首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrogen bond systems of cellulose and its derivatives are one of the most important factors regarding their physical- and chemical properties such as solubility, crystallinity, gel formation, and resistance to enzymatic degradation. In this paper, it was attempted to clarify the intra- and intermolecular hydrogen bond formation in regioselectively functionalized 3-mono-O-methyl cellulose (3MC). First, the 3MC was synthesized and the cast film thereof was characterized in comparison to 2,3-di-O-methyl cellulose, 6-mono-O-methyl cellulose, and 2,3,6-tri-O-methyl cellulose by means of wide angle X-ray diffraction (WAXD) and (13)C cross polarization/magic angle spinning NMR spectroscopy. Second, the hydrogen bonds in the 3MC film were analyzed by means of FTIR spectroscopy in combination with a curve fitting method. After deconvolution, the resulting two main bands (Fig. 3) indicated that instead of intramolecular hydrogen bonds between position OH-3 and O-5 another intramolecular hydrogen bond between OH-2 and OH-6 may exist. The large deconvoluted band at 3340cm(-1) referred to strong interchain hydrogen bonds involving the hydroxyl groups at C-6. The crystallinity of 54% calculated from the WAXD supports also the dependency of the usually observed crystallization in cellulose of the hydroxyl groups at C-6 to engage in interchain hydrogen bonding.  相似文献   

2.
The closo- and nido-carborane-diphenylphosphine complexes [Hg2{1,2-(PPh2)2-1,2-C2B10H10}2(μ-Cl2)2(μ-HgCl2)3]·2CH2Cl2 (1) and [HgCl(PPh3){7,8-(PPh2)2-7,8-C2B9H10}] (2) have been synthesized and characterized by elemental analysis, FT-IR and X-ray structure determination. The X-ray structure analysis for these two complexes showed that the carborane cage ligand was coordinated bidentately to the Hg(II) center through its two phosphorus atoms. The coordination geometry of the mercury atom complexed by P2Cl2 unit in complex 1 or P3Cl unit in complex 2 was a distorted tetrahedron, while the mercury atom in complex 2 coordinated to six Cl atoms was a slightly distorted octahedron. X-ray analysis reveals that the complex 1 forms a 1D chain coordination polymer via bridged Hg-Cl bonds. For complex 2, it displays a 3D network constructed by the C-H···Cl hydrogen bonds and C-H···H-B dihydrogen bonds.  相似文献   

3.
4.
A repeating theme in the structural biology of disulfide oxidants and isomerases is the extraordinary architectural similarity between functionally related proteins from prokaryotes and eukaryotes. The recently determined structure of full-length yeast protein disulfide isomerase (PDI) reveals a U-shaped molecule with two redox-active sites. It bears a remarkable resemblance to the V-shaped, but dimeric, bacterial disulfide isomerases DsbC and DsbG. Similarly, the much-anticipated structure of the bacterial membrane protein DsbB, the redox partner of DsbA, comprises a flexible redox loop embedded in an antiparallel four-helix bundle. This architecture is similar to that of soluble eukaryotic Ero1p and Erv2p proteins, the redox partners of PDI. Importantly, the DsbB crystal structure is a complex with DsbA, providing our first view of the molecular interactions between these two proteins.  相似文献   

5.
Disulfide bond exchange among cysteine residues in epidermal growth factor (EGF)-like domains of beta3 was suggested to be involved in activation of alphaIIbbeta3. To investigate the role of specific beta3 cysteines in alphaIIbbeta3 expression and activation, we expressed in baby hamster kidney cells normal alphaIIb with normal beta3 or beta3 with single or double cysteine substitutions of nine disulfide bonds in EGF-3, EGF-4, and beta-tail domains and assessed alphaIIbbeta3 surface expression and activation state by flow cytometry using P2 or PAC-1 antibodies, respectively. Most mutants displayed reduced surface expression of alphaIIbbeta3. Disruptions of disulfide bonds in EGF-3 yielded constitutively active alphaIIbbeta3, implying that these bonds stabilize the inactive alphaIIbbeta3 conformer. Mutants of the Cys-567-Cys-581 bond in EGF-4 were inactive even after exposure to alphaIIbbeta3-activating antibodies, indicating that this bond is necessary for activating alphaIIbbeta3. Disrupting Cys-560-Cys-583 in the EGF-3/EGF-4 or Cys-608-Cys-655 in beta-tail domain resulted in alphaIIbbeta3 activation only when Cys-560 or Cys-655 of each pair was mutated but not when their partners (Cys-583, Cys-608) or both cysteines were mutated, suggesting that free sulfhydryls of Cys-583 and Cys-608 participate in alphaIIbbeta3 activation by a disulfide bond exchange-dependent mechanism. The free sulfhydryl blocker dithiobisnitrobenzoic acid inhibited 70% of anti-LIBS6 antibody-induced activation of wild-type alphaIIbbeta3 and had a smaller effect on mutants, implicating disulfide bond exchange-dependent and -independent mechanisms in alphaIIbbeta3 activation. These data suggest that different disulfide bonds in beta3 EGF and beta-tail domains play variable structural and regulatory roles in alphaIIbbeta3.  相似文献   

6.
A unique thioester bond, formed between the side chains of neighboring C and Q residues, is present in complement components C3 and C4 and the protease inhibitor alpha 2-macroglobulin. This structure is essential for mediating covalent attachment to target acceptors and also for maintaining these proteins in their native conformation. An examination of the residues in the immediate vicinity of the C and Q reveals a very high degree of sequence similarity among the three proteins which crosses species barriers. The following is the sequence flanking the thioester residues in C3, the highly conserved amino acids being underlined and the the thioester-forming residues being indicated by italics: 1005V-T-P-S-G-C-G-E-Q-N-M-I-G-M-T-P-T1021. Through a site-directed mutagenesis and cDNA expression approach, we have examined the importance of the conserved amino acids in the formation, stability, and function of the thioester bond in C3. The behavior of the mutants fell into three categories. The potential loss in peptide backbone flexibility by the replacement of G1009 by A or S was permissive to thioester formation and function as was replacement of M1015 by the still fairly bulky residue F. In contrast, replacement of M1015 by A resulted in an alpha-chain which was highly unstable toward proteolytic degradation. The third category, which included mutant molecules P1007G, P1020G, E1012Q, and Q1013N, displayed an unusual phenotype in which both the autolytic fragmentation and the hemolytic activity characteristics of thioester-intact molecules were absent. However, like their wildtype counterpart, these molecules retained the ability to be cleaved by C3 convertase (C4b2a), a conformation-dependent property that is normally lost in the conversion of native C3 to thioester-hydrolyzed C3(H2O). Since an identical functional profile was obtained when the thioester was deliberately prevented from forming in the mutant C1010A, we conclude that if a stable thioester fails to form during biosynthesis, at least parts of the mature protein can adopt a more native-like conformation than is the case when the thioester is first formed and then hydrolyzed in the mature protein. In view of these new findings, the interpretation of the previously observed correlation between the loss of thioester integrity and the adoption of a C3b-like conformation must be reassessed.  相似文献   

7.
The mechanism of 3-deoxy-D-manno-octulosonate-8-phosphate (KDO8P) synthase was investigated. When [18O]-PEP specifically labeled in the enolic oxygen is a substrate for KDO8P synthase, the 18O is recovered in Pi. This indicates that the KDO8P synthase reaction proceeds with C-O bond cleavage of PEP similar to that observed in the 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase catalyzed condensation of PEP and erythrose-4-phosphate (1). No evidence for a covalent enzyme-PEP intermediate could be obtained. No [32P]-Pi exchange into PEP nor scrambling of bridge 18O to non-bridging positions in [18O]-PEP was observed in the presence or absence of arabinose-5-phosphate or its analog ribose-5-phosphate. Bromopyruvate inactivated KDO8P synthase in a time dependent process. It is likely that bromopyruvate reacts with a functional group at the PEP binding site since PEP, but not arabinose-5-phosphate, protects against inactivation.  相似文献   

8.
9.
A H3 dimer band is produced when purified native histone octamers are run on an SDS-PAGE gel in a beta-mercaptoethanol-free environment. To investigate this, native histone octamer crystals, derived from chicken erythrocytes, and of structure (H2A-H2B)-(H4-H3)-(H3'-H4')-(H2B'-H2A'), were grown in 2 M KCl, 1.35 M potassium phosphates and 250-350 microM of the oxidising agent S-nitrosoglutathione, pH 6.9. X-ray diffraction data were acquired to 2.10 A resolution, yielding a structure with an Rwork value of 18.6% and an Rfree of 22.5%. The space group is P6(5), the asymmetric unit of which contains one complete octamer. Compared to the 1.90 A resolution, unoxidised native histone octamer structure, the crystals show a reduction of 2.5% in the c-axis of the unit cell, and free-energy calculations reveal that the H3-H3' dimer interface in the latter has become thermodynamically stable, in contrast to the former. Although the inter-sulphur distance of the two H3 cysteines in the oxidised native histone octamer has reduced to 6 A from the 7 A of the unoxidised form, analysis of the hydrogen bonds that constitute the (H4-H3)-(H3'-H4') tetramer indicates that the formation of a disulphide bond in the H3-H3' dimer interface is incompatible with stable tetramer formation. The biochemical and biophysical evidence, taken as a whole, is indicative of crystals that have a stable H3-H3' dimer interface, possibly extending to the interface within an isolated H3-H3' dimer, observed in SDS-PAGE gels.  相似文献   

10.
We report here an investigation into the correlation between dihydrogen bond energies, three-centre bond indices and group indices in some dihydrogen-bonded dimers. This kind of bond is generated by interaction between proton-donator and proton-acceptor groups, XHσ+…H′σ ? M, where X is a more electronegative atom and M a less electronegative atom than hydrogen. The different electronegativities of the X atoms, as well the M atoms, would affect the correlations between Hσ+…H′σ ?  distances and bond energies of these systems. In this work it will be shown that three-centre bond indices and group indices exhibit a better correlation with bond energies when compared to Hσ+…H′σ ?  distances for this kind of system.  相似文献   

11.
M K Pangburn 《FEBS letters》1992,308(3):280-282
Purified alpha 2-macroglobulin and complement proteins C3 and C4 were treated with ammonia to break their intramolecular thioester bonds and reform the original free cysteinyl and glutamyl side chains. When this reaction was performed at low temperature a conformational intermediate was trapped which lacked a thioester, but which could refold to the native structure and spontaneously reform the thioester and full biological function. The findings suggest that these proteins may undergo spontaneous post-translational self-modification forming the thioesters without involvement of enzymes or high energy metabolites such as ATP.  相似文献   

12.
We are developing a computational system to classify RNA structures by its structural character. Here, an improved grouping algorithm was introduced to the system and the base-stacking pattern (BSP) is used as a criterion for the classification in addition to hydrogen-bond pattern (HBP). 279 conformers of 15 mer RNA hairpin were classified into 89 and 36 groups by HBP and BSP, respectively, suggesting that HBP represents conformational character better than BSP.  相似文献   

13.
14.
Enduring social bonds play an essential role in human society. These bonds positively affect psychological, physiological, and behavioral functions. Here, we review the recent literature on the neurobiology, particularly the role of oxytocin and dopamine, of pair bond formation, bond disruption, and social buffering effects on stress responses, from studies utilizing the socially monogamous prairie vole (Microtus ochrogaster).  相似文献   

15.
The cytotoxicity of several Co(II), Ni(II), Cu(II) and Zn(II) complexes with various molecular structures and geometries, has been tested on LoVo and 2008 cells at 1-100 microM concentration for 24 h exposure. On the basis of 24 h results, the exposure time was prolonged to 48 and to 72 hours. The most potent complexes result [Cu(tren)(H2O)]2+ 2Cl-, E, [CoCl3(H2Meppz)], G, and [CoCl3(HMe2ppz)], H, (tren=tris(2-aminoethyl)amine, H2Meppz=1-methylpiperazin-1-ium, HMe2ppz=1,4-dimethylpiperazin-1-ium cations). Nevertheless, these complexes are able to induce cell growth reduction of about 50% at highest doses tested (1-100 microM ) and after 72 h exposure.  相似文献   

16.
17.
The analysis of reactions involving amino acids esterified to tRNAs traditionally uses radiolabeled amino acids. We describe here an alternative assay involving [3'-32P]-labeled tRNA followed by nuclease digestion and TLC analysis that permits aminoacylation to be monitored in an efficient, quantitative manner while circumventing many of the problems faced when using radiolabeled amino acids. We also describe a similar assay using [3'-32P]-labeled aa-tRNAs to determine the rate of peptide bond formation on the ribosome. This type of assay can also potentially be adapted to study other reactions involving an amino acid or peptide esterified to tRNA.  相似文献   

18.
PTX3 is an acute phase glycoprotein that plays key roles in resistance to certain pathogens and in female fertility. PTX3 exerts its functions by interacting with a number of structurally unrelated molecules, a capacity that is likely to rely on its complex multimeric structure stabilized by interchain disulfide bonds. In this study, PAGE analyses performed under both native and denaturing conditions indicated that human recombinant PTX3 is mainly composed of covalently linked octamers. The network of disulfide bonds supporting this octameric assembly was resolved by mass spectrometry and Cys to Ser site-directed mutagenesis. Here we report that cysteine residues at positions 47, 49, and 103 in the N-terminal domain form three symmetric interchain disulfide bonds stabilizing four protein subunits in a tetrameric arrangement. Additional interchain disulfide bonds formed by the C-terminal domain cysteines Cys(317) and Cys(318) are responsible for linking the PTX3 tetramers into octamers. We also identified three intrachain disulfide bonds within the C-terminal domain that we used as structural constraints to build a new three-dimensional model for this domain. Previously it has been shown that PTX3 is a key component of the cumulus oophorus extracellular matrix, which forms around the oocyte prior to ovulation, because cumuli from PTX3(-/-) mice show defective matrix organization. Recombinant PTX3 is able to restore the normal phenotype ex vivo in cumuli from PTX3(-/-) mice. Here we demonstrate that PTX3 Cys to Ser mutants, mainly assembled into tetramers, exhibited wild type rescue activity, whereas a mutant, predominantly composed of dimers, had impaired functionality. These findings indicate that protein oligomerization is essential for PTX3 activity within the cumulus matrix and implicate PTX3 tetramers as the functional molecular units required for cumulus matrix organization and stabilization.  相似文献   

19.
S Takashima 《Biopolymers》1972,11(9):1903-1911
An approximate ab-initio valence bond calculation of hydrogen bond energy was carried out and the results are discussed. The total bond energy of a simplified N? H…O structure is calculated for various N? H and N…O distances and the potential energy profiles are obtained. The hydrogen bond energy, ie, the delocalization energy gained by the formation of one hydrogen bond is found to be 8.7–12.0 kcal/mole. The potential energy is characterized by a deep minimum at 1.6–1.8 a.u. from the nitrogen and the second trough is found to be considerably higher than the first.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号