar homeostasis, particularly of mitochondria. Upon the loss of membrane potential, dysfunctional mitochondria are selectively removed by autophagy through recruitment of the E3 ligase Parkin by the PTEN-induced kinase 1 (PINK1) and subsequent ubiquitination of mitochondrial membrane proteins. Mammalian sequestrome-1 (p62/SQSTM1) is an autophagy adaptor, which has been proposed to shuttle ubiquitinated cargo for autophagic degradation downstream of Parkin. Here, we show that loss of ref(2)P, the Drosophila orthologue of mammalian P62, results in abnormalities, including mitochondrial defects and an accumulation of mitochondrial DNA with heteroplasmic mutations, correlated with locomotor defects. Furthermore, we show that expression of Ref(2)P is able to ameliorate the defects caused by loss of Pink1 and that this depends on the presence of functional Parkin. Finally, we show that both the PB1 and UBA domains of Ref(2)P are crucial for mitochondrial clustering. We conclude that Ref(2)P is a crucial downstream effector of a pathway involving Pink1 and Parkin and is responsible for the maintenance of a viable pool of cellular mitochondria by promoting their aggregation and autophagic clearance.  相似文献   

8.
《Autophagy》2013,9(8):1073-1075
Not only is autophagy the major intracellular pathway for degradation and recycling of long-lived proteins and organelles, it is also involved in both the pathogenesis and prevention of many human diseases. Much progress has been made on the identification and characterization of AuTophaGy-related (ATG) genes, in yeast and in mammals. However, our understanding of the molecular mechanisms of autophagy remains quite limited, far from enough to harness autophagy for therapeutic applications. To better understand the molecular mechanisms, we took a unique and novel approach to study autophagy in yeast. We generated a multiple knockout Saccharomyces cerevisiae strain with 24 ATG genes deleted, and determined the minimum requirements for different aspects of autophagy. Our data also provided us with new insights into autophagy, different from those obtained from in vitro analyses. In this addendum, we briefly discuss our findings and consider fields where this multiple knockout strain can be of potential use.

Addendum to: Cao Y, Cheong H, Song H, Klionsky DJ. In vivo reconstitution of autophagy in Saccharomyces cerevisiae. J Cell Biol 2008; 182:703-13.  相似文献   

9.
Mutations in the PINK1 gene are a frequent cause of autosomal recessive Parkinson''s disease (PD). PINK1 encodes a mitochondrial kinase with neuroprotective activity, implicated in maintaining mitochondrial homeostasis and function. In concurrence with Parkin, PINK1 regulates mitochondrial trafficking and degradation of damaged mitochondria through mitophagy. Moreover, PINK1 can activate autophagy by interacting with the pro-autophagic protein Beclin-1. Here, we report that, upon mitochondrial depolarization, PINK1 interacts with and phosphorylates Bcl-xL, an anti-apoptotic protein also known to inhibit autophagy through its binding to Beclin-1. PINK1–Bcl-xL interaction does not interfere either with Beclin-1 release from Bcl-xL or the mitophagy pathway; rather it protects against cell death by hindering the pro-apoptotic cleavage of Bcl-xL. Our data provide a functional link between PINK1, Bcl-xL and apoptosis, suggesting a novel mechanism through which PINK1 regulates cell survival. This pathway could be relevant for the pathogenesis of PD as well as other diseases including cancer.  相似文献   

10.
Autophagy is a lysosome-dependent intracellular degradation pathway that has been implicated in the pathogenesis of various human diseases, either positively or negatively impacting disease outcomes depending on the specific context. The majority of medical conditions including cancer, neurodegenerative diseases, infections and immune system disorders and inflammatory bowel disease could probably benefit from therapeutic modulation of the autophagy machinery. Drosophila represents an excellent model animal to study disease mechanisms thanks to its sophisticated genetic toolkit, and the conservation of human disease genes and autophagic processes. Here, we provide an overview of the various autophagy pathways observed both in flies and human cells(macroautophagy, microautophagy and chaperone-mediated autophagy), and discuss Drosophila models of the above-mentioned diseases where fly research has already helped to understand how defects in autophagy genes and pathways contribute to the relevant pathomechanisms.  相似文献   

11.
12.
Dominant mutations in FUS/TLS cause a familial form of amyotrophic lateral sclerosis (fALS), where abnormal accumulation of mutant FUS proteins in cytoplasm has been observed as a major pathological change. Many of pathogenic mutations have been shown to deteriorate the nuclear localization signal in FUS and thereby facilitate cytoplasmic mislocalization of mutant proteins. Several other mutations, however, exhibit no effects on the nuclear localization of FUS in cultured cells, and their roles in the pathomechanism of fALS remain obscure. Here, we show that a pathogenic mutation, G156E, significantly increases the propensities for aggregation of FUS in vitro and in vivo. Spontaneous in vitro formation of amyloid-like fibrillar aggregates was observed in mutant but not wild-type FUS, and notably, those fibrils functioned as efficient seeds to trigger the aggregation of wild-type protein. In addition, the G156E mutation did not disturb the nuclear localization of FUS but facilitated the formation of intranuclear inclusions in rat hippocampal neurons with significant cytotoxicity. We thus propose that intranuclear aggregation of FUS triggered by a subset of pathogenic mutations is an alternative pathomechanism of FUS-related fALS diseases.  相似文献   

13.
Peroxisomes are critical organelles housing various, often oxidative, reactions. Pexophagy, the process by which peroxisomes are selectively targeted for destruction via autophagy, is characterized in yeast and mammals but had not been reported in plants. In this article, we describe how the peroxisome-related aberrations of a mutant defective in the LON2 peroxisomal protease are suppressed when autophagy is prevented by mutating any of several key autophagy-related (ATG) genes. Our results reveal that plant peroxisomes can be degraded by selective autophagy and suggest that pexophagy is accelerated when the LON2 protease is disabled.  相似文献   

14.
Mitochondrial dysfunction caused by protein aggregation has been shown to have an important role in neurological diseases, such as Parkinson''s disease (PD). Mitochondria have evolved at least two levels of defence mechanisms that ensure their integrity and the viability of their host cell. First, molecular quality control, through the upregulation of mitochondrial chaperones and proteases, guarantees the clearance of damaged proteins. Second, organellar quality control ensures the clearance of defective mitochondria through their selective autophagy. Studies in Drosophila have highlighted mitochondrial dysfunction linked with the loss of the PTEN-induced putative kinase 1 (PINK1) as a mechanism of PD pathogenesis. The mitochondrial chaperone TNF receptor-associated protein 1 (TRAP1) was recently reported to be a cellular substrate for the PINK1 kinase. Here, we characterise Drosophila Trap1 null mutants and describe the genetic analysis of Trap1 function with Pink1 and parkin. We show that loss of Trap1 results in a decrease in mitochondrial function and increased sensitivity to stress, and that its upregulation in neurons of Pink1 mutant rescues mitochondrial impairment. Additionally, the expression of Trap1 was able to partially rescue mitochondrial impairment in parkin mutant flies; and conversely, expression of parkin rescued mitochondrial impairment in Trap1 mutants. We conclude that Trap1 works downstream of Pink1 and in parallel with parkin in Drosophila, and that enhancing its function may ameliorate mitochondrial dysfunction and rescue neurodegeneration in PD.  相似文献   

15.
《Cell research》2015,25(3):306-317
Cushing''s disease, also known as adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (PAs) that cause excess cortisol production, accounts for up to 85% of corticotrophin-dependent Cushing''s syndrome cases. However, the genetic alterations in this disease are unclear. Here, we performed whole-exome sequencing of DNA derived from 12 ACTH-secreting PAs and matched blood samples, which revealed three types of somatic mutations in a candidate gene, USP8 (encoding ubiquitin-specific protease 8), exclusively in exon 14 in 8 of 12 ACTH-secreting PAs. We further evaluated somatic USP8 mutations in additional 258 PAs by Sanger sequencing. Targeted sequencing further identified a total of 17 types of USP8 variants in 67 of 108 ACTH-secreting PAs (62.04%). However, none of these mutations was detected in other types of PAs (n = 150). These mutations aggregate within the 14-3-3 binding motif of USP8 and disrupt the interaction between USP8 and 14-3-3 protein, resulting in an elevated capacity to protect EGFR from lysosomal degradation. Accordingly, PAs with mutated USP8 display a higher incidence of EGFR expression, elevated EGFR protein abundance and mRNA expression levels of POMC, which encodes the precursor of ACTH. PAs with mutated USP8 are significantly smaller in size and have higher ACTH production than wild-type PAs. In surgically resected primary USP8-mutated tumor cells, USP8 knockdown or blocking EGFR effectively attenuates ACTH secretion. Taken together, somatic gain-of-function USP8 mutations are common and contribute to ACTH overproduction in Cushing''s disease. Inhibition of USP8 or EGFR is promising for treating USP8-mutated corticotrophin adenoma. Our study highlights the potentially functional mutated gene in Cushing''s disease and provides insights into the therapeutics of this disease.  相似文献   

16.
Pantothenate kinase–associated neurodegeneration (PKAN) is an incurable rare genetic disorder of children and young adults caused by mutations in the PANK2 gene, which encodes an enzyme critical for the biosynthesis of coenzyme A. Although PKAN affects only a small number of patients, it shares several hallmarks of more common neurodegenerative diseases of older adults such as Alzheimer''s disease and Parkinson''s disease. Advances in etiological understanding and treatment of PKAN could therefore have implications for our understanding of more common diseases and may shed new lights on the physiological importance of coenzyme A, a cofactor critical for the operation of various cellular metabolic processes. The large body of knowledge that accumulated over the years around PKAN pathology, including but not limited to studies of various PKAN models and therapies, has contributed not only to progress in our understanding of the disease but also, importantly, to the crystallization of key questions that guide future investigations of the disease. In this review, we will summarize this knowledge and demonstrate how it forms the backdrop to new avenues of research.  相似文献   

17.
Paget’s disease of bone (PDB) is a late-onset disorder characterised by focal areas of increased bone turnover containing enlarged hyperactive osteoclasts. The disease has a strong genetic predisposition and mutations in SQSTM1 have been associated with familial and sporadic disease in up to 40% of cases. Additional genetic loci have been associated in other cases, but genes are yet to be identified. Earlier-onset conditions with similar bone pathology (familial expansile osteolysis, expansile skeletal hyperphosphatasia and early-onset PDB) are caused by mutations in TNFRSF11A (RANK). The syndrome of inclusion body myositis, Paget’s disease and frontotemporal dementia is caused by mutations in VCP. Despite the increased knowledge about genes involved in PDB and related disorders, the etiology of the diseases remains puzzling. Presence of inclusion bodies appears to link Pagetic diseases mechanistically to diseases associated with presence of misfolded proteins or abnormalities in the ubiquitin-proteasomal, or autophagy pathways. Juvenile PDB, caused by osteoprotegerin deficiency, appears mechanistically distinct from the other Pagetic diseases. This review will discuss evidence from recent studies, including new animal models for Pagetic diseases.  相似文献   

18.
Small-conductance Ca2+-activated K+ channel activation is an emerging therapeutic approach for treatment of neurological diseases, including stroke, amyotrophic lateral sclerosis and schizophrenia. Our previous studies showed that activation of SK channels exerted neuroprotective effects through inhibition of NMDAR-mediated excitotoxicity. In this study, we tested the therapeutic potential of SK channel activation of NS309 (25 μM) in cultured human postmitotic dopaminergic neurons in vitro conditionally immortalized and differentiated from human fetal mesencephalic cells. Quantitative RT-PCR and western blotting analysis showed that differentiated dopaminergic neurons expressed low levels of SK2 channels and high levels of SK1 and SK3 channels. Further, protein analysis of subcellular fractions revealed expression of SK2 channel subtype in mitochondrial-enriched fraction. Mitochondrial complex I inhibitor rotenone (0.5 μM) disrupted the dendritic network of human dopaminergic neurons and induced neuronal death. SK channel activation reduced mitochondrial membrane potential, while it preserved the dendritic network, cell viability and ATP levels after rotenone challenge. Mitochondrial dysfunction and delayed dopaminergic cell death were prevented by increasing and/or stabilizing SK channel activity. Overall, our findings show that activation of SK channels provides protective effects in human dopaminergic neurons, likely via activation of both membrane and mitochondrial SK channels. Thus, SK channels are promising therapeutic targets for neurodegenerative disorders such as Parkinson''s disease, where dopaminergic cell loss is associated with progression of the disease.  相似文献   

19.
The catabolic process of macroautophagy, through the rapid degradation of unwanted cellular components, is involved in a multitude of cellular and organismal functions that are essential to maintain homeostasis. Those functions include adaptation to starvation, cell development and differentiation, innate and adaptive immunity, tumor suppression, autophagic cell death, and maintenance of stem cell stemness. Not surprisingly, an impairment or block of macroautophagy can lead to severe pathologies. A still increasing number of reports, in particular, have revealed that mutations in the autophagy-related (ATG) genes, encoding the key players of macroautophagy, are either the cause or represent a risk factor for the development of several illnesses. The aim of this review is to provide a comprehensive overview of the diseases and disorders currently known that are or could be caused by mutations in core ATG proteins but also in the so-called autophagy receptors, which provide specificity to the process of macroautophagy. Our compendium underlines the medical relevance of this pathway and underscores the importance of the eventual development of therapeutic approaches aimed at modulating macroautophagy.  相似文献   

20.
In photosynthetic cells, a large amount of hydrogen peroxide is produced in peroxisomes through photorespiration, which is a metabolic pathway related to photosynthesis. Hydrogen peroxide, a reactive oxygen species, oxidizes peroxisomal proteins and membrane lipids, resulting in a decrease in peroxisomal quality. We demonstrate that the autophagic system is responsible for the elimination of oxidized peroxisomes in plant. We isolated Arabidopsis mutants that accumulated oxidized peroxisomes, which formed large aggregates. We revealed that these mutants were defective in autophagy-related (ATG) genes and that the aggregated peroxisomes were selectively targeted by the autophagic machinery. These findings suggest that autophagy plays an important role in the quality control of peroxisomes by the selective degradation of oxidized peroxisomes. In addition, the results suggest that autophagy is also responsible for the functional transition of glyoxysomes to leaf peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号