首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Symbiotic relationships between N2-fixing prokaryotes and their autotrophic hosts are essential in nitrogen (N)-limited ecosystems, yet the importance of this association in pristine boreal peatlands, which store 25 % of the world’s soil (C), has been overlooked. External inputs of N to bogs are predominantly atmospheric, and given that regions of boreal Canada anchor some of the lowest rates found globally (~1 kg N ha?1 year?1), biomass production is thought to be limited primarily by N. Despite historically low N deposition, we show that boreal bogs have accumulated approximately 12–25 times more N than can be explained by atmospheric inputs. Here we demonstrate high rates of biological N2-fixation in prokaryotes associated with Sphagnum mosses that can fully account for the missing input of N needed to sustain high rates of C sequestration. Additionally, N amendment experiments in the field did not increase Sphagnum production, indicating that mosses are not limited by N. Lastly, by examining the composition and abundance of N2-fixing prokaryotes by quantifying gene expression of 16S rRNA and nitrogenase-encoding nifH, we show that rates of N2-fixation are driven by the substantial contribution from methanotrophs, and not from cyanobacteria. We conclude biological N2-fixation drives high sequestration of C in pristine peatlands, and may play an important role in moderating fluxes of methane, one of the most important greenhouse gases produced in peatlands. Understanding the mechanistic controls on biological N2-fixation is crucial for assessing the fate of peatland carbon stocks under scenarios of climate change and enhanced anthropogenic N deposition.  相似文献   

2.
Long-term carbon and nitrogen dynamics in peatlands are affected by both vegetation production and decomposition processes. Here, we examined the carbon accumulation rate (CAR), nitrogen accumulation rate (NAR) and δ13C, δ15N of plant residuals in a peat core dated back to ~8500 cal year BP in a temperate peatland in Northeast China. Impacted by the tephra during 1160 and 789 cal year BP and climate change, the peatland changed from a fen dominated by vascular plants to a bog dominated by Sphagnum mosses. We used the Clymo model to quantify peat addition rate and decay constant for acrotelm and catotelm layers during both bog and fen phases. Our studied peatland was dominated by Sphagnum fuscum during the bog phase (789 to −59 cal year BP) and lower accumulation rates in the acrotelm layer was found during this phase, suggesting the dominant role of volcanic eruption in the CAR of the peat core. Both mean CAR and NAR were higher during the bog phase than during the fen phase in our study, consistent with the results of the only one similar study in the literature. Because the input rate of organic matter was considered to be lower during the bog phase, the decomposition process must have been much lower during the bog phase than during the fen phase and potentially controlled CAR and NAR. During the fen phase, CAR was also lower under higher temperature and summer insolation, conditions beneficial for decomposition. δ15N of Sphagnum hinted that nitrogen fixation had a positive effect on nitrogen accumulation, particular in recent decades. Our study suggested that decomposition is more important for carbon and nitrogen sequestration than production in peatlands in most conditions and if future climate changes or human disturbance increase decomposition rate, carbon sequestration in peatlands will be jeopardized.  相似文献   

3.
A large proportion of northern peatlands consists of Sphagnum-dominated ombrotrophic bogs. In these bogs, peat mosses (Sphagnum) and vascular plants occur in an apparent stable equilibrium, thereby sustaining the carbon sink function of the bog ecosystem. How global warming and increased nitrogen (N) deposition will affect the species composition in bog vegetation is still unclear. We performed a transplantation experiment in which mesocosms with intact vegetation were transplanted southward from north Sweden to north-east Germany along a transect of four bog sites, in which both temperature and N deposition increased. In addition, we monitored undisturbed vegetation in control plots at the four sites of the latitudinal gradient. Four growing seasons after transplantation, ericaceous dwarf shrubs had become much more abundant when transplanted to the warmest site which also had highest N deposition. As a result ericoid aboveground biomass in the transplanted mesocosms increased most at the southernmost site, this site also had highest ericoid biomass in the undisturbed vegetation. The two dominant Sphagnum species showed opposing responses when transplanted southward; Sphagnum balticum height increment decreased, whereas S. fuscum height increment increased when transplanted southward. Sphagnum production did not differ significantly among the transplanted mesocosms, but was lowest in the southernmost control plots. The dwarf shrub expansion and increased N concentrations in plant tissues we observed, point in the direction of a positive feedback toward vascular plant-dominance suppressing peat-forming Sphagnum in the long term. However, our data also indicate that precipitation and phosphorus availability influence the competitive balance between Sphagnum, dwarf shrubs and graminoids.  相似文献   

4.
Meng Wang  Tim R. Moore 《Ecosystems》2014,17(4):673-684
Ombrotrophic bog peatlands are nutrient-deficient systems and important carbon (C) sinks yet the stoichiometry of nitrogen (N), phosphorus (P) and potassium (K), essential for plant growth and decomposition, has rarely been studied. We investigated the seasonal variation in C, N, P, and K concentrations and their stoichiometric ratios in photosynthetically active tissues of 14 species belonging to five plant functional types (PFTs) (mosses, deciduous trees/shrubs, evergreen shrubs, graminoids, and forb) at Mer Bleue bog, an ombrotrophic peatland in eastern Ontario, Canada. Although we observed variations in stoichiometry among PFTs at peak growing season, there was convergence of C:N:P:K to an average mass ratio of 445:14:1:9, indicating N and P co-limitation. Nitrogen, P, and K concentrations and stoichiometric ratios showed little seasonal variation in mosses, evergreens, and graminoids, but in forb and deciduous species were the largest in spring and decreased throughout the growing season. Variations in nutrient concentrations and stoichiometric ratios among PFTs were greater than seasonal variation within PFTs. Plants exhibit N and P co-limitation and adapt to extremely low nutrient availability by maintaining small nutrient concentrations in photosynthetically active tissues, especially for evergreen shrubs and Sphagnum mosses. Despite strong seasonal variations in nutrient availabilities, few species show strong seasonal variation in nutrient concentrations, suggesting a strong stoichiometric homeostasis at Mer Bleue bog.  相似文献   

5.
Sphagnum‐dominated peatlands comprise a globally important pool of soil carbon (C) and are vulnerable to climate change. While peat mosses of the genus Sphagnum are known to harbor diverse microbial communities that mediate C and nitrogen (N) cycling in peatlands, the effects of climate change on Sphagnum microbiome composition and functioning are largely unknown. We investigated the impacts of experimental whole‐ecosystem warming on the Sphagnum moss microbiome, focusing on N2 fixing microorganisms (diazotrophs). To characterize the microbiome response to warming, we performed next‐generation sequencing of small subunit (SSU) rRNA and nitrogenase (nifH) gene amplicons and quantified rates of N2 fixation activity in Sphagnum fallax individuals sampled from experimental enclosures over 2 years in a northern Minnesota, USA bog. The taxonomic diversity of overall microbial communities and diazotroph communities, as well as N2 fixation rates, decreased with warming (p < 0.05). Following warming, diazotrophs shifted from a mixed community of Nostocales (Cyanobacteria) and Rhizobiales (Alphaproteobacteria) to predominance of Nostocales. Microbiome community composition differed between years, with some diazotroph populations persisting while others declined in relative abundance in warmed plots in the second year. Our results demonstrate that warming substantially alters the community composition, diversity, and N2 fixation activity of peat moss microbiomes, which may ultimately impact host fitness, ecosystem productivity, and C storage potential in peatlands.  相似文献   

6.
Arcellinid testate amoebae (Amoebozoa) form a group of free-living microbial eukaryotes with one of the oldest fossil records known, yet several aspects of their evolutionary history remain poorly understood. Arcellinids occur in a range of terrestrial, freshwater and even brackish habitats; however, many arcellinid morphospecies such as Hyalosphenia papilio are particularly abundant in Sphagnum-dominated peatlands, a relatively new ecosystem that appeared during the diversification of Sphagnum species in the Miocene (5–20 Myr ago). Here, we reconstruct divergence times in arcellinid testate amoebae after selecting several fossils for clock calibrations and then infer whether or not arcellinids followed a pattern of diversification that parallels the pattern described for Sphagnum. We found that the diversification of core arcellinids occurred during the Phanerozoic, which is congruent with most arcellinid fossils but not with the oldest known amoebozoan fossil (i.e. at ca. 662 or ca. 750 Myr). Overall, Sphagnum and the Hyalospheniidae exhibit different patterns of diversification. However, an extensive molecular phylogenetic analysis of distinct clades within H. papilio species complex demonstrated a correlation between the recent diversification of H. papilio, the recent diversification of Sphagnum mosses, and the establishment of peatlands.  相似文献   

7.
Restoration of peat bog vegetation inhighly degraded peatlands is generallyattempted by improving the hydrology ofthese areas. The present paper discussesand explains various restoration strategiesrelating to peat quality, water chemistryand hydrology. In some cases, (shallow)inundation of bog remnants leads to a rapidredevelopment of (floating) Sphagnumvegetation, usually when poorly humifiedSphagnum peat is still present. Afterinundation, the peat either swells up tothe newly created water table or becomesbuoyant, in both cases creating a favorablesubstrate for Sphagnum mosses. Bulkdensity and methane production rate play animportant role in the buoyancy of floatingpeat, methane providing buoyancy to thesubstrates. The presence of (slightly)calcareous groundwater in the peat base mayenhance the development of floating raftsby stimulating decomposition processes.Alternatively, the growth of submerged Sphagnum species can also lead to thedevelopment of floating rafts. This dependson the penetration of light into the waterlayer and the availability of carbondioxide in the water layer.Many bog remnants, however, only havestrongly humified peat, which does notfavor the redevelopment of Sphagnumcarpets after deep inundation. On the otherhand, most peat moss species appear to dovery well on surface soaked black peat,which is why shallow inundation (< 0.3 m)is to be preferred in such cases.Compartmentalization of the terrain willprobably be necessary to ensure a more orless constant water table.An important prerequisite for thesuccessful restoration of bog remnants isthe development of a hydrologicallyself-regulating acrotelm. Key speciesinvolved in this development are Sphagnum magellanicum, Sphagnumpapillosum and Sphagnum rubellum.These typical hummock and lawn species areusually very slow colonizers compared tohollow species such as Sphagnumcuspidatum and Sphagnum fallax.Introduction of key species in carpetsdominated by hollow species or on baresubstrates appears to be very successful,indicating that the main constraint iscolonization.  相似文献   

8.
Nitrogen (N) nutrition in pristine peatlands relies on the natural input of inorganic N through atmospheric deposition or biological dinitrogen (N2) fixation. However, N2 fixation and its significance for N cycling, plant productivity, and peat buildup are mostly associated with the presence of Sphagnum mosses. Here, we report high nonsymbiotic N2‐fixation rates in two pristine Patagonian bogs with diversified vegetation and natural N deposition. Nonsymbiotic N2 fixation was measured in samples from 0 to 10, 10 to 20, and 40 to 50 cm depth using the 15N2 assay as well as the acetylene reduction assay (ARA). The ARA considerably underestimated N2 fixation and can thus not be recommended for peatland studies. Based on the 15N2 assay, high nonsymbiotic N2‐fixation rates of 0.3–1.4 μmol N2 g?1 day?1 were found down to 50 cm under micro‐oxic conditions (2 vol.%) in samples from plots covered by Sphagnum magellanicum or by vascular cushion plants, latter characterized by dense and deep aerenchyma roots. Peat N concentrations point to greater potential of nonsymbiotic N2 fixation under cushion plants, likely because of the availability of easily decomposable organic compounds and oxic conditions in the rhizosphere. In the Sphagnum plots, high N2 fixation below 10 cm depth rather reflects the potential during dry periods or low water level when oxygen penetrates the top peat layer and triggers peat mineralization. Natural abundance of the 15N isotope of live Sphagnum (5.6 δ‰) from 0 to 10 cm points to solely N uptake from atmospheric deposition and nonsymbiotic N2 fixation. A mean 15N signature of ?0.7 δ‰ of peat from the cushion plant plots indicates additional N supply from N mineralization. Our findings suggest that nonsymbiotic N2 fixation overcomes N deficiency in different vegetation communities and has great significance for N cycling and peat accumulation in pristine peatlands.  相似文献   

9.
Sphagnum mosses dominate the plant cover of boreal bogs and accumulate carbon as peat. However, discoloured necroticSphagnum patches are also common in bogs. NecroticSphagnum inhibits peat accumulation, and consequently these areas may sink with respect to their surroundings with healthy mosses and continuing peat accumulation. Therefore, necrotic patches in the moss carpet could have an important role in triggering the succession ofSphagnum communities and the differentiation of bog microtopography. Our main aim was to find out how necroticSphagnum patches are distributed on a microtopographic gradient and amongSphagnum species. Based on these results we discuss the development and likely role of necrotic patches. It was found that necrotic patches occur on all types of bog microforms and contain the most of commonSphagnum species. Necrotic patches were more common and larger in wet hollows. The development of necrotic patches depends on their location on the microtopographic gradient. Necrotic patches on higher microforms usually re-vegetate, whereas those in hollows can result in mud-bottom hollows.  相似文献   

10.
Nitrogen (N) deposition has increased in the last few decades with implications for the functioning of Sphagnum mosses, the main peat forming genus in peatlands. However, there are few in situ measurements of the carbon balance, especially where the N additions have been realistically manipulated in the field, and none with respect to the effect of N form. The aim of this study was to look at the effects of experimental N additions as oxidized or reduced N, with and without phosphorus (P) and potassium (K), on CO2 fluxes from Sphagnum capillifolium hummocks in a long-term N addition experiment, Whim bog, in the Scottish Borders. In situ static chamber measurements were made during 2008 on 20 plots (control, and N treatments receiving 56 kg N ha−1 y−1 of either nitrate (NO3) or ammonium (NH4+) added, with and without PK) to assess N effects on CO2 exchange. Almost all the measured fluxes were negative, i.e. Sphagnum hummocks lost CO2 to the atmosphere, irrespective of the treatments applied. N treatment did not have a significant effect on ecosystem respiration (ER) or net ecosystem productivity (NEP) but adding PK with N increased gross photosynthesis (PG) significantly, compared to the other treatments. Summed monthly averages of NEP for each treatment indicated that increasing N deposition increased CO2 loss from the system. The form of N affected the response: compared to the control, adding nitrate increased the CO2 loss more than ammonium, both with and without PK. Nitrogen (both forms) increased the ecosystem respiration fluxes at a certain temperature, adding PK with N further enhanced the response. The positive (increasing) temperature response of ecosystem respiration with N suggests that in high N deposition areas the potential increase in ecosystem respiration, CO2 loss, will be exacerbated with climate change.  相似文献   

11.
Information about the impact of nitrogen (N) deposition on the fate of deposited N in peatland ecosystems is lacking. Thus we investigated the fate of experimentally added 15N in long-term N-fertilized treatments in a Sphagnum-dominated ombrotrophic bog. Fertilization significantly stimulated vascular plant and suppressed Sphagnum and Polytrichum moss growth. N content in peat, mosses, and vascular plants was raised by the fertilizer addition and reached a maximum at 3.2 g m?2 N input level with phosphorus (P) and potassium (K) addition. Most of N was retained in the vegetation and upper 10 cm of the peat. When N deposition equalled 1.6 g m?2 and less, or 3.2 g m?2 N with P and K addition, no inorganic N leaching was observed on the plots. This result indicates that co-fertilization with P and K raised the N retention capacity and that critical N loads with respect to N saturation depend on P and K availability. Most of the deposited 15N was recovered in the bulk peat, which may be related to a rapid immobilization of inorganic N by microorganisms and mycorrhizal assimilation. Increase of N, P, and K fertilization increased the contribution of vascular plants to N retention significantly and reduced those of mosses. The increase was mainly related to enhanced productivity, vascular biomass and N content in tissues; the reduced retention by mosses resulted from both reduced moss biomass and assimilation. The study shows that the N filter function of ombrotrophic bogs will be influenced by interactions with other nutrients and shifts in plant community structure.  相似文献   

12.
Nils Malmer  Bo Wallén 《Oikos》2005,109(3):539-554
Southern Sweden has long been exposed to an increasing atmospheric nitrogen deposition. We investigated the effects of this supply on the Sphagnum mire vegetation in SW Götaland by comparing above‐ground tissue concentrations of N and P and biomass variables in five vascular plant and two Sphagnum species collected during three periods since 1955 at 81 sites representing three vegetation types, viz. ombrotrophic bog, extremely poor fen and moderately poor fen, within two areas differing in annual N deposition. The N:P ratios in the plants were rarely below 17, suggesting P as the growth‐limiting mineral nutrient. In the vascular plants both growth and concentrations of N and P were highest in the moderately poor fen sites because of a higher mineralization rate, the differences between the extremely poor fen and bog sites being smaller in these respects. In the extremely poor fen and bog sites the N concentrations were slightly higher in the area with the highest N deposition. From 1955 to 2002 the concentration of N in the Sphagnum spp. increased proportionally to the supply rate while P remained constant. In the vascular plants the concentrations of P remained constant while N showed slightly decreasing trends in the bog and extremely poor fen sites, but since the size of the plants increased the biomass content of N and P increased, too. The increased N deposition has had its greatest effects on the site types with the highest Sphagnum biomass and peat accumulation rate. The high N concentration in the Sphagnum mosses probably reduced their competitiveness and facilitated the observed expansion of vascular plants. However, the increased N deposition might also have triggered an increased mineralization in the acrotelm increasing the supply of P to the vascular plants and thus also their productivity. This may also explain the slightly higher productivity among the vascular plants in the area with the highest N deposition rate. In conclusion, it seems as the increased N deposition has directly influenced only the growth of the Sphagnum mosses and that the effects on the growth of the vascular plants are indirect.  相似文献   

13.
Wet N deposition comprises oxidised (nitrate) and reduced (ammonium) N forms in proportions that vary spatially with source and topography. Field evidence of long-term N form effects on semi-natural ecosystems and how these are modified by phosphorus and potassium availability are lacking. This study describes cover changes for some key peatland species and litter chemistry from Sphagnum capillifolium, Calluna and Eriophorum vaginatum, and peat in response to 9 years of N treatment. Ammonium and nitrate as NH4Cl or NaNO3 were provided to replicate plots in rainwater spray at +8 (low) or +56 (high) kg N ha?1 year, with and without PK via an automated system coupled to site meteorological conditions. Reduced N caused greater N accumulation in all key species than oxidised N, especially at higher doses, but cover declined more, though not significantly so, with oxidised than reduced N at the high N dose. Overall the detrimental effects of high N on Sphagnum and Calluna cover were significant but small. By comparison PK inclusion with 56 kg N ha?1 year as oxidised N, not reduced N, had devastating effects on cover, causing both S. capillifolium and Calluna to decrease 3–5-fold, facilitating invasion and expansion of nitrophiles, non-characteristic bog plants e.g. Epilobium angustifolium, Epilobium palustre, Juncus effusus, Digitalis purpurea and Dryopteris dilatata. N form appears to be significant for peatlands because of its effects on pH. The significance of changes in plant cover for peat chemistry and decomposition for biogeochemistry is discussed.  相似文献   

14.
Ombrotrophic bogs accumulate large stores of soil carbon that eventually decompose to carbon dioxide and methane. Carbon accumulates because Sphagnum mosses slow microbial carbon decomposition processes, leading to the production of labile intermediate compounds. Acetate is a major product of Sphagnum degradation, yet rates of hydrogenotrophic methanogenesis far exceed rates of aceticlastic methanogenesis, suggesting that alternative acetate mineralization processes exist. Two possible explanations are aerobic respiration and anaerobic respiration via humic acids as electron acceptors. While these processes have been widely observed, microbial community interactions linking Sphagnum degradation and acetate mineralization remain cryptic. In this work, we use ordination and network analysis of functional genes from 110 globally distributed peatland metagenomes to identify conserved metabolic pathways in Sphagnum bogs. We then use metagenome-assembled genomes (MAGs) from McLean Bog, a Sphagnum bog in New York State, as a local case study to reconstruct pathways of Sphagnum degradation and acetate mineralization. We describe metabolically flexible Acidobacteriota MAGs that contain all genes to completely degrade Sphagnum cell wall sugars under both aerobic and anaerobic conditions. Finally, we propose a hypothetical model of acetate oxidation driven by changes in peat redox potential that explain how bogs may circumvent aceticlastic methanogenesis through aerobic and humics-driven respiration.Subject terms: Microbial ecology, Metagenomics, Soil microbiology, Biogeochemistry, Microbial ecology  相似文献   

15.
Acknowledgments     
In this study we investigated the temporal variability of N-source utilization of pioneer plant species in different early successional stages of dry acidic grasslands. Current theory states that plant species occupy distinct ecological niches and that there are species-specific, temporal N-uptake patterns. We hypothesized that small-scale dynamics in the natural habitat may affect niche differentiation among plant species. We investigated N-uptake patterns of two co-occurring plant species from different functional groups (Corynephorus canescens, Rumex acetosella) under natural conditions using 15N-labeled nitrate and ammonium in three different early successional stages during early and late summer. We found (1) marked seasonal dynamics with respect to N-uptake and N-source partitioning, and (2) different uptake rates across successional stages but a similar N-form utilization of both species. Nitrate was the main N-source in the early and later successional stages, but a shift towards enhanced ammonium uptake occurred at the cryptogam stage in June. Both species increased N-uptake in the later successional stage in June, which was associated with increasing plant biomass in C. canescens, whereas R. acetosella showed no significant differences in plant biomass and root/shoot-ratio between successional stages. Ammonium uptake decreased in both species across all stages with increasing drought. Nevertheless, the peak time of N-uptake differed between the successional stages: in the early successional site, with the lowest soil N, plants were able to extend N-uptake into the drier season when uptake rates in the other successional stages had already declined markedly. Hence, we found a pronounced adjustment in the realized niches of co-occurring plant species with respect to N-uptake. Our results indicate that ecological niches can be highly dynamic and that niche sharing between plant species may occur instead of niche partitioning.  相似文献   

16.
Abstract The large accumulation of organic matter in peatlands is primarily caused by slow rates of litter decomposition. We determined rates of decomposition of major peat-forming litters of vascular plants and mosses at five sites: a poor fen in New Hampshire and a bog hummock, a poor fen, a beaver pond margin and a beaver pond in Ontario. We used the litterbag technique, retrieving triplicate litterbags six or seven times over 3–5 years, and found that simple exponential decay and continuous-quality non-linear regression models could adequately characterize the decomposition in most cases. Within each site, the rate of decomposition at the surface was generally Typha latifolia leaves = Chamaedaphne calyculata leaves = Carex leaves > Chamaedaphne calyculata stems > hummock Sphagnum = lawn/hollow Sphagnum, with exponential decay constant (k) values generally ranging from 0.05 to 0.37 and continuous-quality model initial quality (q 0 ) values ranging from 1.0 (arbitrarily set for Typha leaves) to 0.7 (Sphagnum). In general, surface decay rates were slowest at the bog hummock site, which had the lowest water table, and in the beaver pond, which was inundated, and fastest at the fens. The continuous-quality model site decomposition parameter (u 0 ) ranged from 0.80 to 0.17. Analysis of original litter samples for carbon, nitrogen and proximate fractions revealed a relatively poor explanation of decomposition rates, as defined by k and q 0 , compared to most well-drained ecosystems. Three litters, roots of sedge and a shrub and Typha leaves, were placed at depths of 10, 30 and 60 cm at the sites. Decomposition rates decreased with depth at each site, with k means of 0.15, 0.08 and 0.05 y−1 at 10, 30 and 60 cm, respectively, and u 0 of 0.25, 0.13 and 0.07. These differences are primarily related to the position of the water table at each site and to a lesser extent the cooler temperatures in the lower layers of the peat. The distinction between bog and fen was less important than the position of the water table. These results show that we can characterize decomposition rates of surface litter in northern peatlands, but given the large primary productivity below-ground in these ecosystems, and the differential rates of decomposition with depth, subsurface input and decomposition of organic matter is an important and relatively uncertain attribute.  相似文献   

17.
It is anticipated that a lowering of the water table and reduced soil moisture levels in peatlands may increase peat decomposition rates and consequently affect nutrient availability. However, it is not clear if patterns will be consistent across different peatland types or within peatlands given the natural range of ecohydrological conditions within these systems. We examined the effect of persistent drought on peatland nutrient dynamics by quantifying the effects of an experimentally lowered water table position (drained for a 10-year period) on peat KCl-extractable total inorganic nitrogen (ext-TIN), peat KCl-extractable nitrate (ext-NO3 ?), and water-extractable ortho-phosphorus (ext-PO4 3?) concentrations and net phosphorus (P) and nitrogen (N) mineralization and nitrification rates at natural (control) and drained microforms (hummocks, lawns) of a bog and poor fen near Québec City, Canada. Drainage (water table drawdown) decreased net nitrification rates across the landscape and increased ext-NO3 ? concentrations, but did not affect net N and P mineralization rates or ext-TIN and ext-PO4 3? concentrations. We suggest that the thick capillary fringe at the drained peatland likely maintained sufficient moisture above the water table to limit the effects of drainage on microbial activity, and a 20 cm lowering of the water table does not appear to have been sufficient to create a clear difference in nutrient dynamics in this peatland landscape. We found some evidence of differences in nutrient concentrations with microforms, where concentrations were greater in lawn than hummock microforms at control sites indicating some translocation of nutrients. In general, the same microtopographic differences were not observed at drained sites. The general spatial patterns in nutrient concentrations did not reflect net mineralization/immobilization rates measured at our control or drained peatlands. Rather, the spatial patterns in nutrient availability may be regulated by differences in vegetation (mainly Sphagnum moss) cover between control and drained sites and possibly differences in hydrologic connection between microforms. Our results suggest that microform distribution and composition within a peatland may be important for determining how peatland nutrient dynamics will respond to water table drawdown in northern peatlands, as some evidence of microtopographic differences in nutrient dynamics was found.  相似文献   

18.

Background and aims

Sphagnum mosses are ecosystem engineers that create and maintain boreal peatlands. With unique biochemistry, waterlogging and acidifying capacities, they build up meters-thick layers of peat, reducing competition and impeding decomposition. We quantify within-genus differences in biochemical composition to make inferences about decay rates, related to hummock–hollow and fen–bog gradients and to phylogeny.

Methods

We sampled litter from 15 Sphagnum species, abundant over the whole northern hemisphere. We used regression and Principal Components Analysis (PCA) to evaluate general relationships between litter quality parameters and decay rates measured under laboratory and field conditions.

Results

Both concentrations of the polysaccharide sphagnan and the soluble phenolics were positively correlated with intrinsic decay resistance, however, so were the previously understudied lignin-like phenolics. More resistant litter had more of all the important metabolites; consequently, PC1 scores were related to lab mass loss (R2?=?0.57). There was no such relationship with field mass loss, which is also affected by the environment. PCA also revealed that metabolites clearly group Sphagnum sections (subgenera).

Conclusions

We suggest that the commonly stated growth-decomposition trade-off is largely due to litter quality. We show a strong phylogenetic control on Sphagnum metabolites, but their effects on decay are affected by nutrient availability in the habitat.
  相似文献   

19.
Despite their low primary production, ombrotrophic peatlands have a considerable potential to store atmospheric carbon as a result of their extremely low litter decomposition rates. Projected changes in temperature and nitrogen (N) deposition may increase decomposition rates by their positive effects on microbial activity and litter quality, which can be expected to result in enhanced mass loss and N release from Sphagnum and vascular plant litter. This is the first study that examines the combined effects of increased temperature and N deposition on decomposition in bogs. We investigated mass loss and N release at four bog sites along a gradient from north Sweden to northeast Germany in which both temperature and N deposition increased from north to south. We performed two litterbag experiments: one reciprocal experiment with Eriophorum vaginatum litter and one experiment using recalcitrant (Sphagnum fuscum) and more degradable (Sphagnum balticum) Sphagnum litter collected from the most northern site. We measured mass loss and N release during two (Sphagnum) and three (E. vaginatum) years. The N concentration and decomposability of the E. vaginatum litter did not differ between the sites. Mass loss from E. vaginatum litter increased over the gradient from north to south, but there was no such effect on Sphagnum litter. N loss of all litter types was affected by collection site, incubation site and time and all interactions between these factors. N release in Sphagnum was positively related to N concentration. We conclude that decomposition of vascular plants and Sphagnum litter is influenced by different environmental drivers, with enhanced temperatures stimulating mass loss of vascular plant litter, but not of Sphagnum. Enhanced N deposition increases Sphagnum litter N loss. As long‐term consequences of climate change will presumably entail a higher vascular plant production, overall litter decomposition rates are likely to increase, especially in combination with increased temperature.  相似文献   

20.
N-starved free-living and polyvinyl-immobilized cells ofPhormidium laminosum (strain OH-1-pCl1) have been investigated in relation to their nitrate and nitrite uptake characteristics. N-deficient cells showed higher inorganic N-uptake rates than N-sufficient ones. The photosynthetic activities of the cells decreased progressively with the time of N-starvation. N-starved cells produced high amounts of exopolysaccharides, which appear to assist the immobilization process. Inorganic N-uptake by N-starved cells occurred in both light and dark under aerobic conditions. In anaerobiosis light was required for the uptake, confirming that the necessary energy might perhaps be derived from the respiratory electron transport chain under aerobiosis. Ammonium inhibited nitrate uptake but did not affect the uptake of nitrite. Initial nitrate and nitrite uptake rates were temperature-dependent and yielded hyperbolic curves when plotted against the N source concentration, indicating the existence of saturable transport system(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号