首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast and quantitative analysis of animal phenotypes is one of the major challenges of current biology. Here we report the WormGender open-source software, which is designed for accurate quantification of sex ratio in Caenorhabditis elegans. The software functions include, i) automatic recognition and counting of adult hermaphrodites and males, ii) a manual inspection feature that enables manual correction of errors, and iii) flexibility to use new training images to optimize the software for different imaging conditions. We evaluated the performance of our software by comparing manual and automated assessment of sex ratio. Our data showed that the WormGender software provided overall accurate sex ratio measurements. We further demonstrated the usage of WormGender by quantifying the high incidence of male (him) phenotype in 27 mutant strains. Mutants of nine genes (brc-1, C30G12.6, cep-1, coh-3, him-3, him-5, him-8, skr-1, unc-86) showed significant him phenotype. The WormGender is written in Java and can be installed and run on both Windows and Mac platforms. The source code is freely available together with a user manual and sample data at http://www.QuantWorm.org/. The source code and sample data are also available at http://dx.doi.org/10.6084/m9.figshare.1541248.  相似文献   

2.
Methods to reliably assess the accuracy of genome sequence data are lacking. Currently completeness is only described qualitatively and mis-assemblies are overlooked. Here we present REAPR, a tool that precisely identifies errors in genome assemblies without the need for a reference sequence. We have validated REAPR on complete genomes or de novo assemblies from bacteria, malaria and Caenorhabditis elegans, and demonstrate that 86% and 82% of the human and mouse reference genomes are error-free, respectively. When applied to an ongoing genome project, REAPR provides corrected assembly statistics allowing the quantitative comparison of multiple assemblies. REAPR is available at http://www.sanger.ac.uk/resources/software/reapr/.  相似文献   

3.
Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans.  相似文献   

4.
5.
We present the ggtreeExtra package for visualizing heterogeneous data with a phylogenetic tree in a circular or rectangular layout (https://www.bioconductor.org/packages/ggtreeExtra). The package supports more data types and visualization methods than other tools. It supports using the grammar of graphics syntax to present data on a tree with richly annotated layers and allows evolutionary statistics inferred by commonly used software to be integrated and visualized with external data. GgtreeExtra is a universal tool for tree data visualization. It extends the applications of the phylogenetic tree in different disciplines by making more domain-specific data to be available to visualize and interpret in the evolutionary context.  相似文献   

6.
When Caenorhabditis elegans senses dauer pheromone (daumone), signaling inadequate growth conditions, it enters the dauer state, which is capable of long-term survival. However, the molecular pathway of dauer entry in C. elegans has remained elusive. To systematically monitor changes in gene expression in dauer paths, we used a DNA microarray containing 22,625 gene probes corresponding to 22,150 unique genes from C. elegans. We employed two different paths: direct exposure to daumone (Path 1) and normal growth media plus liquid culture (Path 2). Our data reveal that entry into dauer is accomplished through the multi-step process, which appears to be compartmentalized in time and according to metabolic flux. That is, a time-course of dauer entry in Path 1 shows that dauer larvae formation begins at post-embryonic stage S4 (48 h) and is complete at S6 (72 h). Our results also suggest the presence of a unique adaptive metabolic control mechanism that requires both stage-specific expression of specific genes and tight regulation of different modes of fuel metabolite utilization to sustain the energy balance in the context of prolonged survival under adverse growth conditions. It is apparent that worms entering dauer stage may rely heavily on carbohydrate-based energy reserves, whereas dauer larvae utilize fat or glyoxylate cycle-based energy sources. We created a comprehensive web-based dauer metabolic database for C. elegans (www.DauerDB.org) that makes it possible to search any gene and compare its relative expression at a specific stage, or evaluate overall patterns of gene expression in both paths. This database can be accessed by the research community and could be widely applicable to other related nematodes as a molecular atlas.  相似文献   

7.

Background

Caenorhabditis elegans locomotion is a simple behavior that has been widely used to dissect genetic components of behavior, synaptic transmission, and muscle function. Many of the paradigms that have been created to study C. elegans locomotion rely on qualitative experimenter observation. Here we report the implementation of an automated tracking system developed to quantify the locomotion of multiple individual worms in parallel.

Methodology/Principal Findings

Our tracking system generates a consistent measurement of locomotion that allows direct comparison of results across experiments and experimenters and provides a standard method to share data between laboratories. The tracker utilizes a video camera attached to a zoom lens and a software package implemented in MATLAB®. We demonstrate several proof-of-principle applications for the tracker including measuring speed in the absence and presence of food and in the presence of serotonin. We further use the tracker to automatically quantify the time course of paralysis of worms exposed to aldicarb and levamisole and show that tracker performance compares favorably to data generated using a hand-scored metric.

Conclusions/Signficance

Although this is not the first automated tracking system developed to measure C. elegans locomotion, our tracking software package is freely available and provides a simple interface that includes tools for rapid data collection and analysis. By contrast with other tools, it is not dependent on a specific set of hardware. We propose that the tracker may be used for a broad range of additional worm locomotion applications including genetic and chemical screening.  相似文献   

8.
The localization of signaling molecules such as G protein-coupled receptors (GPCRs) to primary cilia is essential for correct signal transduction. Detailed studies over the past decade have begun to elucidate the diverse sequences and trafficking mechanisms that sort and transport GPCRs to the ciliary compartment. However, a systematic analysis of the pathways required for ciliary targeting of multiple GPCRs in different cell types in vivo has not been reported. Here we describe the sequences and proteins required to localize GPCRs to the cilia of the AWB and ASK sensory neuron types in Caenorhabditis elegans. We find that GPCRs expressed in AWB or ASK utilize conserved and novel sequences for ciliary localization, and that the requirement for a ciliary targeting sequence in a given GPCR is different in different neuron types. Consistent with the presence of multiple ciliary targeting sequences, we identify diverse proteins required for ciliary localization of individual GPCRs in AWB and ASK. In particular, we show that the TUB-1 Tubby protein is required for ciliary localization of a subset of GPCRs, implying that defects in GPCR localization may be causal to the metabolic phenotypes of tub-1 mutants. Together, our results describe a remarkable complexity of mechanisms that act in a protein- and cell-specific manner to localize GPCRs to cilia, and suggest that this diversity allows for precise regulation of GPCR-mediated signaling as a function of external and internal context.  相似文献   

9.
The par genes of Caenorhabditis elegans are essential for establishment and maintenance of early embryo polarity and their homologs in other organisms are crucial polarity regulators in diverse cell types. Forward genetic screens and simple RNAi depletion screens have identified additional conserved regulators of polarity in C. elegans; genes with redundant functions, however, will be missed by these approaches. To identify such genes, we have performed a genome-wide RNAi screen for enhancers of lethality in conditional par-1 and par-4 mutants. We have identified 18 genes for which depletion is synthetically lethal with par-1 or par-4, or both, but produces little embryo lethality in wild type. Fifteen of the 18 genes identified in our screen are not previously known to function in C. elegans embryo polarity and 11 of them also increase lethality in a par-2 mutant. Among the strongest synthetic lethal genes, polarity defects are more apparent in par-2 early embryos than in par-1 or par-4, except for strd-1(RNAi), which enhances early polarity phenotypes in all three mutants. One strong enhancer of par-1 and par-2 lethality, F25B5.2, corresponds to nop-1, a regulator of actomyosin contractility for which the molecular identity was previously unknown. Other putative polarity enhancers identified in our screen encode cytoskeletal and membrane proteins, kinases, chaperones, and sumoylation and deubiquitylation proteins. Further studies of these genes should give mechanistic insight into pathways regulating establishment and maintenance of cell polarity.  相似文献   

10.
On the basis of the free radical and rate of living theories of aging, it has been proposed that decreased metabolism leads to increased longevity through a decreased production of reactive oxygen species (ROS). In this article, we examine the relationship between mitochondrial energy metabolism and life span by using the Clk mutants in Caenorhabditis elegans. Clk mutants are characterized by slow physiologic rates, delayed development, and increased life span. This phenotype suggests that increased life span may be achieved by decreasing energy expenditure. To test this hypothesis, we identified six novel Clk mutants in a screen for worms that have slow defecation and slow development and that can be maternally rescued. Interestingly, all 11 Clk mutants have increased life span despite the fact that slow physiologic rates were used as the only screening criterion. Although mitochondrial function is decreased in the Clk mutants, ATP levels are normal or increased, suggesting decreased energy utilization. To determine whether the longevity of the Clk mutants results from decreased production of ROS, we examined sensitivity to oxidative stress and oxidative damage. We found no evidence for systematically increased resistance to oxidative stress or decreased oxidative damage in the Clk mutants despite normal or elevated levels of superoxide dismutases. Overall, our findings suggest that decreased energy metabolism can lead to increased life span without decreased production of ROS.MUTATIONS in clk-1 have been shown to increase longevity in both worms and mice, suggesting that these mutations affect an evolutionarily conserved mechanism of life span extension (Lakowski and Hekimi 1996; Liu et al. 2005; Lapointe et al. 2009). The CLK-1 protein encodes a hydroxylase involved in the synthesis of ubiquinone (Ewbank et al. 1997), a multifunctional, lipid-like molecule that transfers electrons in the electron transport chain and may also act as an intracellular antioxidant (Maroz et al. 2009). clk-1 was originally identified in worms in a screen for maternally rescued mutations that result in abnormal development and behavior. In addition to slow development and slow defecation, clk-1 mutants show decreased brood size, a decreased rate of thrashing, and a decreased rate of pharyngeal pumping (Wong et al. 1995). It was a surprise, however, that clk-1 worms also displayed extended longevity, because, at the time that it was discovered, only two other mutants, age-1 and daf-2, with very different phenotypes, had been found to extend longevity (Friedman and Johnson 1988; Kenyon et al. 1993).It is currently uncertain how mutations in clk-1 result in the overall slowing of development and physiologic rates as well as an extended life span. One classic theory of aging, called the rate of living theory, postulates the existence of a link between energy metabolism and aging (Pearl 1922; Speakman 2005). This theory proposes that what determines the life span of an organism is the rate at which it produces and uses energy at the cellular level. Thus, the fact that clk-1 worms exhibit slow physiologic rates and development suggests a decrease in the rate that these worms utilize energy, and, by the rate of living theory, this could account for their long life span.In support of the rate of living theory, the loss of clk-1 has been shown to result in decreased whole-worm oxygen consumption (Felkai et al. 1999; Yang et al. 2007) and decreased electron transfer from complex I to complex III in the electron transport chain (Kayser et al. 2004b), although this has not been observed by all investigators (Miyadera et al. 2001). While some reports have suggested that energy consumption is not reduced in clk-1 worms, at least under liquid culture conditions (Braeckman et al. 2002), the observation that clk-1 worms have higher levels of ATP than wild-type worms (Braeckman et al. 1999) suggests a decreased use of energy in clk-1 worms regardless of whether energy production is normal or decreased. It has also been found that clk-1 double-mutant combinations that exhibit slower development than clk-1 worms live even longer than clk-1 worms (Lakowski and Hekimi 1996). In addition, overexpression of clk-1 prevents the slowing of the defecation rate with age, increases mitochondrial function, and decreases life span (Felkai et al. 1999).Drawing on ideas from the free radical theory of aging (Harman 1956), it has been suggested that a possible mechanism underlying the rate of living theory is that decreased metabolism results in a lower rate of production of reactive oxygen species (ROS). As the free radical theory of aging proposes that aging results from the accumulation of molecular damage caused by ROS, then lower ROS production should result in slower aging. In clk-1 worms, it has not been possible to directly measure levels of ROS in vivo; however, measurement of hydrogen peroxide production from submitochondrial particles has demonstrated increased ROS generation in clk-1 mitochondria compared to wild type (Yang et al. 2009). In addition, the superoxide production potential is increased in clk-1 worms compared to wild-type N2 worms (Braeckman et al. 2002). Despite showing increased levels of ROS production, clk-1 worms have been found to have normal or decreased levels of oxidative damage (Kayser et al. 2004a; Yang et al. 2007, 2009) and decreased accumulation of lipofuscin (Braeckman et al. 2002). The decrease in oxidative damage that occurs in spite of increased ROS production likely results from increased antioxidant defenses. In support of this conclusion, sod-2 and sod-3 mRNA are increased in clk-1 worms compared to wild type (Yang et al. 2007).Clearly, the levels of ROS production and antioxidant defense are altered in clk-1 worms and likely contribute to the physiology and life span of these worms. Evidence supporting a role for altered ROS levels in determining the clk-1 phenotype comes from the demonstration that increasing the levels of ROS through decreasing superoxide dismutase expression has been shown to modulate a variety of phenotypes in clk-1 worms (Shibata et al. 2003; Yang et al. 2007). It is important to note, however, that the decrease in oxidative damage in clk-1 worms appears not to contribute to their long life as it is possible to experimentally increase oxidative damage in clk-1 worms beyond wild-type levels without reducing life span (Yang et al. 2007).In addition to clk-1, four other genes have been identified that yield a clk-1-like phenotype (Clk phenotype), which includes slow development, slow defecation, slow pharyngeal pumping, decreased brood size and long life span coupled with maternal rescue (homozygous mutants from heterozygous mothers are phenotypically normal) (Hekimi et al. 1995; Lemieux et al. 2001). The Clk phenotype has been studied in most detail in clk-1 worms (Wong et al. 1995) and, subsequently, with gro-1 (Lemieux et al. 2001), clk-2 (Benard et al. 2001), and tpk-1 worms (de Jong et al. 2004), while clk-3 worms have not been extensively studied [although clk-3 worm energy metabolism and oxygen consumption have been examined (Braeckman et al. 2002; Shoyama et al. 2009)]. Despite the phenotypic similarity of these mutants, the mutations that have been identified thus far have been shown to occur in genes encoding proteins with a wide range of functions with no obvious relationship to one another. gro-1 encodes a tRNA-modifying enzyme (Lemieux et al. 2001), clk-2 encodes a homolog of yeast Tel2p and a regulator of several PI3K-related protein kinases (Ahmed et al. 2001; Benard et al. 2001; Jiang et al. 2003; Takai et al. 2007), and tpk-1 encodes thiamine pyrophosphokinase, which is necessary for the assimilation of thiamine (vitamin B1) (de Jong et al. 2004).All of the Clk mutants that have been identified exhibit slow physiologic rates and increased life span, suggesting that one may be sufficient for the other. To test this hypothesis, we identified six novel Clk mutants and demonstrate that these strains bear all of the characteristic features of the Clk phenotype, including extended longevity. We further show that mitochondrial function is decreased in the Clk mutants but that this decrease does not result in increased resistance to oxidative stress or decreased oxidative damage. Our results provide a plausible explanation for the extended life span observed in the Clk mutants and support aspects of the rate of living theory of aging while casting further doubt on the free radical theory of aging.  相似文献   

11.
Lipids play a pivotal role in embryogenesis as structural components of cellular membranes, as a source of energy, and as signaling molecules. On the basis of a collection of temperature-sensitive embryonic lethal mutants, a systematic database search, and a subsequent microscopic analysis of >300 interference RNA (RNAi)–treated/mutant worms, we identified a couple of evolutionary conserved genes associated with lipid storage in Caenorhabditis elegans embryos. The genes include cpl-1 (cathepsin L–like cysteine protease), ccz-1 (guanine nucleotide exchange factor subunit), and asm-3 (acid sphingomyelinase), which is closely related to the human Niemann-Pick disease–causing gene SMPD1. The respective mutant embryos accumulate enlarged droplets of neutral lipids (cpl-1) and yolk-containing lipid droplets (ccz-1) or have larger genuine lipid droplets (asm-3). The asm-3 mutant embryos additionally showed an enhanced resistance against C band ultraviolet (UV-C) light. Herein we propose that cpl-1, ccz-1, and asm-3 are genes required for the processing of lipid-containing droplets in C. elegans embryos. Owing to the high levels of conservation, the identified genes are also useful in studies of embryonic lipid storage in other organisms.  相似文献   

12.
Caenorhabditis elegans postembryonic development consists of four discrete larval stages separated by molts. Typically, the speed of progression through these larval stages is investigated by visual inspection of the molting process. Here, we describe an automated method to monitor the timing of these discrete phases of C. elegans maturation, from the first larval stage through adulthood, using bioluminescence. The method was validated with a lin-42 mutant strain that shows delayed development relative to wild-type animals and with a daf-2 mutant that shows an extended second larval stage. This new method is inherently high-throughput and will finally allow dissecting the molecular machinery governing the speed of the developmental clock, which has so far been hampered by the lack of a method suitable for genetic screens.  相似文献   

13.
Hanli Xu  Yongtao Guan 《Genetics》2014,197(3):823-838
A novel haplotype association method is presented, and its power is demonstrated. Relying on a statistical model for linkage disequilibrium (LD), the method first infers ancestral haplotypes and their loadings at each marker for each individual. The loadings are then used to quantify local haplotype sharing between individuals at each marker. A statistical model was developed to link the local haplotype sharing and phenotypes to test for association. We devised a novel method to fit the LD model, reducing the complexity from putatively quadratic to linear (in the number of ancestral haplotypes). Therefore, the LD model can be fitted to all study samples simultaneously, and, consequently, our method is applicable to big data sets. Compared to existing haplotype association methods, our method integrated out phase uncertainty, avoided arbitrariness in specifying haplotypes, and had the same number of tests as the single-SNP analysis. We applied our method to data from the Wellcome Trust Case Control Consortium and discovered eight novel associations between seven gene regions and five disease phenotypes. Among these, GRIK4, which encodes a protein that belongs to the glutamate-gated ionic channel family, is strongly associated with both coronary artery disease and rheumatoid arthritis. A software package implementing methods described in this article is freely available at http://www.haplotype.org.  相似文献   

14.
Next-generation DNA sequencing platforms provide exciting new possibilities for in vitro genetic analysis of functional nucleic acids. However, the size of the resulting data sets presents computational and analytical challenges. We present an open-source software package that employs a locality-sensitive hashing algorithm to enumerate all unique sequences in an entire Illumina sequencing run (∼108 sequences). The algorithm results in quasilinear time processing of entire Illumina lanes (∼107 sequences) on a desktop computer in minutes. To facilitate visual analysis of sequencing data, the software produces three-dimensional scatter plots similar in concept to Sewall Wright and John Maynard Smith’s adaptive or fitness landscape. The software also contains functions that are particularly useful for doped selections such as mutation frequency analysis, information content calculation, multivariate statistical functions (including principal component analysis), sequence distance metrics, sequence searches and sequence comparisons across multiple Illumina data sets. Source code, executable files and links to sample data sets are available at http://www.sourceforge.net/projects/sewal.  相似文献   

15.
A better understanding of the molecular mechanisms of signaling by the neurotransmitter serotonin is required to assess the hypothesis that defects in serotonin signaling underlie depression in humans. Caenorhabditis elegans uses serotonin as a neurotransmitter to regulate locomotion, providing a genetic system to analyze serotonin signaling. From large-scale genetic screens we identified 36 mutants of C. elegans in which serotonin fails to have its normal effect of slowing locomotion, and we molecularly identified eight genes affected by 19 of the mutations. Two of the genes encode the serotonin-gated ion channel MOD-1 and the G-protein-coupled serotonin receptor SER-4. mod-1 is expressed in the neurons and muscles that directly control locomotion, while ser-4 is expressed in an almost entirely non-overlapping set of sensory and interneurons. The cells expressing the two receptors are largely not direct postsynaptic targets of serotonergic neurons. We analyzed animals lacking or overexpressing the receptors in various combinations using several assays for serotonin response. We found that the two receptors act in parallel to affect locomotion. Our results show that serotonin functions as an extrasynaptic signal that independently activates multiple receptors at a distance from its release sites and identify at least six additional proteins that appear to act with serotonin receptors to mediate serotonin response.  相似文献   

16.
Eph receptors and their ephrin ligands are key conserved regulators of axon guidance and can function in a variety of signaling modes. Here we analyze the genetic and cellular requirements for Eph signaling in a Caenorhabditis elegans axon guidance choice point, the ventral guidance of axons in the amphid commissure. The C. elegans Eph receptor EFN-1 has both kinase-dependent and kinase-independent roles in amphid ventral guidance. Of the four C. elegans ephrins, we find that only EFN-1 has a major role in amphid axon ventral guidance, and signals in both a receptor kinase-dependent and kinase-independent manner. Analysis of EFN-1 and EFN-1 expression and tissue-specific requirements is consistent with a model in which VAB-1 acts in amphid neurons, interacting with EFN-1 expressed on surrounding cells. Unexpectedly, left-hand neurons are more strongly affected than right-hand neurons by loss of Eph signaling, indicating a previously undetected left–right asymmetry in the requirement for Eph signaling. By screening candidate genes involved in Eph signaling, we find that the Eph kinase-independent pathway involves the ABL-1 nonreceptor tyrosine kinase and possibly the phosphatidylinositol 3-kinase pathway. Overexpression of ABL-1 is sufficient to rescue EFN-1 ventral guidance defects cell autonomously. Our results reveal new aspects of Eph signaling in a single axon guidance decision in vivo.  相似文献   

17.
Jordan D. Ward 《Genetics》2015,199(2):363-377
As in other organisms, CRISPR/Cas9 methods provide a powerful approach for genome editing in the nematode Caenorhabditis elegans. Oligonucleotides are excellent repair templates for introducing substitutions and short insertions, as they are cost effective, require no cloning, and appear in other organisms to target changes by homologous recombination at DNA double-strand breaks (DSBs). Here, I describe a methodology in C. elegans to efficiently knock in epitope tags in 8–9 days, using a temperature-sensitive lethal mutation in the pha-1 gene as a co-conversion marker. I demonstrate that 60mer oligos with 29 bp of homology drive efficient knock-in of point mutations, and that disabling nonhomologous end joining by RNAi inactivation of the cku-80 gene significantly improves knock-in efficiency. Homology arms of 35–80 bp are sufficient for efficient editing and DSBs up to 54 bp away from the insertion site produced knock-ins. These findings will likely be applicable for a range of genome editing approaches in C. elegans, which will improve editing efficiency and minimize screening efforts.  相似文献   

18.
Comparative studies of Caenorhabditis briggsae and C. elegans have provided insights into gene function and developmental control in both organisms. C. elegans is a well developed model organism with a variety of molecular and genetic tools to study gene functions. In contrast, there are only very limited tools available for its closest relative, C. briggsae. To take advantage of the full potential of this comparative approach, we have developed several genetic and molecular tools to facilitate functional analysis in C. briggsae. First, we designed and implemented an SNP-based oligonucleotide microarray for rapid mapping of genetic mutants in C. briggsae. Second, we generated a mutagenized frozen library to permit the isolation of targeted deletions and used the library to recover a deletion mutant of cbr-unc-119 for use as a transgenic marker. Third, we used the cbr-unc-119 mutant in ballistic transformation and generated fluorescently labeled strains that allow automated lineaging and cellular resolution expression analysis. Finally, we demonstrated the potential of automated lineaging by profiling expression of egl-5, hlh-1, and pha-4 at cellular resolution and by detailed phenotyping of the perturbations on the Wnt signaling pathway. These additions to the experimental toolkit for C. briggsae should greatly increase its utility in comparative studies with C. elegans. With the emerging sequence of nematode species more closely related to C. briggsae, these tools may open novel avenues of experimentation in C. briggsae itself.  相似文献   

19.
The L1CAM family of cell adhesion molecules is a conserved set of single-pass transmembrane proteins that play diverse roles required for proper nervous system development and function. Mutations in L1CAMs can cause the neurological L1 syndrome and are associated with autism and neuropsychiatric disorders. L1CAM expression in the mature nervous system suggests additional functions besides the well-characterized developmental roles. In this study, we demonstrate that the gene encoding the Caenorhabditis elegans L1CAM, sax-7, genetically interacts with gtl-2, as well as with unc-13 and rab-3, genes that function in neurotransmission. These sax-7 genetic interactions result in synthetic phenotypes that are consistent with abnormal synaptic function. Using an inducible sax-7 expression system and pharmacological reagents that interfere with cholinergic transmission, we uncovered a previously uncharacterized nondevelopmental role for sax-7 that impinges on synaptic function.  相似文献   

20.
《Genetics》2022,220(4)
WormBase (www.wormbase.org) is the central repository for the genetics and genomics of the nematode Caenorhabditis elegans. We provide the research community with data and tools to facilitate the use of C. elegans and related nematodes as model organisms for studying human health, development, and many aspects of fundamental biology. Throughout our 22-year history, we have continued to evolve to reflect progress and innovation in the science and technologies involved in the study of C. elegans. We strive to incorporate new data types and richer data sets, and to provide integrated displays and services that avail the knowledge generated by the published nematode genetics literature. Here, we provide a broad overview of the current state of WormBase in terms of data type, curation workflows, analysis, and tools, including exciting new advances for analysis of single-cell data, text mining and visualization, and the new community collaboration forum. Concurrently, we continue the integration and harmonization of infrastructure, processes, and tools with the Alliance of Genome Resources, of which WormBase is a founding member.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号