首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Land snails are highly tolerant to cadmium exposure and are able to accumulate soil cadmium independently of food ingestion. However, little information exists on the kinetics of cadmium retention in terrestrial gastropods exposed to an increase in the soil cadmium content, over time. There is also little knowledge about how exposure to cadmium-polluted soils influences shell growth and architecture. In this context, we examined cadmium accumulation in the hepatopancreas and shell of juvenile Cantareus aspersus exposed to elevating high levels of cadmium in soil. Also, the toxicity of cadmium to snails was assessed using a range of conchological endpoints, including shell height, width, volume, allometry and integrity. Test snails, aged three months, were reared under semi-field conditions, fed an uncontaminated diet and exposed first, for a period of 30 days, to a series of soil cadmium concentrations, and then, for a second period of 30 days, to soils with higher cadmium content. Cadmium showed a dose-dependent accumulation in both the hepatopancreas and shell. The kinetics of cadmium retention in the hepatopancreas of snails previously exposed to cadmium-spiked soils was significantly influenced by a new exposure event. The shell was not a relevant bioaccumulator for soil cadmium. Under the present experimental conditions, only high cadmium exposure significantly affected either the shell growth or snail survival. There was no consistent effect on shell allometry, but the shell integrity, especially in rapidly growing parts, appeared to be affected by high cadmium exposure. Our results attest to the value of hepatopancreas for describing cadmium retention in land snails and to the difficulty of using conchological parameters in field surveys for estimating the environmental hazard of soil cadmium.  相似文献   

2.
Environmental health has always been threatened by the bioaccumulation of heavy metals in the terrestrial ecosystem, affecting its quality and safety. The aim of this review is to investigate the effects of heavy metal soil contamination, using the land snail Helix aspersa as a bioindicator. H. aspersa, a common species of land snail present in the area, has been used as a bioindicator of metal contamination and represents a promising ecological indicator. Various land snails species have become popular in microcosm studies because they accumulate high concentrations of certain trace metals. They express contamination as a whole through ingestion of polluted foods, such as live plants, microorganisms, soil, and water and also through cutaneous contact and from the polluted air they breathe. Land snails are considered appropriate sentinel species because trace metals tend to accumulate in their digestive gland to allow biomonitoring of metal pollution. Different experiments demonstrate that exposure in areas chronically polluted with metals, especially with lead, often causes changes in reproduction, with a variation in the mineral composition in the snail's eggs and also in its development, due to increased energy expenses associated with detoxi?cation and the excretion process.  相似文献   

3.
To estimate isotopic changes caused by trematode parasites within a host, we investigated changes in the carbon and nitrogen isotope ratios of the freshwater snail Lymnaea stagnalis infected by trematode larvae. We measured carbon and nitrogen stable isotopes within the foot, gonad, and hepatopancreas of both infected and uninfected snails. There was no significant difference in the delta13C and delta15N values of foot and gonad between infected and uninfected snails; thus, trematode parasite infections may not cause changes in snail diets. However, in the hepatopancreas, delta15N values were significantly higher in infected than in uninfected snails. The 15N enrichment in the hepatopancreas of infected snails is caused by the higher 15N ratio in parasite tissues. Using an isotope-mixing model, we roughly estimated that the parasites in the hepatopancreas represented from 0.8 to 3.4% of the total snail biomass, including the shell.  相似文献   

4.
5.
Invasive terrestrial plants often substantially reshape environments, yet how such invasions affect terrestrial snail assemblages remains understudied. We investigated how snail assemblages in deciduous forest soils with dense Berberis thunbergii (Japanese barberry), an invasive shrub in eastern North America, differ from forest areas lacking the shrub. Leaf litter and soil samples were collected from forest patches with dense B. thunbergii understories and adjacent control areas within two exurban forest tracts in western Pennsylvania, U.S.A. Snails were identified to species and quantified by standard diversity metrics. Contrary to our expectations, snails were significantly more abundant and diverse in B. thunbergii-invaded areas. Despite differences in abundance, the snail community composition did not differ between invaded and control habitats. The terrestrial snail assemblage we observed, which was composed entirely of native species, appears to respond favorably to B. thunbergii invasion and therefore may not be negatively impacted by physicochemical changes to soils typically observed in association with the plant. Such findings could reflect the fact that B. thunbergii likely creates more favorable habitat for snails by creating cooler, more humid, and more alkaline soil environments. However, the snail assemblages we retrieved may consist mostly of species with high tolerance to environmental degradation due to a legacy of land use change and acid deposition in the region.  相似文献   

6.
This paper discusses observations on the emergence of Schistosoma mansoni from the snail Biomphalaria glabrata exposed to manganese sulfate. Such treatment, when snails were exposed to a short pulse of light, terminated cercarial emergence. However, with 6 hr of light, a relatively large number of cercariae emerged, indicating that a long photoperiod can override manganese inhibition. Manganese also inhibited emergence of cercariae from the sporocyst and retarded maturation of developing cercariae. Coincidental observations indicated that manganese exerts a prolonged anesthetic and relaxing action on the snail.  相似文献   

7.
A microcosm experiment was performed to investigate temporal (up to 16 weeks) and spatial variation in metal transfer in a soil–food (nettle)–snail (Cepaea nemoralis) food chain and biomarker responses in the digestive gland of the same snails. Adult snails were sampled from an uncontaminated site and transferred to five sites located 0.5, 2.5, 3, 5, and 10 km from a historically polluted point source. All sites were park areas where grasslands interfered with patches of deciduous forest. Soil physicochemical properties (pH, clay%, OC%) significantly explained the uptake of metals by nettle. Concentrations of metals in the digestive gland (DG) of snails were significantly related to those in nettle, but rarely to soil physicochemical properties. In general metal concentrations in the DG fluctuated while As, Ni, Pb and Zn showed a site dependent increase with time. Despite the long term exposure, biomarker concentrations (lipid, glycogen, proteins, glutathione-S-transferases), and shell morphology, were not related to DG metal concentrations. Our investigation emphasizes the need for controlled long-term studies on the transfer and effects of metals in food chains since short term studies might only show temporary physiological changes due to experimental acclimation.  相似文献   

8.
The evolution of shell polymorphism in terrestrial snails is a classic textbook example of the effect of natural selection in which avian and mammalian predation represents an important selective force on gene frequency. However, many questions about predation remain unclear, especially in the case of mammals. We collected 2000 specimens from eight terrestrial gastropod species to investigate the predation pressure exerted by birds and mice on snails. We found evidence of avian and mammalian predation in 26.5% and 36.8% of the shells. Both birds and mammals were selective with respect to snail species, size and morphs. Birds preferred the brown-lipped banded snail Cepaea nemoralis (L.) and mice preferred the burgundy snail Helix pomatia L. Mice avoided pink mid-banded C. nemoralis and preferred brown mid-banded morphs, which were neglected by birds. In contrast to mice, birds chose larger individuals. Significant differences in their predatory pressure can influence the evolution and maintenance of shell size and polymorphism of shell colouration in snails.  相似文献   

9.
The effects of a mud snail, Cipangopaludina chinensis laeta (Martens) (Architaenioglossa: Viviparidae), on terrestrial arthropods through rice plant development in a paddy field were investigated in 2013 and 2014 by a field experiment. There were no significant differences between treatments in the abundance of aquatic organisms, which comprised several functional feeding groups in both years. The presence of mud snails did not significantly affect plant height and soil plant analysis development values, either, except in June 2014, when tiller number and biomass of the rice plants tended to be larger in plots with snails versus those without. Significantly higher abundances of terrestrial organisms, including phytophagous pest insects and other insects, but not natural enemies of the pest insects, occurred in plots with snails. As shown by principal component analysis, the community structure of the terrestrial organisms was significantly different between the two treatments in both years. The results of this study indicate that mud snails play an important role in the paddy field ecosystem, in which they influence the biomass production of rice plants and the abundance of organisms in terrestrial ecosystems through direct and indirect interactions at different trophic levels.  相似文献   

10.
Most of the shell material in snails is composed of calcium carbonate but the organic shell matrix determines the properties of calcium carbonate crystals. It has been shown that the deposition of calcium carbonate is affected by the ingestion of organic compounds. We hypothesize that organic compounds not synthesized by the snails are important for shell strength and must be obtained from the diet. We tested this idea indirectly by evaluating whether the abundance of the organic matter that snails eat is related to the strength of their shells. We measured shell crushing resistance in the snail Mexipyrgus churinceanus and the abundance of the most common aquatic macrophyte, the water lily Nymphaea ampla, in ten bodies of water in the valley of Cuatro Ciénegas, Mexico. We used stable isotopes to test the assumption that these snails feed on water lily organic matter. We also measured other factors that can affect crushing resistance, such as the density of crushing predators, snail density, water pH, and the concentration of calcium and phosphorus in the water. The isotope analysis suggested that snails assimilate water lily organic matter that is metabolized by sediment bacteria. The variable that best explained the variation in crushing resistance found among sites was the local abundance of water lilies. We propose that the local amount of water lily organic matter provides organic compounds important in shell biomineralization, thus determining crushing resistance. Hence, we propose that a third trophic level could be important in the coevolution of snail defensive traits and predatory structures.  相似文献   

11.
Manganese is an essential dietary nutrient and trace element with important roles in mammalian development, metabolism, and antioxidant defense. In healthy individuals, gastrointestinal absorption and hepatobiliary excretion are tightly regulated to maintain systemic manganese concentrations at physiologic levels. Interactions of manganese with other essential metals following high dose ingestion are incompletely understood. We previously reported that gavage manganese exposure in rats resulted in higher tissue manganese concentrations when compared with equivalent dietary or drinking water manganese exposures. In this study, we performed follow-up evaluations to determine whether oral manganese exposure perturbs iron, copper, or zinc tissue concentrations. Rats were exposed to a control diet with 10 ppm manganese or dietary, drinking water, or gavage exposure to approximately 11.1?mg manganese/kg body weight/day for 7 or 61 exposure days. While manganese exposure affected levels of all metals, particularly in the frontal cortex and liver, copper levels were most prominently affected. This result suggests an under-appreciated effect of manganese exposure on copper homeostasis which may contribute to our understanding of the pathophysiology of manganese toxicity.  相似文献   

12.
【背景】福寿螺因其食性杂、抗逆性和繁殖力强以及自然天敌少等不断扩散,侵害农作物,被列为我国首批外来入侵物种。国内外学者一直致力于研究对其的防治与监控。自然界中福寿螺存在2种壳色——黄色和黑色,壳色受遗传因素和环境因素的双重影响。广东省福寿螺多以黑色为主,福寿螺倾向于与不同壳色的螺交配。壳色在一定程度上影响其交配的选择性,但2种壳色的福寿螺繁殖力指标差异不显著。而关于这2种壳色的螺在形态学上的差异鲜有报道。【方法】利用生物统计软件和分析方法进行相关性分析、通径分析及多元回归分析,计算相关系数、通径系数和决定系数,研究2种壳色福寿螺形态性状与体质量的关系。【结果】2种壳色福寿螺的体质量、层高的变异系数较大,且黄色比黑色变异系数大。对黄色福寿螺体质量影响较大的依次为壳高、口宽;对黑色福寿螺体质量影响较大的依次为口宽、层高。【结论与意义】2种壳色福寿螺在形态性状方面差异显著,可以将壳色作为特征标记,为福寿螺的监测与灾害评估提供参考。  相似文献   

13.
During the last few years the subject of metallothioneins (MTs) in terrestrial invertebrates has gained increasing attention. One reason for this may be that terrestrial invertebrates provide new insights into the biological diversity of MTs, with the potential of discovering alternative models of structural and functional relationships. Four groups of terrestrial invertebrates have been studied in detail, namely nematodes, insects, snails and earthworms, with the present article focusing on MTs from the latter two groups. Snails are interesting because they possess distinct MT isoforms involved in different metal-specific tasks. In the Roman snail (Helix pomatia), for example, one isoform is predominantly expressed in the midgut gland, accounting for the accumulation, binding and detoxification of cadmium. The second isoform, which is present in the snail's mantle, is substantially different regarding its primary structure. Furthermore, it binds nearly exclusively copper, and thus is probably involved in the homeostatic regulation of essential trace elements. Earthworm MTs merit our attention because of another peculiarity: they seem to be much more unstable than snail MTs, particularly under conventional conditions of preparation. The cDNA of the brandling worm (Eisenia foetida), for instance, codes for a putative MT, which is about twice the size of the actual protein. The isolated MT peptide binds four Cd2+ ions and represents a one-domain MT entity that is stable and functional in vitro. This strongly suggests that earthworm MTs are either posttranslationally modified, or subjected to enzymatic cleavage during preparation. Both snail and earthworm MTs are inducible by metal exposure, especially by cadmium, thus supporting the idea of using them as potential biomarkers for environmental metal pollution. Whilst snail MTs have already been tested in this respect with some success, the use of earthworm MTs as biomarkers still remains to be evaluated, especially in the light of the unknown significance of their posttranslational instability.  相似文献   

14.
Freshwater crabs play an important role for the diversification of shell morphologies in freshwater gastropods. For example, the radiation of the freshwater crab genus Platythelphusa in Lake Tanganyika is thought to have driven shell diversification of the lake’s snail fauna, promoting the evolution of thalassoid shells. No comparable thalassoid snails are known from Lake Malawi. Accordingly, it was hypothesized that the lake’s only freshwater crab, Potamonautes lirrangensis, is not a snail predator. We tested this hypothesis using feeding experiments with specimens caught in the southern part of Lake Malawi. Individual crabs were held in experimental containers offshore and were presented with various food items overnight, after which ingestion frequency was recorded. Potamonautes lirrangensis can be characterized as a scavenger that is opportunistically carnivorous. A preference for fish and snail flesh could be observed, indicating a bias toward carnivory. We observed occasional cracking of the shell in different snail species, with frequent ingestion of artificially crushed specimens, suggesting that crabs do attempt to feed on snails. However, the investigated Lake Malawi gastropods appear to be partly protected against crab predation through thick-walled and low-spired shells (especially Lanistes and Bellamya), obviating the evolution of thalassoid shells carrying rims, ridges, or spines.  相似文献   

15.
John  Machin 《Journal of Zoology》1967,152(1):55-65
Laboratory measurements indicate that observed differences in the rate of water-loss from inactive Helix aspersa, Otala lactea and Sphincterochila boissieri are due to morphological adaptations such as a thicker shell, reduced aperture and thicker epiphragm. These modifications enable terrestrial snails to inhabit dryer environments by increasing the length of time the snail can remain inactive.  相似文献   

16.
The kinetics of Cd trophic transfer from benthic diatoms to the Prosobranch mud snail Hydrobia ulvae was described experimentally in microcosms using Cd contaminated microalgae (0.71, 3.63 and 8.54 μg Cd mg Chl a−1). The depurated mud snails (2 ind. cm−2) were allowed to feed on the stable Cd pre-contaminated benthic diatoms at the concentration of 2 mg Chl a dm−3 to ensure that the algal food availability was not a limiting factor. Weight-specific ingestion rate (IR) and assimilation efficiency (AE) were calculated by an indirect mass-balance method on the basis of metal residues in the snail tissues, and metal loss (efflux rate, Δe) was estimated for the time intervals when a decrease or no change in the tissue metal concentrations occurred.A similar pattern of consumption was observed in all experiments: ingestion was rapid over the first 4 h, followed by slower ingestion period (between 4 and 16 h). The feeding behaviour of H. ulvae was not affected by the different diatom Cd concentrations. An analogous two-phasic pattern was observed in the tissue Cd concentration changes. Net accumulation of Cd in the snails was observed for the two highest exposures, indicating that the Cd threshold concentration in food above which metal is retained in the body, lies between 0.71 and 3.63 μg Cd mg Chl a−1. The respective 16-h AEs were 0.024% and 0.004% potentially due to rapid gut-passage of microalgae and/or diminished nutritional value of the food. The efflux rates, calculated for the last 12 h of exposure, were positively related to the concentration of Cd in the snail tissues and microalgae. This study demonstrated that trophic transfer should be considered as a source of Cd accumulation in snails and the ability of H. ulvae to enhance their rate of Cd elimination in response to elevated metal concentrations in the ambient environment is relevant for models predicting metal bioaccumulation and toxicity in coastal and estuarine systems.  相似文献   

17.
Concepts and developments for a new field in ecotoxicology, referred to as "landscape ecotoxicology," were proposed in the 1990s; however, to date, few studies have been developed in this emergent field. In fact, there is a strong interest in developing this area, both for renewing the concepts and tools used in ecotoxicology as well as for responding to practical issues, such as risk assessment. The aim of this study was to investigate the spatial heterogeneity of metal bioaccumulation in animals in order to identify the role of spatially explicit factors, such as landscape as well as total and extractable metal concentrations in soils. Over a smelter-impacted area, we studied the accumulation of trace metals (TMs: Cd, Pb and Zn) in invertebrates (the grove snail Cepaea sp and the glass snail Oxychilus draparnaudi) and vertebrates (the bank vole Myodes glareolus and the greater white-toothed shrew Crocidura russula). Total and CaCl(2)-extractable concentrations of TMs were measured in soils from woody patches where the animals were captured. TM concentrations in animals exhibited a high spatial heterogeneity. They increased with soil pollution and were better explained by total rather than CaCl(2)-extractable TM concentrations, except in Cepaea sp. TM levels in animals and their variations along the pollution gradient were modulated by the landscape, and this influence was species and metal specific. Median soil metal concentrations (predicted by universal kriging) were calculated in buffers of increasing size and were related to bioaccumulation. The spatial scale at which TM concentrations in animals and soils showed the strongest correlations varied between metals, species and landscapes. The potential underlying mechanisms of landscape influence (community functioning, behaviour, etc.) are discussed. Present results highlight the need for the further development of landscape ecotoxicology and multi-scale approaches, which would enhance our understanding of pollutant transfer and effects in ecosystems.  相似文献   

18.
Like all other animal species, terrestrial pulmonate snails require Cu as an essential trace element. On the other hand, elevated amounts of Cu can exert toxic effects on snails. The homeostatic regulation of Cu must therefore be a pivotal goal of terrestrial pulmonates to survive. Upon administration of Cu, snails accumulate the metal nearly equally in most of their organs. Quantitative studies in connection with HPLC and electrospray ionization mass spectrometry reveal that a certain fraction of Cu in snails is bound to a Cu-metallothionein (Cu-MT) isoform that occurs in most organs at constant concentrations, irrespective of whether the animals had been exposed to physiological or elevated amounts of Cu. In situ hybridization demonstrates that at the cellular level, the Cu-binding MT isoform is exclusively expressed in the so-called pore cells (or rhogocytes), which can be found in all major snail organs. The number of pore cells with Cu-MT mRNA reaction products remains unaffected by Cu exposure. Rhogocytes also are major storage sites of Cu in a granular form, the metal quickly entering the snail tissues upon elevated exposure. The number of rhogocytes with granular Cu precipitations strongly increases upon Cu administration via food. Thus, whereas Cu-MT in the rhogocytes represents a stable pool of Cu that apparently serves physiological tasks, the granular Cu precipitations form a second, quickly inducible, and more easily available pool of the metal that serves Cu regulation by responding to superphysiological metal exposure.  相似文献   

19.
Unlike plants and vertebrates, the ecological preferences, and potential vulnerabilities of soil invertebrates to environmental change, remain poorly understood in terrestrial ecosystems globally. We conducted a cross‐biome survey including 83 locations across six continents to advance our understanding of the ecological preferences and vulnerabilities of the diversity of dominant and functionally important soil invertebrate taxa, including nematodes, arachnids and rotifers. The diversity of invertebrates was analyzed through amplicon sequencing. Vegetation and climate drove the diversity and dominant taxa of soil invertebrates. Our results suggest that declines in forest cover and plant diversity, and reductions in plant production associated with increases in aridity, can result in reductions of the diversity of soil invertebrates in a drier and more managed world. We further developed global atlases of the diversity of these important soil invertebrates, which were cross‐validated using an independent database. Our study advances the current knowledge of the ecological preferences and vulnerabilities of the diversity and presence of functionally important soil invertebrates in soils from across the globe. This information is fundamental for improving and prioritizing conservation efforts of soil genetic resources and management policies.  相似文献   

20.
The aim of the present study was to determine the toxicity of fluorides on energy metabolism in muscles of the Helix aspersa maxima snail. Qualitative and quantitative analysis of purine compounds was performed in slices of foot from mature snails with high-performance liquid chromatography. Fluoride concentrations were measured using an ion-selective electrode and gas chromatography. The results show that exposure to fluoride pollution was accompanied by a statistically significant increase in fluoride concentrations in soft tissues. This effect was already noticeable with the smallest fluoride dose. Accumulation was greatest in the shell. There is a significant and positive correlation between fluoride concentrations in foot muscles and guanine and inosine nucleotides or uridine content. The content of low-energy guanylate, inosylate and oxypurine in foot muscles significantly increased with rising dose of fluoride. The difference as compared with controls was significant only for the highest dose of fluoride. Interestingly, uric acid, the final product of purine catabolism, dominated quantitatively in the foot muscles of snails. In conclusion, increased low-energy guanylate and inosylate as well as decreased xanthine concentrations in snail muscle can be indicators of the toxic influence of fluoride on the organism. The measuring of fluoride accumulation in the shell is the most suitable bioindicator of fluoride pollution in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号