首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
RAPD (Random Amplified Polymorphic DNA) and ISSR (Inter-Simple Sequence Repeats) markers assay were employed to validate the genetic stability of date palm (Phoenix dactylifera L.) plants multiplied through somatic embryogenesis with upto forty two in vitro subcultures. Out of the 160 RAPD and 21 ISSR primers screened, 30 RAPD and 12 ISSR primers produced a total of 347 (246 RAPDs + 101 ISSRs) clear, distinct and reproducible amplicons, which were monomorphic across all micropropagated plants (27) studied. Thus, a total 8592 bands (number of plants analysed x number of amplicons with all the primers) were generated which exhibited homogeneous banding patterns with both RAPD and ISSR markers. These results indicate that the micropropagation protocol developed by us for rapid in vitro multiplication is appropriate and suitable for clonal propagation of date palm and corroborated the fact that somatic embryogenesis can also be used as one of the safest modes for production of true-to-type plants.  相似文献   

2.
Commercial micropropagation of sugarcane is largely determined by the clonal fidelity and the cost of plants produced. Rapid production of plants in vitro reduces the frequency of offtypes in many species. By exploiting the concept of transverse thin cell layer culture, we have developed a rapid, high frequency direct plant regeneration system, called SmartSett®, for commercial sugarcane cultivars grown in Australia. Similar to conventional micropropagation, labour remains the major cost of this plant production system. Hence, to reduce the labour component, we have integrated the SmartSett® system with the RITA® temporary immersion bioreactor. Thin transverse leaf sections or fragmented leaves cultured on agar-based SmartSett® shoot induction medium were used as the starting material for RITA®. Shoot initiation on semi-solid medium prior to transferring to RITA®, culture immersion frequency, explant size and genotype determined the productivity (number of plants produced per unit culture) of the system. Results obtained with cultivar Q165 indicate that explants cultured for 45 d on SmartSett® shoot induction medium were the most prolific, producing on average 275 shoots per vessel after 45 d of culture in RITA with 1 min immersion every 12 or 24 h. Using the fragmented tissue, 14-d-old explants and 3-mm leaf tissue fragments were the most productive. Experiments with three cultivars (Q117, Q165 and Q205) showed that RITA® culture conditions need to be optimised for each cultivar for maximum plant production.  相似文献   

3.
Bushiness, the development of short, multiple stems, has been reported in some commercial hybrids of Zantedeschia, particularly the yellow-flowered cultivar Florex Gold derived from tissue culture. This cultivar exhibited a greater sensitivity to 6-benzylaminopurine when compared to four other cultivars using an in vitro root length bioassay, suggesting it may be pre-disposed to bushiness. The carry-over effect of cytokinin from micropropagation on subsequent tuber formation and flower development, in three selections of the cultivar Florex Gold, was also investigated. Cytokinin levels used in commercial Zantedeschia micropropagation protocols did not alter tuber or flower development. However, excessively high levels did affect development, also indicating that cytokinin may influence bushiness. Multi-eyed tubers used to initiate in vitro cultures were shown to have a significant effect on first year tuber formation and subsequent flower weight, compared to few-eyed tubers, although these plants did not necessarily develop bushy symptoms. Plant location within the greenhouse also influenced flowering although these plants did not display multiple stemmed bushy symptoms.  相似文献   

4.
Gerbera jamesonii (gerbera) is an important cut-flower in the global floricultural industry. Micropropagation is the main system used to clonally propagate gerbera in vitro resulting in the production of millions of plantlets each year. Numerous types of explants and protocols for micropropagation have been established and used for gerbera. Shoot tips are the commonly used explant while adventitious shoot induction from the capitulum is also a popular method. Most papers in the literature have focused on testing the influence of different types and combinations of plant growth regulators with the aim of improving the regeneration and multiplication stage of one or few cultivars. Genotype is one of the most influential factors on the response of gerbera in vitro. Despite this, no successful universal protocol has yet been developed for multiple cultivars, limiting the usefulness of current protocols for commercial biotechnology labs. Slow-growing endogenous bacteria are one of the most important problems in gerbera micropropagation but require more studies on control and prevention. Individual shoots are normally easy to root, usually in excess of 90% of plantlets, but the acclimatization stage requires improvements and new technologies to increase the survival of plants. Epigenetic variations in micropropagated gerbera are frequently observed only with high concentrations of cytokinins in the culture medium but somaclonal variation is rare.  相似文献   

5.
Dendrocalamus hamiltonii is a giant, evergreen, clumping, multipurpose bamboo with strong culms which are mainly used for construction, handicrafts and fuel. The tender shoots are also used as food. Overexploitation of existing natural stocks coupled with harvesting of culms before seed formation, a long flowering cycle, irregular and poor seed production, short seed viability, seed sterility, limited availability of offsets and rhizomes and seasonal dependence are some of the major bottlenecks in conventional propagation of this species. Therefore, alternative methods like micropropagation can fill the gap in demand and supply of true-to-type planting material. Recently, our micropropagation protocol for rapid multiplication of D. hamiltonii through axillary bud proliferation using nodal explants from mature culms was standardized, and more than 3,000 plants were transferred to the field. However, somaclonal variations are known to appear in the in vitro-derived clones due to culture-induced stresses. Therefore, the present investigation was conducted to ascertain the effect of the length of in vitro culture age on clonal fidelity of regenerated plants using random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. The genomic DNA samples (i.e. mother plant, in vitro-raised shoots from the 3rd to 30th passage, and in vitro-raised plants transferred to the field) were subjected to PCR amplification using 90 primer combinations (25 each of RAPD, ISSR and SSR, and 15 AFLP primer combinations) of which 76 (23 RAPD, 24 ISSR, 21 SSR and 8 AFLP) markers showed amplified DNA fragments. The 23 RAPD primers produced 162 distinct amplified DNA fragments from 2 (OPE-5) to 16 (OPE-16) fragments per primer, while 24 ISSR primers produced 181 distinct amplified DNA fragments with an average of 7.5 fragments per primer. The number of bands generated by SSR primers varied from 3 (RM-7 and RM-240) to 14 (RM-44), and the eight combinations of AFLP primers produced 369 distinct and scorable amplified DNA fragments with an average of 46.1 fragments per primer. Appearance of monomorphic bands with all the tested primer combinations confirmed the true-to-type nature of the in vitro clones of D. hamiltonii and hence the suitability of the developed micropropagation protocol for commercial-scale plant production.  相似文献   

6.
Summary The commercial multiplication of a large number of diverse plant species represents one of the major success stories of urilizing tissue culture technology profitably. Micropropagation has now become a multibillion dollar industry, practised all over the world. Of the various methods used to micropropagate plants, somatic embryogenesis and enhanced axillary branching have become the principal methods of multiplication. Long-term benefits of this enterprise, however, lie in the production of clonally uniform plants. The concept of genetic uniformity among micropropagated plants derived through organized meristems was exploded by several convincing reports of the incidence of somaclonal variation at morphological, cytological (chromosome number and structure), cytochemical (genome size), biochemical (proteins and isozymes), and molecular (nuclear and organellar genomes) levels. Somaclonal variation is not limited to any particular group of plants; it has been reported, for example, in ornamentals, plantation crops, vegetable and food crops, forest species and fruit trees. The upsurge of these reports, facilitated to a large extent by the technical developments made in molecular biology, is a matter of great concern for any micropropagation system. The economic consequences of somaclonal variation can be enormous in forest trees and woody plants, as they have long life cycles. Therefore, somaclonal variation has to be dispensed with if large-scale micropropagation of diverse plant species is to become not only successful but also accepted by end-users. In the light of the various factors (genotype, ploidy level, in vitro culture age, explant and culture type, etc.) that lead to somaclonal variation of divergent genetic changes at the cellular and molecular levels, genetic analysis of micropropagated plants using a multidisciplinary approach, especially at the DNA sequence level, initially and at various cultural stages, is essential. The results obtained at early multiplication stages from these tests could help in modifying the protocol/s for obtaining genetically true-to-type plants, and ultimate usage by entrepneneurs without any ambiguity.  相似文献   

7.
Pea (Pisum sativum L.) somaclones of cultivars Adept, Komet and Bohatýr were obtained after selection in vitro with Fusarium solani filtrate and fusaric acid (FA). R2 regenerants were analysed by random amplification of polymorphic DNA (RAPD; OPAB4, P-14, UBC-556) and inter-retrotransposon amplification polymorphism (IRAP; Ogre) markers. Marker UBC-556 showed different banding patterns for each cultivar, but without specific bands for selected and control plants. Markers OPAB4, P14 and Ogre were useful for clear discrimination between selected and non-selected variants of all three cultivars. Flow cytometry analysis proved the same genome size of selected and non-selected pea lines. Therefore in vitro selection by pathogen derived agents could be the efficient method for obtaining of pea somaclones with increased resistance to F. solani.  相似文献   

8.
In this study, we compared the evolution of morphological and agronomical characteristics of coconut (Cocos nucifera L.) palms produced from in vitro cultured embryos and from seeds over an 8-yr period. At the end of the second year after planting, the height and root collar diameter of plants originating from in vitro cultured embryos were significantly lower than those originating from seeds. However, palms from both categories had the same number of leaves. When palms originating from in vitro plantlets and from seeds were observed later in their development, they were similar for most morphological characteristics measured, except for minor differences in inflorescence morphology, which were still present 8 yr after planting. The flowering pattern, bunch, and fruit production were similar between the two categories of palms. These results indicate that in vitro culture of zygotic embryos does not adversely affect further development of palms in natural conditions.  相似文献   

9.
Retrotransposons (RTNs) constitute informative molecular markers for plant species as a result of their ability of integrating into a multitude of loci throughout the genome and thereby generating insertional polymorphisms between individuals. Inter-retrotransposon amplified polymorphisms (IRAPs) and the retrotransposon-microsatellite amplified polymorphisms (REMAPs) are marker systems based on long terminal repeats (LTRs) RTNs, developed for plants, that have been widely used for evolution, genetic diversity, DNA fingerprinting of cultivars and varieties, genetic mapping linkage and for detection of genetic rearrangements induced by polyploidisation. In the present study, we aimed to analyse the genetic variability among 48 Old Portuguese bread wheat cultivars using both IRAP and REMAP markers. Five IRAP and six REMAP primer combinations were used. IRAP produced 103 polymorphic fragments in a total of 113 bands. On average, 22.6 bands were amplified per IRAP primer combination. The bands ranged in size from 250 to 5000 bp. The REMAP primer combinations allowed the amplification of 53 bands, 51 of them polymorphic. An average of 8.8 REMAP bands was scored per primer combination. The REMAP bands ranged from 250 to 3000 bp. Both marker systems presented high percentages of polymorphism. However, IRAP markers were suitable for detecting genetic variability at the individual level and did not differentiate higher taxa. The REMAP maker system allowed the clustering by botanical variety and identified most of the homonym bread wheat cultivars.  相似文献   

10.

Date palm (Phoenix dactylifera) is an important crop plant both from nutritional and economic points of view. The assessment of genetic diversity and population differentiation of date palms are evaluative for its dynamic conservation and sustainable utilization of its genetic diversity. Estimates of genetic diversity based on molecular markers and fruit characteristics were performed in samples of 23 date palms growing in Ahvaz city (Khuzestan province of Iran). Clustering based on fruit morphological features separated the cultivars in different groups. These cultivars differed significantly in morphological features (P =?0.001). Start codon targeted (SCoT) polymorphism markers revealed a good level of genetic variability (10.17 to 45.76%) in these cultivars. Moreover, STRUCTURE analysis revealed the presence of within-population genetic variability. Analysis of molecular variance revealed a significant genetic difference among date palms, while it showed a higher degree of within-cultivar genetic variability compared with that of among-population diversity. Some degree of common shared alleles occurred between date palm cultivars. Gst versus Nm analysis showed that some of the SCoT markers have a high discrimination power and may have a potential local adaptive value. The Mantel test showed a significant association (r =?0.40, P =?0.001) between morphological and genetic distances. Therefore, both morphological and SCoT molecular data can be used in genetic screening of date palms in the available germplasm.

  相似文献   

11.
Prunus armeniaca L. is a worldwide known species, very important particularly in the Mediterranean basin. Microspore embryogenesis through in vitro anther culture is a widely used method to obtain haploid and doubled haploid (DHs) plants which are being routinely used in breeding programmes for new superior cultivar development in many crops. Haploid-diploidization through gametic embryogenesis allows single-step development of complete homozygous lines from heterozygous parents. In the case of fruit crops, with long reproductive cycle, a high degree of heterozygosity, large size, and, often, self-incompatibility, there is no way to obtain haploidization through conventional methods. Induction of microspore embryogenesis in vitro is switched by a stress treatment. In many species, heat or cold stress has been reported to trigger pollen embryogenesis, the response being genotype dependent. In the present work we analyzed whether microspore reprogramming could be induced in apricot cultivars by cold stress through anther culture. We report the development of an in vitro anther culture protocol in P. armeniaca L. and analyse the response of several cultivars to stress treatments and culture media for inducing pollen embryogenesis. Results showed the formation of multicellular pollen and proembryos. The effect of two culture media in the embryogenic response was also analyzed, being the responses genotype-dependent. Monitoring of the cellular changes on the microspores was performed by structural and confocal microscopy analyses. Results indicated that the reprogramming of the microspore and the first steps of the embryogenic pathway have been achieved in different varieties of P. armeniaca, which constitutes a crucial step in the design of protocols for the regeneration of microspore-derived embryos and DH plants, for future potential applications in breeding programmes of this economically important fruit tree.  相似文献   

12.
Somaclonal variation refers to the genetic and epigenetic changes in plants regenerated from plant tissue culture. In this study, using intersimple sequence repeat (ISSR) molecular markers, the somaclonal variation during micropropagation of sugarcane using temporary immersion bioreactors (TIBs) was evaluated. Apices of the cultivar Mex 69-290 were established and multiplied by ten subcultures in TIBs. After 30 d in each subculture, the number and length of shoots per explant were recorded. For the molecular analysis, ten plants were taken per subculture, and a total of 109 bands from ten ISSR primers were obtained. For each subculture, the polymorphism (%) was calculated. A dendrogram of genetic distances between subcultures and the donor plant was obtained using a matrix of Nei’s genetic distances and the unweighted pair group method with arithmetic mean (UPGMA). The results showed that the production of sugarcane shoots tends to increase until subculture 8, while shoot length decreases. ISSR markers showed the existence of somaclonal variation during micropropagation of sugarcane. The subcultures with the highest percentage of polymorphism (%) and genetic distances (GD) were the 1°, 9°, and 10° (with 10.1, 15.6, and 10.1% and 0.0222, 0.0181, and 0.0181 GD, respectively). The molecular and statistical analysis showed that in vitro establishment and the number of subcultures are both factors that affected the frequency of somaclonal variation during the micropropagation of sugarcane using TIBs. Thus, it is important to determine the optimal number of subcultures that can be made from an explant for each species to be micropropagated.  相似文献   

13.
Three grape rootstock genotypes — Dogridge (Vitis champini), SO4 (V. beriandieri × V. rupestris) and H-144 (V. vinifera × V. labrusca), and their 30 in vitro regenerated plantlets were subjected to Inter Simple Sequence Repeat (ISSR) analysis in order to ascertain the genetic stability of micropropagated plantlets. Out of 35 primers screened initially with three mother plants, 10 were finally selected based on sufficient polymorphism and appearance of clear and scorable banding patterns. Each primer generated a unique set of amplification products ranging in size from 100 to 1800 bp. These ten ISSR primers produced 81 distinct and scorable band classes with an average of 8.1 bands per primer. Based on similarity matrix and cluster analysis the rootstock genotypes and their tissue culture derivatives formed three distinct genetic groups indicating their genetic relationships. Furthermore, no variation was detected among in vitro regenerated grape plantlets and their field-grown mother plants corroborating the high level of clonal fidelity of the in vitro regenerated plantlets and supporting the multiplication protocol utilizing nodal segments as in vitro culture initiation material.  相似文献   

14.
A protocol was established for callus induction and plant regeneration of Albizia julibrissin Durazz., a multipurpose tree. Calli were induced on hypocotyl explants excised from 10- to 14-d-old in vitro seedlings cultured on Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA) alone or in combination with 6-benzylaminopurine (BA) or 6-furfurylaminopurine (kinetin). The highest frequency of organogenic callus (82.2?±?3.6%) was obtained on MS medium with 10.8 μM NAA and 4.4 μM BA. Calli were then cultured on MS medium with BA or zeatin, singly or in combination, for shoot regeneration. Calli cultured on MS medium with 13.2 μM BA and 4.6 μM zeatin produced the highest frequency of adventitious shoot regeneration (75.3?±?6.3%). Maximum rooting of shoots (73.3?±?5%) was achieved using half-strength MS medium with 4.9 μM indole-3-butyric acid. The genetic fidelity of 12 plants acclimatized to the greenhouse was assessed based on analyses of start codon targeted (SCoT) polymorphism and inter-retrotransposon amplified polymorphism (IRAP). The 14 SCoT and 7 IRAP adapted primers produced 71 and 34 scoreable fragments, of which 33 (46%) and 12 (35%) were polymorphic, respectively. The in vitro-raised plants exhibited 0.129–0.438 genetic distance from the mother plant and 0.000–0.788 distance from one another according to the SCoT and IRAP analyses. Although the culture method described here may not be suitable for clonal propagation of elite genotypes, it can be used for conservation of this plant.  相似文献   

15.
An efficient micropropagation protocol produced large number of plants of the three elite banana (Musa spp.) cultivars Robusta (AAA), Giant Governor (AAA) and Martaman (AAB) from shoot tip meristem. The genetic relationships and fidelity among the cultivars and micropropagated plants as assessed by random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers, revealed three somaclonal variants from Robusta and three from Giant Governor. A total of 5330 RAPD and 2741 ISSR fragments were generated with 21 RAPD and 12 ISSR primers in micropropagated plants. The percentage of polymorphic loci by RAPD and ISSR were found to be 1.75, 5.08 in Robusta and 0.83, 5.0 in Giant Governor respectively. Among the two marker systems used, ISSR fingerprinting detected more polymorphism than RAPD in Robusta and Giant Governor with most of the primers showing similar fingerprinting profile, whereas Martaman revealed complete genetic stability.  相似文献   

16.
Retrotransposon-based markers, such as the inter-retrotransposon-amplified polymorphism (IRAP) and the retrotransposon microsatellite-amplified polymorphism (REMAP) are highly informative, multilocus, and reveal insertional polymorphisms among plant individuals. These markers have been used for evolutionary studies, genetic diversity assessment, DNA fingerprinting, genetic mapping linkage, and for the detection of genetic rearrangements induced by polyploidization. In this study, we used IRAP and REMAP markers to assess the genetic diversity among 51 old Portuguese durum wheat cultivars belonging to 27 botanical varieties and to define their genetic relationships. Five IRAP and four REMAP primer combinations were used. IRAP markers revealed 66.3% of polymorphism and an average of 18.4 bands per primer combination which ranged in size from 450 to 3,100?bp. The REMAP technique allowed the detection of 86.36% of inter-cultivar polymorphism and an average of 11 bands per primer combination. The molecular weight of the REMAP bands ranged from 250 to 2,750?bp. The durum wheat cultivars analyzed here belong to 27 botanical varieties of the subspecies Triticum turgidum subsp. turgidum L. [syn. T. turgidum] and Triticum turgidum L. subsp. durum [syn. T. durum] (Desf.) Husn.. Our results showed that the genetic variability assessed by both the IRAP and REMAP markers did not allow the clustering of the durum wheat cultivars according to their taxonomical criteria (subspecies or botanical variety) or homonymy. Nonetheless, these markers were useful for the assessment of genetic diversity at the individual level, for the definition of genetic relationships among cultivars, and for estimation of the genetic structure of the Old collection under analysis. The achieved data could be valuable for future experiments of DNA fingerprinting, genetic improvement, and germplasm conservation in wheat.  相似文献   

17.
To determine the suitability of micropropagation techniques developed for conserving rare medicinal herb Ungernia victoris we estimated the genetic fidelity of plants produced through direct regeneration from the bulb scale segments and organogenesis from long-term callus culture. Average value of the Jaccard’s distances between explant-derived regenerants and maternal plants calculated from RAPD data was 0.5 %, while that of estimated between callus-derived regenerants and maternal cell line was 4.2 %; average distances between the objects among the explant-derived and callus-derived regenerants were 0.7 % and 2.5 %, respectively. The data obtained suggest that conditions for in vitro culture applied in this work provide relatively high genetic stability of the species upon the direct regeneration in vitro and regeneration from the long-term cultured callus.  相似文献   

18.
Date palm is a very important crop in western Asia and northern Africa, and it is the oldest domesticated fruit tree with archaeological records dating back 5000 years. The huge economic value of this crop has generated considerable interest in breeding programs to enhance production of dates. One of the major limitations of these efforts is the uncertainty regarding the number of date palm cultivars, which are currently based on fruit shape, size, color, and taste. Whole mitochondrial and plastid genome sequences were utilized to examine single nucleotide polymorphisms (SNPs) of date palms to evaluate the efficacy of this approach for molecular characterization of cultivars. Mitochondrial and plastid genomes of nine Saudi Arabian cultivars were sequenced. For each species about 60 million 100 bp paired-end reads were generated from total genomic DNA using the Illumina HiSeq 2000 platform. For each cultivar, sequences were aligned separately to the published date palm plastid and mitochondrial reference genomes, and SNPs were identified. The results identified cultivar-specific SNPs for eight of the nine cultivars. Two previous SNP analyses of mitochondrial and plastid genomes identified substantial intra-cultivar ( = intra-varietal) polymorphisms in organellar genomes but these studies did not properly take into account the fact that nearly half of the plastid genome has been integrated into the mitochondrial genome. Filtering all sequencing reads that mapped to both organellar genomes nearly eliminated mitochondrial heteroplasmy but all plastid SNPs remained heteroplasmic. This investigation provides valuable insights into how to deal with interorganellar DNA transfer in performing SNP analyses from total genomic DNA. The results confirm recent suggestions that plastid heteroplasmy is much more common than previously thought. Finally, low levels of sequence variation in plastid and mitochondrial genomes argue for using nuclear SNPs for molecular characterization of date palm cultivars.  相似文献   

19.
A. Sieboldianus (5-leaf aralia) is recalcitrant for micropropagation, but has very good landscaping potential. This research was conducted with the following objectives: (1) to study effects of BA, TDZ, CPPU, 2iP, kinetin and zeatin in woody plant medium on the performance of softwood shoot nodal explants produced by field grown 5-leaf aralia plants; (2) to investigate influences of BA or TDZ in the forcing solution on subsequentin vitro shoot initiation of nodal explants taken from forced softwood growth. Shoot initiation of softwood nodal explants from field-grown plants was promoted by adding BA, TDZ or CPPU to the culture medium. Kinetin, zeatin and 2iP were ineffective for micropropagation ofA. Sieboldianus. The forced softwood growth for use as explants was “primed” by forcing dormant stems in solution containing 200 mg 8-HQC per liter plus 2% sucrose, 44.4, 222, or 444 μM BA, or 45.4, 227, or 454 μM TDZ. BA and TDZ in the forcing solution enhanced subsequentin vitro axillary shoot initiation of nodal explants taken from forced stems by doubling the number of shoots produced per explant to 3.3 from 1.65 shoots per explant taken from field grown plants. This forcing solution technique also reduced the time needed from culture initiation to potted plants to half of the time needed for the conventional micropropagation method (12 to 14 vs. 25 to 27 weeks), thus expediting the micropropagation ofA. Sieboldianus.  相似文献   

20.
The influence of various basal medium and plant growth regulators on the efficient micropropagation of nodal explants from mature trees of alemow, sour orange, and ??Cleopatra?? mandarin citrus rootstocks was studied. All three citrus rootstock shoot cultures showed a preference for high-salt media, like Murashige and Skoog or Driver and Kuniyuki Walnut medium. Several combinations of N 6-benzyladenine (BA) and adenine (AD), kinetin (KIN) or gibberellic acid (GA) were tested to optimize the shoot proliferation phase. BA/GA combinations improved the proliferation of all the rootstocks studied, especially alemow. The addition of BA and AD to the culture medium improved shoot proliferation in sour orange and ??Cleopatra?? mandarin in the same way as BA and GA. The addition of different combinations of BA/KIN did not result in further improvement of any of the studied variables. The transfer of in vitro shoots to rooting media, containing different concentrations of indolebutyric acid (IBA) and indoleacetic acid (IAA), resulted in regeneration of complete plantlets. Alemow and ??Cleopatra?? mandarin shoots rooted well using these plant growth regulators; however, all combinations of IBA and IAA tested resulted in very low rooting percentages in sour orange. To improve rooting in sour orange and ??Cleopatra?? mandarin, different combinations of naphthaleneacetic acid (NAA) and IBA were tested. All NAA/IBA combinations produced higher rooting percentages than did the IBA/IAA combinations, and in sour orange nearly 100 % of explants developed roots. An efficient and simple protocol for the micropropagation of three citrus rootstocks, alemow, ??Cleopatra?? mandarin, and sour orange, by culturing nodes from mature plants, has been established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号