首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have carried out fate mapping studies using Osterix-EGFPCre and Osterix-CreERt animal models and found Cre reporter expression in many different cell types that make up the bone marrow stroma. Constitutive fate mapping resulted in the labeling of different cellular components located throughout the bone marrow, whereas temporal fate mapping at E14.5 resulted in the labeling of cells within a region of the bone marrow. The identity of cell types marked by constitutive and temporal fate mapping included osteoblasts, adipocytes, vascular smooth muscle, perineural, and stromal cells. Prolonged tracing of embryonic precursors labeled at E14.5dpc revealed the continued existence of their progeny up to 10 months of age, suggesting that fate mapped, labeled embryonic precursors gave rise to long lived bone marrow progenitor cells. To provide further evidence for the marking of bone marrow progenitors, bone marrow cultures derived from Osterix-EGFPCre/Ai9 mice showed that stromal cells retained Cre reporter expression and yielded a FACS sorted population that was able to differentiate into osteoblasts, adipocytes, and chondrocytes in vitro and into osteoblasts, adipocytes, and perivascular stromal cells after transplantation. Collectively, our studies reveal the developmental process by which Osterix-Cre labeled embryonic progenitors give rise to adult bone marrow progenitors which establish and maintain the bone marrow stroma.  相似文献   

2.
Age‐related bone loss in mice results from a decrease in bone formation and an increase in cortical bone resorption. The former is accounted by a decrease in the number of postmitotic osteoblasts which synthesize the bone matrix and is thought to be the consequence of age‐dependent changes in mesenchymal osteoblast progenitors. However, there are no specific markers for these progenitors, and conclusions rely on results from in vitro cultures of mixed cell populations. Moreover, the culprits of such changes remain unknown. Here, we have used Osx1‐Cre;TdRFP mice in which osteoprogenitors express the TdRFP fluorescent protein. We report that the number of TdRFP‐Osx1 cells, freshly isolated from the bone marrow, declines by more than 50% between 6 and 24 months of age in both female and male mice. Moreover, TdRFP‐Osx1 cells from old mice exhibited markers of DNA damage and senescence, such as γH2AX foci, G1 cell cycle arrest, phosphorylation of p53, increased p21CIP1 levels, as well as increased levels of GATA4 and activation of NF‐κB – two major stimulators of the senescence‐associated secretory phenotype (SASP). Bone marrow stromal cells from old mice also exhibited elevated expression of SASP genes, including several pro‐osteoclastogenic cytokines, and increased capacity to support osteoclast formation. These changes were greatly attenuated by the senolytic drug ABT263. Together, these findings suggest that the decline in bone mass with age is the result of intrinsic defects in osteoprogenitor cells, leading to decreased osteoblast numbers and increased support of osteoclast formation.  相似文献   

3.
To permit conditional gene targeting of floxed alleles in steroidogenic cell-types we have generated a transgenic mouse line that expresses Cre Recombinase under the regulation of the endogenous Cytochrome P450 side chain cleavage enzyme (Cyp11a1) promoter. Mice Carrying the Cyp11a1-GC (GFP-Cre) allele express Cre Recombinase in fetal adrenal and testis, and adrenal cortex, testicular Leydig cells (and a small proportion of Sertoli cells), theca cells of the ovary, and the hindbrain in postnatal life. Circulating testosterone concentration is unchanged in Cyp11+/GC males, suggesting steroidogenesis is unaffected by loss of one allele of Cyp11a1, mice are grossly normal, and Cre Recombinase functions to recombine floxed alleles of both a YFP reporter gene and the Androgen Receptor (AR) in steroidogenic cells of the testis, ovary, adrenal and hindbrain. Additionally, when bred to homozygosity (Cyp11a1GC/GC), knock-in of GFP-Cre to the endogenous Cyp11a1 locus results in a novel mouse model lacking endogenous Cyp11a1 (P450-SCC) function. This unique dual-purpose model has utility both for those wishing to conditionally target genes within steroidogenic cell types and for studies requiring mice lacking endogenous steroid hormone production.  相似文献   

4.
The regulatory elements of the Tie2/Tek promoter are commonly used in mouse models to direct transgene expression to endothelial cells. Tunica intima endothelial kinase 2 (Tie2) is also expressed in hematopoietic cells, although this has not been fully characterized. We determine the lineages of adult hematopoietic cells derived from Tie2‐expressing populations using Tie2‐Cre;Rosa26R‐EYFP mice. In Tie2‐Cre;Rosa26R‐EYFP mice, analysis of bone marrow cells showed Cre‐mediated recombination in 85% of the population. In adult bone marrow and spleen, we analyzed subclasses of early hematopoietic progenitors, T cells, monocytes, granulocytes, and B cells. We found that ~ 84% of each lineage was EYFP+, and nearly all cells that come from Tie2‐expressing lineages are CD45+, confirming widespread contribution to definitive hematopoietic cells. In addition, more than 82% of blood cells within the embryonic yolk sac were of Tie2+ origin. Our findings of high levels of Tie2‐Cre recombination in the hematopoietic lineage have implications for the use of the Tie2‐Cre mouse as a lineage‐restricted driver strain. genesis 48:563–567, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Several genetically modified mouse models have been generated in order to drive expression of the Cre recombinase in the neuroectoderm. However, none of them specifically targets the posterior neural plate during neurulation. To fill this gap, we have generated a new transgenic mouse line in which Cre expression is controlled by a neural specific enhancer (NSE) from the Caudal‐related homeobox 2 (Cdx2) locus. Analyses of Cre activity via breeding with R26R‐YFP reporter mice have indicated that the Cdx2NSE‐Cre mouse line allows for recombination of LoxP sites in most cells of the posterior neural plate as soon as from the head fold stage. Detailed examination of double‐transgenic embryos has revealed that this novel Cre‐driver line allows targeting the entire posterior neural tube with an anterior limit in the caudal hindbrain. Of note, the Cdx2NSE regulatory sequences direct Cre expression along the whole dorso‐ventral axis (including pre‐migratory neural crest cells) and, accordingly, YFP fluorescence has been also observed in multiple non‐cranial neural crest derivatives of double‐transgenic embryos. Therefore, we believe that the Cdx2NSE‐Cre mouse line represents an important novel genetic tool for the study of early events occurring in the caudal neuroectoderm during the formation of both the central and the peripheral nervous systems. genesis 51:777–784. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Cochlear hair cells of the inner ear are mechanosensory transducers critical for sound reception in mammals. A mouse with a specific expression of Cre recombinase activity in hair cells is essential for hair cell-specific gene targeting. Here we report a transgenic mouse in which Cre activity is detected in inner hair cells, not in supporting cells, in the cochlea. The Cre activity was visualized with both X-gal staining and beta-galactosidase immunostaining in progeny of a cross between our Cre line and the reporter ROSA26R line. In inner hair cells, the Cre activity started at postnatal day 14 and was maintained throughout adulthood. Starting at postnatal day 50, a few outer hair cells in the outermost row of cochlear apical and middle turns displayed the Cre activity. In vestibular hair cells and spiral ganglia, the Cre activity was also detected. Cre activity was present in cells widely distributed throughout brain, testis, and retina, but was absent in many other tissues such as kidney, heart, liver, and intestine. This Cre mouse line can thus be used for conditional gene targeting in mature inner hair cells of the cochlea. genesis 39:173-177, 2004. Copyright 2004 Wiley-Liss, Inc.  相似文献   

7.
Background: Experiments using Cre recombinase to study smooth muscle specific functions rely on strict specificity of Cre transgene expression. Therefore, accurate determination of Cre activity is critical to the interpretation of experiments using smooth muscle specific Cre. Methods and results: Two lines of smooth muscle protein 22 α-Cre (SM22α-Cre) mice were bred to floxed mice in order to define Cre transgene expression. Southern blotting demonstrated that SM22α-Cre was expressed not only in tissues abundant of smooth muscle, but also in spleen, which consists largely of immune cells including myeloid and lymphoid cells. PCR detected SM22α-Cre expression in peripheral blood and peritoneal macrophages. Analysis of SM22α-Cre mice crossed with a recombination detector GFP mouse revealed GFP expression, and hence recombination, in circulating neutrophils and monocytes by flow cytometry. Conclusions: SM22α-Cre mediates recombination not only in smooth muscle cells, but also in myeloid cells including neutrophils, monocytes, and macrophages. Given the known contributions of myeloid cells to cardiovascular phenotypes, caution should be taken when interpreting data using SM22α-Cre mice to investigate smooth muscle specific functions. Strategies such as bone marrow transplantation may be necessary when SM22α-Cre is used to differentiate the contribution of smooth muscle cells versus myeloid cells to observed phenotypes.  相似文献   

8.
9.
Cre/loxP technology is an important tool for studying cell type-specific gene functions. Cre recombinase mouse lines, including Agc1-CreERT2, Col2a1-Cre; Col2a1-CreERT2, Shh-Cre, Shh-CreERT2, and Osx-Cre, have been proven to be valuable tools to elucidate the biology of long bones, yet the information for their activity in postnatal intervertebral disc (IVD) tissues was very limited. In this study, we used R26-mTmG fluorescent reporter to systematically analyze cell specificity and targeting efficiency of these six mouse lines in IVD tissues at postnatal growing and adult stages. We found that Agc1-CreERT2 is effective to direct recombination in all components of IVDs, including annulus fibrosus (AF), nucleus pulposus (NP), and cartilaginous endplate (CEP), upon tamoxifen induction at either 2 weeks or 2 months of ages. Moreover, Col2a1-Cre targets most of the cells in IVDs, except for some cells in the outer AF (OAF) and NP. In contrast, the activity of Col2a1-CreERT2 is mainly limited to the IAF of IVD tissues at either stage of tamoxifen injection. Similarly, Shh-Cre directs recombination specifically in all NP cells, whereas Shh-CreERT2 is active only in a few NP cells when tamoxifen is administered at either stage. Finally, Osx-Cre targets cells in the CEP, but not in the NP or AF of IVDs tissues at these two stages. Thus, our data demonstrated that all these Cre lines can direct recombination in IVD tissues at postnatal stages with different cell type specificity and/or targeting efficiency, and can, therefore, serve as valuable tools to dissect cell type-specific gene functions in IVD development and homeostasis.  相似文献   

10.
Histone deacetylase (Hdac)3 is a nuclear enzyme that contributes to epigenetic programming and is required for embryonic development. To determine the role of Hdac3 in bone formation, we crossed mice harboring loxP sites around exon 7 of Hdac3 with mice expressing Cre recombinase under the control of the osterix promoter. The resulting Hdac3 conditional knockout (CKO) mice were runted and had severe deficits in intramembranous and endochondral bone formation. Calvarial bones were significantly thinner and trabecular bone volume in the distal femur was decreased 75% in the Hdac3 CKO mice due to a substantial reduction in trabecular number. Hdac3-CKO mice had fewer osteoblasts and more bone marrow adipocytes as a proportion of tissue area than their wildtype or heterozygous littermates. Bone formation rates were depressed in both the cortical and trabecular regions of Hdac3 CKO femurs. Microarray analyses revealed that numerous developmental signaling pathways were affected by Hdac3-deficiency. Thus, Hdac3 depletion in osterix-expressing progenitor cells interferes with bone formation and promotes bone marrow adipocyte differentiation. These results demonstrate that Hdac3 inhibition is detrimental to skeletal health.  相似文献   

11.
Dendritic cells (DCs) are involved in T cell activation via their uptake and presentation of antigens. In vivo function of DCs was analyzed using transgenic mouse models that express diphtheria toxin receptor (DTR) or the diphtheria toxin-A subunit (DTA) under the control of the CD11c/Itgax promoter. However, CD11c+ cells are heterogeneous populations that contain several DC subsets. Thus, the in vivo function of each subset of DCs remains to be elucidated. Here, we describe a new inducible DC ablation model, in which DTR expression is induced under the CD11c/Itgax promoter after Cre-mediated excision of a stop cassette (CD11c-iDTR). Crossing of CD11c-iDTR mice with CAG-Cre transgenic mice, expressing Cre recombinase under control of the cytomegalovirus immediate early enhancer-chicken beta-actin hybrid promoter, led to the generation of mice, in which DTR was selectively expressed in CD11c+ cells (iDTRΔ mice). We successfully deleted CD11c+ cells in bone marrow-derived DCs in vitro and splenic CD11c+ cells in vivo after DT treatment in iDTRΔ mice. This mouse strain will be a useful tool for generating mice lacking a specific subset of DCs using a transgenic mouse strain, in which the Cre gene is expressed by a DC subset-specific promoter.  相似文献   

12.
Gastric pit cells are high‐turnover epithelial cells of the gastric mucosa. They secrete mucus to protect the gastric epithelium from acid and pepsin. To investigate the genetic mechanisms underlying the physiological functions of gastric pit cells, we generated a transgenic mouse line, namely, Capn8‐Cre, in which the expression of Cre recombinase was controlled by the promoter of the intracellular Ca2+‐regulated cysteine protease calpain‐8. To test the tissue distribution and excision activity of Cre recombinase, the Capn8‐Cre transgenic mice were bred with the ROSA26 reporter strain and a mouse strain that carries Smad4 conditional alleles (Smad4Co/Co). Multiple‐tissue PCR and LacZ staining demonstrated that Capn8‐Cre transgenic mouse expressed Cre recombinase in the gastric pit cells. Cre recombinase activity was also detected in the liver and skin tissues. These data suggest that the Capn8‐Cre mouse line described here could be used to dissect gene function in gastric pit cells. genesis 47:674–679, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Unmodified Cre recombinase crosses the membrane   总被引:5,自引:0,他引:5       下载免费PDF全文
Site-specific recombination in genetically modified cells can be achieved by the activity of Cre recombinase from bacteriophage P1. Commonly an expression vector encoding Cre is introduced into cells; however, this can lead to undesired side-effects. Therefore, we tested whether cell-permeable Cre fusion proteins can be directly used for lox-specific recombination in a cell line tailored to shift from red to green fluorescence after loxP-specific recombination. Comparison of purified recombinant Cre proteins with and without a heterologous ‘protein transduction domain’ surprisingly showed that the unmodified Cre recombinase already possesses an intrinsic ability to cross the membrane border. Addition of purified recombinant Cre enyzme to primary bone marrow cells isolated from transgenic C/EBPαfl/fl mice also led to excision of the ‘floxed’ C/EBPα gene, thus demonstrating its potential for in vivo applications. We conclude that Cre enyzme itself or its intrinsic membrane-permeating moiety are attractive tools for direct manipulation of mammalian cells.  相似文献   

14.
15.
16.
The Cre/loxP system is a strategy for controlling temporal and/or spatial gene expression through genome alteration in mice. As successful Cre/loxP genome alteration depends on Cre-driver mice, Cre-reporter mice are essential for validation of Cre gene expression in vivo. In most Cre-reporter mouse strains, although the presence of reporter product indicates the expression of Cre recombinase, it has remained unclear whether a lack of reporter signal indicates either no Cre recombinase expression or insufficient reporter gene promoter activity. We produced a novel ROSA26 knock-in Cre-reporter C57BL/6N strain exhibiting green emission before and red after Cre-mediated recombination, designated as strain R26GRR. Ubiquitous green fluorescence and no red fluorescence were observed in R26GRR mice. To investigate the activation of tdsRed, EGFP-excised R26GRR, R26RR, mice were produced through the crossing of C57BL/6N mice with R26GRR/Ayu1-Cre F1 mice. R26RR mice showed extraordinarily strong red fluorescence in almost all tissues examined, suggesting ubiquitous activation of the second reporter in all tissues after Cre/loxP recombination. Moreover, endothelial cell lineage and pancreatic islet-specific expression of red fluorescence were detected in R26GRR/Tie2-Cre F1 mice and R26GRR /Ins1-Cre F1 mice, respectively. These results indicated that R26GRR mice are a useful novel Cre-reporter mouse strain. In addition, R26GRR mice with a pure C57BL/6N background represent a valuable source of green-to-red photoconvertible cells following Cre/loxP recombination for application in transplantation studies. The R26GRR mouse strain will be available from RIKEN BioResource Center (http://www.brc.riken.jp/lab/animal/en/).  相似文献   

17.
Transgenic mice that express Cre recombinase in hypertrophic chondrocytes   总被引:3,自引:0,他引:3  
In order to investigate the physiological control of hypertrophic chondrocytes which present the terminally differentiated form of chondrocytes, we generated a mouse line expressing the Cre recombinase under the control of the mouse type X collagen (Col10a1) promoter. In situ hybridization analysis demonstrated the expression of Col10a1-Cre transgene in hypertrophic chondrocytes of femur at postnatal day 2 (P2). In order to test the excision activity of the Cre recombinase, the Col10a1-Cre transgenic line was crossed with the mouse strain carrying the Smad4 conditional alleles (Smad4co/co) and the reporter line ROSA26. Multiple tissue PCR of Col10a1-Cre;Smad4co/+ mice revealed the restricted Cre activity in tissues containing hypertrophic chondrocytes. LacZ staining revealed that the Cre activity was observed in the cartilage primordia of ribs at E14.5 and only detected in the lower hypertrophic region of ribs at P1. These data suggest that the Col10a1-Cre mouse line described here could be used to achieve conditional gene targeting in hypertrophic chondrocytes.  相似文献   

18.
In the mouse retina, horizontal cells form an electrically coupled network and provide feedback signals to photoreceptors and feedforward signals to bipolar cells. Thereby, horizontal cells contribute to gain control at the first visual synapse and to the antagonistic organization of bipolar and ganglion cell receptive fields. However, the nature of horizontal cell output remains a matter of debate, just as the exact contribution of horizontal cells to center-surround antagonism. To facilitate studying horizontal cell function, we developed a knockin mouse line which allows ablating genes exclusively in horizontal cells. This knockin line expresses a Cre recombinase under the promoter of connexin57 (Cx57), a gap junction protein only expressed in horizontal cells. Consistently, in Cx57+/Cre mice, Cre recombinase is expressed in almost all horizontal cells (>99%) and no other retinal neurons. To test Cre activity, we crossbred Cx57+/Cre mice with a mouse line in which exon 11 of the coding sequence for the ionotropic glutamate receptor subunit GluA4 was flanked by two loxP sites (GluA4fl/fl). In GluA4fl/fl:Cx57+/Cre mice, GluA4 immunoreactivity was significantly reduced (∼50%) in the outer retina where horizontal cells receive photoreceptor inputs, confirming the functionality of the Cre/loxP system. Whole-cell patch-clamp recordings from isolated horizontal cell somata showed a reduction of glutamate-induced inward currents by ∼75%, suggesting that the GluA4 subunit plays a major role in mediating photoreceptor inputs. The persistent current in GluA4-deficient cells is mostly driven by AMPA and to a very small extent by kainate receptors as revealed by application of the AMPA receptor antagonist GYKI52466 and concanavalin A, a potentiator of kainate receptor-mediated currents. In summary, the Cx57+/Cre mouse line provides a versatile tool for studying horizontal cell function. GluA4fl/fl:Cx57+/Cre mice, in which horizontal cells receive less excitatory input, can thus be used to analyze the contribution of horizontal cells to retinal processing.  相似文献   

19.
Low testosterone level is an independent predictor of osteoporotic fracture in elderly men as well as increased fracture risk in men undergoing androgen deprivation. Androgens and androgen receptor (AR) actions are essential for bone development and homeostasis but their linkage to fracture repair remains unclear. Here we found that AR is highly expressed in the periosteum cells and is co-localized with a mesenchymal progenitor cell marker, paired-related homeobox protein 1 (Prrx1), during bone fracture repair. Mice lacking the AR gene in the periosteum expressing Prrx1-cre (AR-/Y;Prrx1::Cre) but not in the chondrocytes (AR-/Y;Col-2::Cre) exhibits reduced callus size and new bone volume. Gene expression data analysis revealed that the expression of several collagens, integrins and cell adhesion molecules were downregulated in periosteum-derived progenitor cells (PDCs) from AR-/Y;Prrx1::Cre mice. Mechanistically, androgens-AR signaling activates the AR/ARA55/FAK complex and induces the collagen-integrin α2β1 gene expression that is required for promoting the AR-mediated PDCs migration. Using mouse cortical-defect and femoral graft transplantation models, we proved that elimination of AR in periosteum of host mice impairs fracture healing, regardless of AR existence of transplanted donor graft. While testosterone implanted scaffolds failed to complete callus bridging across the fracture gap in AR-/Y;Prrx1::Cre mice, cell-based transplantation using DPCs re-expressing AR could lead to rescue bone repair. In conclusion, targeting androgen/AR axis in the periosteum may provide a novel therapy approach to improve fracture healing.Subject terms: Bone development, Metabolic bone disease  相似文献   

20.
To generate a mouse line which allows inducible, Cre/loxP‐dependent recombination in adipocytes, we used RedE/RedT‐mediated recombineering to insert the CreERT2‐transgene, which encodes a fusion protein of Cre and a mutated tamoxifen‐responsive estrogen receptor, into the start codon of the adipocyte‐specific Adipoq gene. Adipoq encodes adiponectin, an adipokine specifically expressed in differentiated adipocytes. Tamoxifen treatment induced almost complete recombination in white adipose tissue of the AdipoqCreERT2 mouse line (97%–99%), while no recombination was seen in vehicle‐treated animals. Recombination in brown adipose tissue was about 15%, whereas other organs and tissues did not undergo recombination. In addition, mice expressing CreERT2 in adipocytes did not show any alterations of metabolic functions like glucose tolerance, lipolysis, or energy expenditure compared to control mice. Therefore the AdipoqCreERT2 mouse line will be a valuable tool for studying the consequences of a temporally controlled deletion of floxed genes in white adipose tissue. genesis 48:618–625, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号