首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenotypic plasticity of mature vascular smooth muscle cells (VSMCs) facilitates angiogenesis and wound healing, but VSCM dedifferentiation also contributes to vascular pathologies such as intimal hyperplasia. Insulin/insulin-like growth factor I (IGF-I) is unique among growth factors in promoting VSMC differentiation via preferential activation of phosphatidylinositol 3-kinase (PI3K) and Akt. We have previously reported that rapamycin promotes VSMC differentiation by inhibiting the mammalian target of rapamycin (mTOR) target S6K1. Here, we show that rapamycin activates Akt and induces contractile protein expression in human VSMC in an insulin-like growth factor I-dependent manner, by relieving S6K1-dependent negative regulation of insulin receptor substrate-1 (IRS-1). In skeletal muscle and adipocytes, rapamycin relieves mTOR/S6K1-dependent inhibitory phosphorylation of IRS-1, thus preventing IRS-1 degradation and enhancing PI3K activation. We report that this mechanism is functional in VSMCs and crucial for rapamycin-induced differentiation. Rapamycin inhibits S6K1-dependent IRS-1 serine phosphorylation, increases IRS-1 protein levels, and promotes association of tyrosine-phosphorylated IRS-1 with PI3K. A rapamycin-resistant S6K1 mutant prevents rapamycin-induced Akt activation and VSMC differentiation. Notably, we find that rapamycin selectively activates only the Akt2 isoform and that Akt2, but not Akt1, is sufficient to induce contractile protein expression. Akt2 is required for rapamycin-induced VSMC differentiation, whereas Akt1 appears to oppose contractile protein expression. The anti-restenotic effect of rapamycin in patients may be attributable to this unique pattern of PI3K effector regulation wherein anti-differentiation signals from S6K1 are inhibited, but pro-differentiation Akt2 activity is promoted through an IRS-1 feedback signaling mechanism.  相似文献   

2.
3.
4.
Resveratrol mimics calorie restriction to extend lifespan of Caenorhabditis elegans, yeast and Drosophila, possibly through activation of Sir2 (silent information regulator 2), a NAD+-dependent histone deacetylase. In the present study, resveratrol is shown to inhibit the insulin signalling pathway in several cell lines and rat primary hepatocytes in addition to its broad-spectrum inhibition of several signalling pathways. Resveratrol effectively inhibits insulin-induced Akt and MAPK (mitogen-activated protein kinase) activation mainly through disruption of the interactions between insulin receptor substrates and its downstream binding proteins including p85 regulatory subunit of phosphoinositide 3-kinase and Grb2 (growth factor receptor-bound protein 2). The inhibitory effect of resveratrol on insulin signalling is also demonstrated at mRNA level, where resveratrol reverses insulin effects on phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, fatty acid synthase and glucokinase. In addition, RNA interference experiment shows that the inhibitory effect of resveratrol on insulin signalling pathway is not weakened in cells with reduced expression of SirT1, the mammalian counterpart of Sir2. These observations raise the possibility that resveratrol may additionally modulate lifespan through inhibition of insulin signalling pathway, independently of its activation of SirT1 histone deacetylase. Furthermore, the present study may help to explain a wide range of biological effects of resveratrol, and provides further insight into the molecular basis of calorie restriction.  相似文献   

5.
Vascular smooth muscle cells (VSMCs) are the major cell type in blood vessels. Unlike many other mature cell types in the adult body, VSMC do not terminally differentiate but retain a remarkable plasticity. Fully differentiated medial VSMCs of mature vessels maintain quiescence and express a range of genes and proteins important for contraction/dilation, which allows them to control systemic and local pressure through the regulation of vascular tone. In response to vascular injury or alterations in local environmental cues, differentiated/contractile VSMCs are capable of switching to a dedifferentiated phenotype characterized by increased proliferation, migration and extracellular matrix synthesis in concert with decreased expression of contractile markers. Imbalanced VSMC plasticity results in maladaptive phenotype alterations that ultimately lead to progression of a variety of VSMC-driven vascular diseases. The nature, extent and consequences of dysregulated VSMC phenotype alterations are diverse, reflecting the numerous environmental cues (e.g. biochemical factors, extracellular matrix components, physical) that prompt VSMC phenotype switching. In spite of decades of efforts to understand cues and processes that normally control VSMC differentiation and their disruption in VSMC-driven disease states, the crucial molecular mechanisms and signalling pathways that shape the VSMC phenotype programme have still not yet been precisely elucidated. In this article we introduce the physiological functions of vascular smooth muscle/VSMCs, outline VSMC-driven cardiovascular diseases and the concept of VSMC phenotype switching, and review molecular mechanisms that play crucial roles in the regulation of VSMC phenotypic plasticity.  相似文献   

6.
Vessel wall remodeling is a complex phenomenon in which the loss of differentiation of vascular smooth muscle cells (VSMCs) occurs. We investigated the role of rat macrophage chemoattractant protein (MCP)-1 on rat VSMC proliferation and migration to identify the mechanism(s) involved in this kind of activity. Exposure to very low concentrations (1-100 pg/ml) of rat MCP-1 induced a significant proliferation of cultured rat VSMCs assessed as cell duplication by the counting of total cells after exposure to test substances. MCP-1 stimulated VSMC proliferation and migration in a two-dimensional lateral sheet migration of adherent cells in culture. Endogenous vascular endothelial growth factor-A (VEGF-A) was responsible for the mitogenic activity of MCP-1, because neutralizing anti-VEGF-A antibody inhibited cell proliferation in response to MCP-1. On the contrary, neutralizing anti-fibroblast growth factor-2 and anti-platelet-derived growth factor-bb antibodies did not affect VSMC proliferation induced by MCP-1. RT-PCR and Western blot analyses showed an increased expression of either mRNA or VEGF-A protein after MCP-1 activation (10-100 pg/ml), whereas no fms-like tyrosine kinase (Flt)-1 receptor upregulation was observed. Because we have previously demonstrated that hypoxia (3% O2) can enhance VSMC proliferation induced by VEGF-A through Flt-1 receptor upregulation, the effects of hypoxia on the response of VSMCs to MCP-1 were investigated. Severe hypoxia (3% O2) potentiated the growth-promoting effect of MCP-1, which was able to significantly induce cell proliferation even at a concentration as low as 0.1 pg/ml. These findings demonstrate that low concentrations of rat MCP-1 can directly promote rat VSMC proliferation and migration through the autocrine production of VEGF-A.  相似文献   

7.
8.
Bone marrow-derived progenitor cells have recently been shown to be involved in the development of intimal hyperplasia after vascular injury. Transforming growth factor-β (TGF-β) has profound stimulatory effects on intimal hyperplasia, but it is unknown whether these effects involve progenitor cell recruitment. In this study we found that although TGF-β had no direct effect on progenitor cell recruitment, conditioned media derived from vascular smooth muscle cells (VSMC) stimulated with TGF-β induced migration of both total bone marrow (BM) cells and BM-mesenchymal stem cells (MSC) and also induced MSC differentiation into smooth muscle like cells. Furthermore, overexpression of the signaling molecule Smad3 in VSMC via adenovirus-mediated gene transfer (AdSmad3) enhanced the TGF-β''s chemotactic effect. Microarray analysis of VSMC stimulated by TGF-β/AdSmad3 revealed monocyte chemoattractant protein-1 (MCP-1) as a likely factor responsible for progenitor cell recruitment. We then demonstrated that TGF-β through Smad3 phosphorylation induced a robust expression of MCP-1 in VSMC. Recombinant MCP-1 mimicked the stimulatory effect of conditioned media on BM and MSC migration. In the rat carotid injury model, Smad3 overexpression significantly increased MCP-1 expression after vascular injury, consistent with our in vitro results. Interestingly, TGF-β/Smad3-induced MCP-1 was completely blocked by both Ro-32-0432 and rotterlin, suggesting protein kinase C-δ (PKCδ) may play a role in TGF-β/Smad3-induced MCP-1 expression. In summary, our data demonstrate that TGF-β, through Smad3 and PKCδ, stimulates VSMC production of MCP-1, which is a chemoattractant for bone marrow-derived cells, specifically MSC. Manipulation of this signaling system may provide a novel approach to inhibition of intimal hyperplasia.  相似文献   

9.
Longevity nutrients resveratrol, wines and grapes   总被引:1,自引:0,他引:1  
A mild-to-moderate wine drinking has been linked with reduced cardiovascular, cerebrovascular, and peripheral vascular risk as well as reduced risk due to cancer. The reduced risk of cardiovascular disease associated with wine drinking is popularly known as French Paradox. A large number of reports exist in the literature indicating that resveratrol present in wine is primarily responsible for the cardioprotection associated with wine. Recently, resveratrol was shown to extend life span in yeast through the activation of longevity gene SirT1, which is also responsible for the longevity mediated by calorie restriction. This review summarizes the reports available on the functional and molecular biological aspects of resveratrol, wine and grapes in potentiating the longevity genes.  相似文献   

10.
血清饥饿可诱导人血管平滑肌细胞再分化   总被引:25,自引:0,他引:25  
体外培养的分化型血管平滑肌细胞 (vascularsmoothmusclecells ,VSMC)以特异性标志基因表达、长梭形外观及对兴奋剂刺激产生收缩反应为其表型特征 .以血清饥饿法培养处于超汇合 (overconfluence)状态的人VSMC ,观察其分化型标志基因表达活性及其与细胞形态特征和收缩反应性之间的关系 ,探讨细胞生存环境对VSMC基因表达及表型的影响 .研究显示 ,生长至超汇合的VSMC由含血清培养转为血清饥饿后 ,收缩蛋白如SMα肌动蛋白 (SMα actin)、SM2 2α、h1 calponin、肌球蛋白重链 (MHC)SM1和SM2亚型的表达活性明显上调 ,证实血清饥饿诱导的收缩蛋白基因表达和血清应答因子 (serumresponsefactor ,SRF)与CArG顺式元件结合活性的增强有关 .同时 ,血清饥饿还可激活参与VSMC分化调节的转录调控因子SmLIM、Gax和分化相关蛋白HRG 1基因的转录 .随着血清饥饿培养时间的延长 ,VSMC逐渐形成多层、束状、成极性排列的形式 ,对兴奋剂刺激产生的收缩反应明显增强 .结果表明 ,超汇合状态的去分化型VSMC脱离血清刺激后 ,可以再分化成熟并重新获得收缩能力  相似文献   

11.
Neointimal hyperplasia of vascular smooth muscle cells (VSMC) plays a critical role in atherosclerotic plaque formation and in-stent restenosis, but the underlying mechanisms are still incompletely understood. We performed a proteomics study to identify novel signaling molecules organizing the VSMC hyperplasia. The differential proteomics analysis in a balloon-induced injury model of rat carotid artery revealed that the expressions of 44 proteins are changed within 3 days post injury. The combination of cellular function assays and a protein network analysis further demonstrated that 27 out of 44 proteins constitute key signaling networks orchestrating the phenotypic change of VSMC from contractile to epithelial-like synthetic. Among the list of proteins, the in vivo validation specifically revealed that six proteins (Rab15, ITR, OLR1, PDHβ, PTPε) are positive regulators for VSMC hyperplasia. In particular, the OLR1 played dual roles in the VSMC hyperplasia by directly mediating oxidized LDL-induced monocyte adhesion via NF-κB activation and by assisting the PDGF-induced proliferation/migration. Importantly, OLR1 and PDGFRβ were associated in close proximity in the plasma membrane. Thus, this study elicits the protein network organizing the phenotypic change of VSMC in the vascular injury diseases such as atherosclerosis and discovers OLR1 as a novel molecular link between the proliferative and inflammatory responses of VSMCs.  相似文献   

12.
13.
Although vascular smooth muscle cells (VSMCs) are widely used in cardiovascular research, their phenotypic change under various culture conditions is problematic to evaluate the experimental results obtained. The levels of angiotensin (Ang) type 1/2 (AT1/AT2) receptors as well as contractile and structural proteins are degraded through culture passages. The present study demonstrated that heparin recovered Ang receptors and differentiation markers, such as desmin, SM-22 and smooth muscle alpha-actin in VSMCs at the ninth passage. Heparin also potenciated Ang II-induced activation for ERK1/2 and p38. These results suggest a potential value of heparin-treated VSMCs as the model for analysis of Ang-mediated signal transduction under physiological condition.  相似文献   

14.

Background

Changes in the vascular smooth muscle cell (VSMC) contractile phenotype occur in pathological states such as restenosis and atherosclerosis. Multiple cytokines, signaling through receptor tyrosine kinases (RTK) and PI3K/Akt and MAPK/ERK pathways, regulate these phenotypic transitions. The Spry proteins are feedback modulators of RTK signaling, but their specific roles in VSMC have not been established.

Methodology/Principal Findings

Here, we report for the first time that Spry1, but not Spry4, is required for maintaining the differentiated state of human VSMC in vitro. While Spry1 is a known MAPK/ERK inhibitor in many cell types, we found that Spry1 has little effect on MAPK/ERK signaling but increases and maintains Akt activation in VSMC. Sustained Akt signaling is required for VSMC marker expression in vitro, while ERK signaling negatively modulates Akt activation and VSMC marker gene expression. Spry4, which antagonizes both MAPK/ERK and Akt signaling, suppresses VSMC differentiation marker gene expression. We show using siRNA knockdown and ChIP assays that FoxO3a, a downstream target of PI3K/Akt signaling, represses myocardin promoter activity, and that Spry1 increases, while Spry4 decreases myocardin mRNA levels.

Conclusions

Together, these data indicate that Spry1 and Spry4 have opposing roles in VSMC phenotypic modulation, and Spry1 maintains the VSMC differentiation phenotype in vitro in part through an Akt/FoxO/myocardin pathway.  相似文献   

15.
16.
The purpose of this study was to evaluate the role of sirtuin 1 (SirT1) in exercise- and resveratrol (RSV)-induced skeletal muscle mitochondrial biogenesis. Using muscle-specific SirT1-deficient (KO) mice and a cell culture model of differentiated myotubes, we compared the treatment of resveratrol, an activator of SirT1, with that of exercise in inducing mitochondrial biogenesis. These experiments demonstrated that SirT1 plays a modest role in maintaining basal mitochondrial content and a larger role in preserving mitochondrial function. Furthermore, voluntary exercise and RSV treatment induced mitochondrial biogenesis in a SirT1-independent manner. However, when RSV and exercise were combined, a SirT1-dependent synergistic effect was evident, leading to enhanced translocation of PGC-1α and SirT1 to the nucleus and stimulation of mitochondrial biogenesis. Thus, the magnitude of the effect of RSV on muscle mitochondrial biogenesis is reliant on SirT1, as well as the cellular environment, such as that produced by repeated bouts of exercise.  相似文献   

17.
The Hippo-Yap (Yes-associated protein) signaling pathway has emerged as one of the critical pathways regulating cell proliferation, differentiation, and apoptosis in response to environmental and developmental cues. However, Yap1 roles in vascular smooth muscle cell (VSMC) biology have not been investigated. VSMCs undergo phenotypic switch, a process characterized by decreased gene expression of VSMC contractile markers and increased proliferation, migration, and matrix synthesis. The goals of the present studies were to investigate the relationship between Yap1 and VSMC phenotypic switch and to determine the molecular mechanisms by which Yap1 affects this essential process in VSMC biology. Results demonstrated that the expression of Yap1 was rapidly up-regulated by stimulation with PDGF-BB (a known inducer of phenotypic switch in VSMCs) and in the injured vessel wall. Knockdown of Yap1 impaired VSMC proliferation in vitro and enhanced the expression of VSMC contractile genes as well by increasing serum response factor binding to CArG-containing regions of VSMC-specific contractile genes within intact chromatin. Conversely, the interaction between serum response factor and its co-activator myocardin was reduced by overexpression of Yap1 in a dose-dependent manner. Taken together, these results indicate that down-regulation of Yap1 promotes VSMC contractile phenotype by both up-regulating myocardin expression and promoting the association of the serum response factor-myocardin complex with VSMC contractile gene promoters and suggest that the Yap1 signaling pathway is a central regulator of phenotypic switch of VSMCs.  相似文献   

18.
Advanced glycation end-products (AGEs) of plasma proteins and/or matrix proteins are candidate mediators for various vascular complications such as atherosclerosis. We previously reported a significantly larger accumulation of AGEs of the aorta in stroke-prone spontaneously hypertensive rats (SHRSP) than in age-matched Wistar-Kyoto rats (WKY). In this study, we examined the effects of AGEs on vascular smooth muscle cells (VSMC) from SHRSP and WKY rats. We also studied the in vitro effects of resveratrol (3, 4',5-trihydroxystilbene), a natural phytestrogen, on VSMC proliferation, DNA synthesis, and collagen synthesis activity in SHRSP-VSMC. AGEs accelerated the proliferation of SHRSP- or WKY-VSMC in a time- and dose-dependent manner. VSMC from SHRSP were more sensitive to AGEs than VSMC from normotensive WKY. AGEs also significantly increased DNA synthesis and prolyl hydroxylase activity, a marker for collagen synthesis, in SHRSP-VSMC. AGEs-induced increases in TGF-beta1 mRNA in SHRSP-VSMC were significantly greater than in WKY-VSMC. Resveratrol inhibited AGEs-stimulated proliferation, DNA synthesis, and prolyl hydroxylase activity in SHRSP-VSMC in a dose-dependent manner. ICI 182780, a specific estrogen receptor antagonist, partly blocked the inhibitory effects of resveratrol on AGEs-stimulated proliferation, DNA synthesis, and prolyl hydroxylase activity. Resveratrol significantly inhibited AGEs-induced TGF-beta1 mRNA increases in a dose-dependent manner. Thus, resveratrol may confer protective effects on the cardiovascular system by attenuating vascular remodeling and may be clinically useful as a safer substitute for feminizing estrogens in preventing cardiovascular disease.  相似文献   

19.
20.
Recent studies of cyclooxygenase-2 (COX-2) inhibitors suggest that the balance between thromboxane and prostacyclin is a critical factor in cardiovascular homeostasis. Disruption of prostacyclin signaling by genetic deletion of the receptor or by pharmacological inhibition of COX-2 is associated with increased atherosclerosis and restenosis after injury in animal models and adverse cardiovascular events in clinical trials (Vioxx). Human vascular smooth muscle cells (VSMC) in culture exhibit a dedifferentiated, migratory, proliferative phenotype, similar to what occurs after arterial injury. We report that the prostacyclin analog iloprost induces differentiation of VSMC from this synthetic, proliferative phenotype to a quiescent, contractile phenotype. Iloprost induced expression of smooth muscle (SM)-specific differentiation markers, including SM-myosin heavy chain, calponin, h-caldesmon, and SM alpha-actin, as determined by Western blotting and RT-PCR analysis. Iloprost activated cAMP/protein kinase A (PKA) signaling in human VSMC, and the cell-permeable cAMP analog 8-bromo-cAMP mimicked the iloprost-induced differentiation. Both myristoylated PKA inhibitor amide-(14-22) (PKI, specific PKA inhibitor), as well as ablation of the catalytic subunits of PKA by small interfering RNA, opposed the upregulation of contractile markers induced by iloprost. These data suggest that iloprost modulates VSMC phenotype via G(s) activation of the cAMP/PKA pathway. These studies reveal regulation of VSMC differentiation as a potential mechanism for the cardiovascular protective effects of prostacyclin. This provides important mechanistic insights into the induction of cardiovascular events with the use of selective COX-2 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号