首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules) would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock ∼11000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors.  相似文献   

2.
High-throughput screening (HTS) is a powerful approach to drug discovery, but many lead compounds are found to be unsuitable for use in vivo after initial screening. Screening in small animals like C. elegans can help avoid these problems, but this system has been limited to screens with low-throughput or no specific molecular target. We report the first in vivo 1536-well plate assay for a specific genetic pathway in C. elegans. Our assay measures induction of a gene regulated by SKN-1, a master regulator of detoxification genes. SKN-1 inhibitors will be used to study and potentially reverse multidrug resistance in parasitic nematodes. Screens of two small commercial libraries and the full Molecular Libraries Small Molecule Repository (MLSMR) of ∼364,000 compounds validate our platform for ultra HTS. Our platform overcomes current limitations of many whole-animal screens and can be widely adopted for other inducible genetic pathways in nematodes and humans.  相似文献   

3.
Myristoylation is a lipid modification involving the addition of a 14-carbon unsaturated fatty acid, myristic acid, to the N-terminal glycine of a subset of proteins, a modification that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in human cancers, and for infectious diseases caused by fungi, viruses and protozoan parasites. We purified Caenorhabditis elegans and Brugia malayi NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and peptide substrates. Biochemical and structural analyses both revealed that the nematode enzymes are canonical NMTs, sharing a high degree of conservation with protozoan NMT enzymes. Inhibitory compounds that target NMT in protozoan species inhibited the nematode NMTs with IC50 values of 2.5–10 nM, and were active against B. malayi microfilariae and adult worms at 12.5 µM and 50 µM respectively, and C. elegans (25 µM) in culture. RNA interference and gene deletion in C. elegans further showed that NMT is essential for nematode viability. The effects observed are likely due to disruption of the function of several downstream target proteins. Potential substrates of NMT in B. malayi are predicted using bioinformatic analysis. Our genetic and chemical studies highlight the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against nematode diseases including filariasis.  相似文献   

4.
To characterize the denitrifying phosphorus (P) uptake properties of “Candidatus Accumulibacter phosphatis,” a sequencing batch reactor (SBR) was operated with acetate. The SBR operation was gradually acclimated from anaerobic-oxic (AO) to anaerobic-anoxic-oxic (A2O) conditions by stepwise increases of nitrate concentration and the anoxic time. The communities of “Ca. Accumulibacter” and associated bacteria at the initial (AO) and final (A2O) stages were compared using 16S rRNA and polyphosphate kinase genes and using fluorescence in situ hybridization (FISH). The acclimation process led to a clear shift in the relative abundances of recognized “Ca. Accumulibacter” subpopulations from clades IIA > IA > IIF to clades IIC > IA > IIF, as well as to increases in the abundance of other associated bacteria (Dechloromonas [from 1.2% to 19.2%] and “Candidatus Competibacter phosphatis” [from 16.4% to 20.0%]), while the overall “Ca. Accumulibacter” abundance decreased (from 55.1% to 29.2%). A series of batch experiments combined with FISH/microautoradiography (MAR) analyses was performed to characterize the denitrifying P uptake properties of the “Ca. Accumulibacter” clades. In FISH/MAR experiments using slightly diluted sludge (∼0.5 g/liter), all “Ca. Accumulibacter” clades successfully took up phosphorus in the presence of nitrate. However, the “Ca. Accumulibacter” clades showed no P uptake in the presence of nitrate when the sludge was highly diluted (∼0.005 g/liter); under these conditions, reduction of nitrate to nitrite did not occur, whereas P uptake by “Ca. Accumulibacter” clades occurred when nitrite was added. These results suggest that the “Ca. Accumulibacter” cells lack nitrate reduction capabilities and that P uptake by “Ca. Accumulibacter” is dependent upon nitrite generated by associated nitrate-reducing bacteria such as Dechloromonas and “Ca. Competibacter.”  相似文献   

5.
6.
Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5–7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics.  相似文献   

7.
Germination of Bacillus spores with a high pressure (HP) of ∼150 MPa is via activation of spores'' germinant receptors (GRs). The HP germination of multiple individual Bacillus subtilis spores in a diamond anvil cell (DAC) was monitored with phase-contrast microscopy. Major conclusions were that (i) >95% of wild-type spores germinated in 40 min in a DAC at ∼150 MPa and 37°C but individual spores'' germination kinetics were heterogeneous; (ii) individual spores'' HP germination kinetic parameters were similar to those of nutrient-triggered germination with a variable lag time (Tlag) prior to a period of the rapid release (ΔTrelease) of the spores'' dipicolinic acid in a 1:1 chelate with Ca2+ (CaDPA); (iii) spore germination at 50 MPa had longer average Tlag values than that at ∼150 MPa, but the ΔTrelease values at the two pressures were identical and HPs of <10 MPa did not induce germination; (iv) B. subtilis spores that lacked the cortex-lytic enzyme CwlJ and that were germinated with an HP of 150 MPa exhibited average ΔTrelease values ∼15-fold longer than those for wild-type spores, but the two types of spores exhibited similar average Tlag values; and (v) the germination of wild-type spores given a ≥30-s 140-MPa HP pulse followed by a constant pressure of 1 MPa was the same as that of spores exposed to a constant pressure of 140 MPa that was continued for ≥35 min; (vi) however, after short 150-MPa HP pulses and incubation at 0.1 MPa (ambient pressure), spore germination stopped 5 to 10 min after the HP was released. These results suggest that an HP of ∼150 MPa for ≤30 s is sufficient to fully activate spores'' GRs, which remain activated at 1 MPa but can deactivate at ambient pressure.  相似文献   

8.
Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable “next generation” target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are “druggable.” One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease.  相似文献   

9.
CAHs, as a cleaning solvent, widely contaminated shallow groundwater with the development of manufacturing in China''s Yangtze River Delta. This study focused on the distribution of CAHs, and correlations between CAHs and environmental variables in a shallow groundwater in Shanghai, using kriging interpolation and multifactorial analysis. The results showed that the overall CAHs plume area (above DIV) was approximately 9,000 m2 and located in the 2–4 m underground, DNAPL was accumulated at an area of approximately 1,400 m2 and located in the 6-8m sandy silt layer on the top of the muddy silty clay. Heatmap of PPC for CAHs and environmental variables showed that the correlation between “Fe2+” and most CAHs such as “1,1,1-TCA”, “1,1-DCA”, “1,1-DCE” and “%TCA” were significantly positive (p<0.001), but “%CA” and/or “%VC” was not, and “Cl-” was significantly positive correlated with “1,1-DCA” and “1,1-DCE” (p<0.001). The PCA demonstrated that the relative proportions of CAHs in groundwater were mostly controlled by the sources and the natural attenuation. In conclusion, the combination of geographical and chemometrics was helpful to establishing an aerial perspective of CAHs and identifying reasons for the accumulation of toxic dechlorination intermediates, and could become a useful tool for characterizing contaminated sites in general.  相似文献   

10.
As the climate warms, species that cannot tolerate changing conditions will only persist if they undergo range shifts. Redistribution ability may be particularly variable for benthic marine species that disperse as pelagic larvae in ocean currents. The blue mussel, Mytilus edulis, has recently experienced a warming-related range contraction in the southeastern USA and may face limitations to northward range shifts within the Gulf of Maine where dominant coastal currents flow southward. Thus, blue mussels might be especially vulnerable to warming, and understanding dispersal patterns is crucial given the species'' relatively long planktonic larval period (>1 month). To determine whether trace elemental “fingerprints” incorporated in mussel shells could be used to identify population sources (i.e. collection locations), we assessed the geographic variation in shell chemistry of blue mussels collected from seven populations between Cape Cod, Massachusetts and northern Maine. Across this ∼500 km of coastline, we were able to successfully predict population sources for over two-thirds of juvenile individuals, with almost 80% of juveniles classified within one site of their collection location and 97% correctly classified to region. These results indicate that significant differences in elemental signatures of mussel shells exist between open-coast sites separated by ∼50 km throughout the Gulf of Maine. Our findings suggest that elemental “fingerprinting” is a promising approach for predicting redistribution potential of the blue mussel, an ecologically and economically important species in the region.  相似文献   

11.
12.
13.
Transgenic mice (named “Omega mice”) were engineered to carry both optimized fat-1 and fat-2 genes from the roundworm Caenorhabditis elegans and are capable of producing essential omega-6 and omega-3 fatty acids from saturated fats or carbohydrates. When maintained on a high-saturated fat diet lacking essential fatty acids or a high-carbohydrate, no-fat diet, the Omega mice exhibit high tissue levels of both omega-6 and omega-3 fatty acids, with a ratio of ∼1∶1. This study thus presents an innovative technology for the production of both omega-6 and omega-3 essential fatty acids, as well as a new animal model for understanding the true impact of fat on human health.  相似文献   

14.
15.
16.
“LAUGHING GAS is the newest thing for kids seeking kicks,” the Stanford Daily reports. “They sniff it.”So begins a news story in the Los Angeles Times of 26 January 1967. The story continues:“It''s the latest way to travel, or so say a growing group of devotees on the campus,” the university student paper said. “It can produce much the same effects as psychedelic drugs, they claim, and it''s cheaper to obtain.”“One student said he buys the gas, nitrous oxide, from a medical supply house. `They think I am anesthetizing rats,'' he explained.“Campus medical authorities said the gas, sniffed `in sufficient amounts... could produce all the states of anesthesia, including the final stage—death.''”  相似文献   

17.

Background

To examine histomorphometrically the parapapillary region in human eyes.

Methodology/Principal Findings

The histomorphometric study included 65 human globes (axial length:21–37 mm). On anterior-posterior histological sections, we measured the distance Bruch''s membrane end (BME)-optic nerve margin (“Gamma zone”), BME-retinal pigment epithelium (RPE) (“Beta zone”), BME-beginning of non-occluded choriocapillaris, and BME-beginning of photoreceptor layer. “Delta zone” was defined as part of gamma zone in which blood vessels of at least 50 µm diameter were not present over a length of >300 µm. Beta zone (mean length:0.35±0.52 mm) was significantly (P = 0.01) larger in the glaucoma group than in the non-glaucomatous group. It was not significantly (P = 0.28) associated with axial length. Beta zone was significantly (P = 0.004) larger than the region with occluded choriocapillaris. Gamma zone (mean length:0.63±1.25 mm) was associated with axial length (P<0.001;r2 = 0.73) with an increase starting at an axial length of 26.5 mm. It was not significantly (P = 0.24) associated with glaucomatous optic neuropathy. Delta zone (present only in eyes with axial length of ≥27 mm) was associated with axial length (P = 0.001) and scleral flange length (P<0.001) but not with glaucoma (P = 0.73).

Conclusions/Significance

Parapapillary gamma zone (peripapillary sclera without overlying choroid, Bruch''s membrane and deep retinal layers) was related with axial globe elongation and was independent of glaucoma. Delta zone (no blood vessels >50 µm diameter within gamma zone) was present only in highly axially elongated globes and was not related with glaucoma. Beta zone (Bruch''s membrane without RPE) was correlated with glaucoma but not with globe elongation. Since the region with occluded choriocapillaris was smaller than beta zone, complete loss of RPE may have occurred before complete choriocapillaris closure.  相似文献   

18.
We have recently proposed a new model of cancer metabolism to explain the role of aerobic glycolysis and L-lactate production in fueling tumor growth and metastasis. In this model, cancer cells secrete hydrogen peroxide (H2O2), initiating oxidative stress and aerobic glycolysis in the tumor stroma. This, in turn, drives L-lactate secretion from cancer-associated fibroblasts. Secreted L-lactate then fuels oxidative mitochondrial metabolism (OXPHOS) in epithelial cancer cells, by acting as a paracrine onco-metabolite. We have previously termed this type of two-compartment tumor metabolism the “reverse Warburg effect,” as aerobic glycolysis takes place in stromal fibroblasts, rather than epithelial cancer cells. Here, we used MCT4 immunostaining of human breast cancer tissue microarrays (TMAs; >180 triple-negative patients) to directly assess the prognostic value of the “reverse Warburg effect.” MCT4 expression is a functional marker of hypoxia, oxidative stress, aerobic glycolysis and L-lactate efflux. Remarkably, high stromal MCT4 levels (score = 2) were specifically associated with decreased overall survival (<18% survival at 10 years post-diagnosis). In contrast, patients with absent stromal MCT4 expression (score = 0), had 10-year survival rates of ∼97% (p-value < 10−32). High stromal levels of MCT4 were strictly correlated with a loss of stromal Cav-1 (p-value < 10−14), a known marker of early tumor recurrence and metastasis. In fact, the combined use of stromal Cav-1 and stromal MCT4 allowed us to more precisely identify high-risk triple-negative breast cancer patients, consistent with the goal of individualized risk-assessment and personalized cancer treatment. However, epithelial MCT4 staining had no prognostic value, indicating that the “conventional” Warburg effect does not predict clinical outcome. Thus, the “reverse Warburg effect” or “parasitic” energy-transfer is a key determinant of poor overall patient survival. As MCT4 is a druggable target, MCT4 inhibitors should be developed for the treatment of aggressive breast cancers, and possibly other types of human cancers. Similarly, we discuss how stromal MCT4 could be used as a biomarker for identifying high-risk cancer patients that could likely benefit from treatment with FDA-approved drugs or existing MCT-inhibitors (such as, AR-C155858, AR-C117977 and AZD-3965).Key words: caveolin-1, oxidative stress, pseudohypoxia, lactate shuttle, MCT4, metabolic coupling, tumor stroma, predictive biomarker, SLC16A3, monocarboxylic acid transporter, two-compartment tumor metabolism  相似文献   

19.
Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as “acidified”). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This “switch-like” relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell''s pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways.  相似文献   

20.
Parasitic roundworm infections plague more than 2 billion people (1/3 of humanity) and cause drastic losses in crops and livestock. New anthelmintic drugs are urgently needed as new drug resistance and environmental concerns arise. A “chokepoint reaction” is defined as a reaction that either consumes a unique substrate or produces a unique product. A chokepoint analysis provides a systematic method of identifying novel potential drug targets. Chokepoint enzymes were identified in the genomes of 10 nematode species, and the intersection and union of all chokepoint enzymes were found. By studying and experimentally testing available compounds known to target proteins orthologous to nematode chokepoint proteins in public databases, this study uncovers features of chokepoints that make them successful drug targets. Chemogenomic screening was performed on drug-like compounds from public drug databases to find existing compounds that target homologs of nematode chokepoints. The compounds were prioritized based on chemical properties frequently found in successful drugs and were experimentally tested using Caenorhabditis elegans. Several drugs that are already known anthelmintic drugs and novel candidate targets were identified. Seven of the compounds were tested in Caenorhabditis elegans and three yielded a detrimental phenotype. One of these three drug-like compounds, Perhexiline, also yielded a deleterious effect in Haemonchus contortus and Onchocerca lienalis, two nematodes with divergent forms of parasitism. Perhexiline, known to affect the fatty acid oxidation pathway in mammals, caused a reduction in oxygen consumption rates in C. elegans and genome-wide gene expression profiles provided an additional confirmation of its mode of action. Computational modeling of Perhexiline and its target provided structural insights regarding its binding mode and specificity. Our lists of prioritized drug targets and drug-like compounds have potential to expedite the discovery of new anthelmintic drugs with broad-spectrum efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号