首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aroma is an important quality attribute of rice and is a key determinant of its market value. Among the different groups of aromatic rice varieties ‘Basmati’ from the Indian subcontinent and ‘Jasmine’ from Thailand occupy prime position in the international market. In addition, there are a large number of premium short-grain aromatic rice varieties cultivated by farmers in India and South-East Asia that have not been fully commercially utilised as yet. The origin and evolution of aromatic rice varieties is being unravelled by application of genomic tools. The common alleles of aroma gene seem to have their origin in the aromatic group of rice varieties native to the Sub-Himalayan region. Of more than two hundred volatile compounds present in the rice grain, 2-acetyl-l-pyrolline (2-AP) is considered as the key aroma compound present in almost all the aromatic rice varieties. However, there is significant variation in the type and intensity of aroma in the different groups of aromatic rice varieties suggesting involvement of additional chemical compounds in varying proportions. Studies have been undertaken to understand the genetics of rice aroma and to map the genes or quantitative trait loci (QTL) controlling aroma expression. Of the three mapped aroma QTL, qaro8.1 located on rice chromosome S is the most significant and it represents a non-functional allele of BADH2 gene coding for enzyme betaine aldehyde dehydrogenase. Functional allele of the BADH2 gene makes rice non-aromatic. Similarly, specific alleles of BADH1 gene located on rice chromosome 4 within the aroma QTL qaro4.1 show association with the aromatic rice varieties. The gene underlying QTL qaro3.1 on chromosome 3 has not yet been deciphered. Functional molecular markers have been developed for the major aroma QTL on chromosome S and marker-assisted breeding for high yielding aromatic rice varieties is now a reality. To safeguard the reputation of Basmati rice an international code of practice has been developed where DNA markers help check the purity of commercial samples. There is need to use advanced genomic and metabolomic approaches to further study the minor genes controlling rice aroma and understand the variation in type, intensity and stability of rice aroma. It is also required to improve the production and marketing of short grain aromatic rice varieties.  相似文献   

2.
The characterization of genetic divergence and relationships of a set of germplasm is essential for its efficient applications in crop breeding and understanding of the origin/evolution of crop varieties from a given geographical region. As the largest rice producing country in Europe, Italy holds rice germplasm with abundant genetic diversity. Although Italian rice varieties and the traditional ones in particular have played important roles in rice production and breeding, knowledge concerning the origin and evolution of Italian traditional varieties is still limited. To solve the puzzle of Italian rice origin, we characterized genetic divergence and relationships of 348 rice varieties from Italy and Asia based on the polymorphisms of microsatellite fingerprints. We also included common wild rice O. rufipogon as a reference in the characterization. Results indicated relatively rich genetic diversity (H e = 0.63-0.65) in Italian rice varieties. Further analyses revealed a close genetic relationship of the Italian traditional varieties with those from northern China, which provides strong genetic evidence for tracing the possible origin of early established rice varieties in Italy. These findings have significant implications for the rice breeding programs, in which appropriate germplasm can be selected from a given region and utilized for transferring unique genetic traits based on its genetic diversity and evolutionary relationships.  相似文献   

3.
Global warming affects not only rice yield but also grain quality. A better understanding of the effects of climate factors on rice quality provides information for new breeding strategies to develop varieties of rice adapted to a changing world. Chalkiness is a key trait of physical quality, and along with head rice yield, is used to determine the price of rice in all markets. In the present study, we show that for every ∼1% decrease in chalkiness, an increase of ∼1% in head rice yield follows, illustrating the dual impact of chalk on amount of marketable rice and its value. Previous studies in controlled growing conditions report that chalkiness is associated with high temperature. From 1980–2009 at IRRI, Los Baños, the Philippines, annual minimum and mean temperatures, and diurnal variation changed significantly. The objective of this study was to determine how climate impacts chalkiness in field conditions over four wet and dry seasons. We show that low relative humidity and a high vapour pressure deficit in the dry season associate with low chalk and high head rice yield in spite of higher maximum temperature, but in the opposite conditions of the wet season, chalk is high and head rice yield is low. The data therefore suggest that transpirational cooling is a key factor affecting chalkiness and head rice yield, and global warming per se might not be the major factor that decreases the amount and quality of rice, but other climate factors in combination, that enable the crop to maintain a cool canopy.  相似文献   

4.
Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable) rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1°C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers.  相似文献   

5.
Retrospective and perspective of rice breeding in China   总被引:1,自引:0,他引:1  
Breeding is the art and science of selecting and changing crop traits for the benefit of human beings. For several decades, tremendous efforts have been made by Chinese scientists in rice breeding in improving grain yield, nutrition quality, and environmental performance, achieving substantial progress for global food security. Several generations of crop breeding technologies have been developed, for example, selection of better performance in the field among variants (conventional breeding), application of molecular markers for precise selection (molecular marker assisted breeding), and development of molecular design (molecular breeding by rational design). In this review, we briefly summarize the advances in conventional breeding, functional genomics for genes and networks in rice that regulate important agronomic traits, and molecular breeding in China with focuses on high yield, good quality, stress tolerance, and high nutrient-use efficiency. These findings have paved a new avenue for rational design of crops to develop ideal varieties with super performance and productivity.  相似文献   

6.
海南山栏稻稻米品质分析及优异资源筛选   总被引:1,自引:0,他引:1  
海南山栏稻是一类地方特有旱稻,是海南中部山区少数民族赖以生存的粮食作物,已深深植根于黎苗文化之中。本研究检测了17个海南山栏稻品种的稻米品质,并对品质性状进行了差异性和相关性分析,对供测品种进行了聚类分析。结果表明,大部分山栏稻米的糊化温度较低,属于中、软胶稠度和低直链淀粉含量稻米,蒸煮和食味品质较好。17个海南山栏稻品种被初步分成2类,其中2个品种被鉴定为优质糯米,而且发现了独特的黑尾山栏稻,其稻米加工品质、外观品质和食味品质较好。本研究为海南山栏稻品种改良和育种利用提供了参考。  相似文献   

7.
Recent progress on molecular breeding of rice in China   总被引:2,自引:0,他引:2  
Molecular breeding of rice for high yield, superior grain quality, and strong environmental adaptability is crucial for feeding the world’s rapidly growing population. The increasingly cloned quantitative trait loci and genes, genome variations, and haplotype blocks related to agronomically important traits in rice have provided a solid foundation for direct selection and molecular breeding, and a number of genes have been successfully introgressed into mega varieties of rice. Here we summarize China’s great achievements in molecular breeding of rice in the following five traits: high yield, biotic stress resistance, abiotic stress resistance, quality and physiology. Further, the prospect of rice breeding by molecular design is discussed.  相似文献   

8.
Drought is one of the major abiotic stresses, which hampers the production of rice worldwide. Informative molecular markers are valuable tools for improving the drought tolerance in various varieties of rice. The present study was conducted to evaluate the informative simple sequence repeat (SSR) markers in a diverse set of rice genotypes. The genetic diversity analyses of the 83 studied rice genotypes were performed using 34 SSR markers closely linked to the major quantitative trait loci (QTLs) of grain yield under drought stress (qDTYs). In general, our results indicated high levels of polymorphism. In addition, we screened these rice genotypes at the reproductive stage under both drought stress and nonstressful conditions. The results of the regression analysis demonstrated a significant relationship between 11 SSR marker alleles and the plant paddy weight under stressful conditions. Under the nonstressful conditions, 16 SSR marker alleles showed a significant correlation with the plant paddy weight. Finally, four markers (RM279, RM231, RM166, and RM231) demonstrated a significant association with the plant paddy weight under both stressful and nonstressful conditions. These informative-associated alleles may be useful for improving the crop yield under both drought stress and nonstressful conditions in breeding programs.  相似文献   

9.
Rice is a major cereal crop, negatively impacted by soil-salinity, both in terms of plant growth as well as productivity. Salinity tolerant rice varieties have been developed using conventional breeding approaches, however, there has been limited success which is primarily due to the complexity of the trait, low yield, variable salt stress response and availability of genetic resources. Furthermore, the narrow genetic base is a hindrance for further improvement of the rice varieties. Therefore, there is a greater need to screen available donor germplasm in rice for salinity tolerance related genes and traits. In this regard, genomics based techniques are useful for exploring new gene resources and QTLs. In rice, the vast allelic diversity existing in the wild and cultivated germplasm needs to be explored for improving salt tolerance. In the present review, we provide an overview of the allelic diversity in the Quantitative Trait Loci (QTLs) like Saltol, qGR6.2, qSE3 and RNC4 as well as genes like OsHKT1;1, SKC1 (OsHKT1;5/HKT8) and OsSTL1 (salt tolerance level 1 gene) related to salt tolerance in rice. We have also discussed approaches for developing salt-tolerant cultivars by utilizing the effective QTLs or genes/alleles in rice.  相似文献   

10.
中国水稻遗传育种历程与展望   总被引:8,自引:0,他引:8  
吴比  胡伟  邢永忠 《遗传》2018,40(10):841-857
我国的水稻育种经历了矮化育种、杂种优势利用和绿色超级稻培育3次飞跃,其间伴随矮化育种(第一次绿色革命)、三系杂交稻培育、二系杂交稻培育、亚种间杂种优势利用、理想株型育种和绿色超级稻培育等6个重要历程。育种目标从唯产量是举到高抗、优质和高产并重,育种理念从高产优质逐步提升为“少投入,多产出,保护环境”。水稻功能基因组研究为第二次绿色革命准备了大量的有重要利用价值的基因,水稻育种正迈向设计育种的新时代。基因组选择技术和转基因技术将为培育“少打农药,少施化肥,节水抗旱,优质高产” 绿色超级稻保驾护航。本文对我国水稻遗传育种的发展历程进行了概括,指出了各种育种方法和育种技术的优缺点,系统介绍了水稻细胞质雄性不育和光温敏雄性核不育以及籼粳杂种不育的分子机制的研究进展,综述了水稻株型、穗型、粒形和养分高效利用相关的重要功能基因,阐明了产量与开花期联动的关系,凸显了我国水稻基础研究在国际上的重要地位。特别指出,近年来,我国水稻生产方式发生了或正在发生巨大变革,育种理念也要与时俱进。未来,杂交育种技术要与现代育种技术紧密结合,选育水稻品种不仅要满足市场需求,而且更要具备绿色健康的特点,同时还要适应新耕作制度和新耕作方法。  相似文献   

11.
在农业生产过程中,施用无机氮肥是提高作物产量的基础,但氮肥过量施加对生态系统和植物发育进程均会产生不利影响。因此,提高作物氮素利用效率是农业可持续发展的关键。目前,对重要粮食作物水稻(Oryza sativa)的氮高效研究取得了一系列重要进展,并克隆到多个调控氮素吸收、转运和代谢的关键基因。然而,在不断被人工选育的过程...  相似文献   

12.
水稻是一种重要的粮食作物。而选育高抗性良种是有效防治病虫的危害,增加水稻单位面积产量的一项关键措施。了解水稻本身抗性的遗传信息是进行抗性育种的基础。现代生物技术的发展为抗性育种提供了新途径。本文较系统地概述了水稻对稻瘟病、白叶枯病、稻飞虱、稻叶蝉抗性基因定位及相关分子标记研究的最新发展,为利用分子标记进行水稻抗性育种及抗性基因克隆提供参考文献。  相似文献   

13.
14.
水稻(Oryza sativa)是世界上最重要的粮食作物, 但稻瘟病和纹枯病等病害严重危害水稻的产量和品质, 给我国乃至全球粮食安全带来巨大威胁。鉴定水稻抗病资源、克隆抗病基因、揭示抗性机理并在育种中加以利用, 对抵御水稻病害和保障粮食安全具有十分重要的作用。准确评价水稻资源的抗病性, 是开展抗病机理研究和育种生产应用的关键环节。该文详述了水稻幼苗期人工喷雾接种、分蘖期和孕穗期田间注射接种与离体叶片戳伤接种的稻瘟病抗性鉴定方法, 以及水稻分蘖期田间接种、孕穗期温室接种和离体茎秆接种的纹枯病抗性鉴定方法, 以期为同行鉴定水稻资源、开展抗病理论和应用研究提供参考。  相似文献   

15.
生物育种新技术作物的安全管理   总被引:2,自引:0,他引:2  
生物育种新技术(new breeding techniques,NBTs)是指基于分子生物学工具进行作物分子育种的一类新技术,可以短期内使作物产生新的有利性状,促进作物新品种的开发,如基因编辑技术、RNA干扰(RNA interference,RNAi)技术、同源转基因技术等。这些新技术目前正在全球农业育种中广泛应用,并且已有部分作物新品种获准商业化生产。然而,针对生物育种新技术产生的作物新品种的安全性和安全管理政策,全球尚未达成统一共识,对其安全监管的思考也不尽相同,限制了这些作物新品种的研发和商业化应用进程。综述了现阶段全球主要发达国家对于生物育种新技术作物的安全性和监管方面实施的管理政策和法规,以期对我国生物育种新技术作物的安全性管理政策的制定提供一定的借鉴。  相似文献   

16.
Rice breeding and crop research predominantly emphasize adaptation to ecological conditions. Based on qualitative and quantitative research conducted between 2000 and 2012 we show how ecological factors, combined with socioeconomic variables, cultural norms and values, shape the use and development of local technologies related to the cultivation of African rice (Oryza glaberrima Steud.) in seven West African countries (Ghana, Guinea, Guinea-Bissau, Senegal, Sierra Leone, The Gambia and Togo). In this region the role of African rice is diverse across ethnic groups. Findings suggest that farmers, through various pathways, are active in the development of promising new varieties based on genetic resources of Asian rice, African rice, or both, as well as in the adoption of modern varieties. These findings require further research into interactions among ecological, genetic, socioeconomic and cultural factors within farmers?? innovation systems and recognition of emergent knowledge and technologies resulting from such interactions.  相似文献   

17.
The research was aimed at developing prebreeding resources of Kazakhstan rice varieties with colored pericarp for breeding. During the study, hybrid analysis of inheritance of the trait “colored pericarp” in breeding material used for the work was performed. Rice genotypes with colored pericarp, as well as white rice varieties possessing important breeding traits and maturing under conditions of the republic, were selected from the collection of the Institute of Plant Biology and Biotechnology, Republic of Kazakhstan. Identification of allelic status of Rc (red pericarp) and Pb (anthocyanin pericarp) genes was performed for selected samples using the PCR method. When selecting parental forms for crossing, foreign rice varieties with colored pericarp (Rubin, Mavr, Black rice, etc.) were used as recipient forms. As donors, we used local white rice varieties of Kazakhstan breeding adapted to the soil and climate conditions of rice growing regions (Madina, Marzhan, Bakanasskiy, PakLi) as well as foreign varieties. The ability to set hybrid caryopses and the percentage of sterility were determined in obtained F1 rice hybrids. As a result, the most promising prebreeding material was selected, which will be used for breeding Kazakhstan rice varieties with colored pericarp.  相似文献   

18.
水稻国外引种的探讨和建议   总被引:11,自引:1,他引:10  
自1949年以来,中国共引进国外普通栽培稻品种(系)23890份和野生稻种质资源2201份,这些资源中许多已被直接或间接用于生产或育种.其中,年种植面积超过6.67万公顷的品种23个,年种植面积0.667~6.67万公顷的品种75个;直接利用于杂交水稻的国外恢复系或利用国外强恢复源培育的恢复系,已占我国恢复系总数的95.7%;众多国外品种成为我国高产、优质和多抗育种的骨干亲本.因此,加强国外水稻资源的引入、评价和利用,对于丰富我国稻种资源宝库和增加遗传多样性意义重大,也是应对各国激烈争夺生物资源的战略决策.本文根据水稻国外引种出现的新情况,重点阐述了我国的引种规律、引种地区和强化引种的建议.  相似文献   

19.
辽宁省水稻品种品质性状及亲缘关系变化分析   总被引:2,自引:0,他引:2  
为了解辽宁省水稻品种品质性状及亲缘关系的演变情况,对1991-2015年审定的257份水稻品种进行品质性状分析,并通过亲缘系数、系谱分析了解品种间的亲缘关系和骨干亲本的应用。结果表明,25年来辽宁省水稻品种随着时间的推进表现出子粒变长、变宽,垩白度减少,透明度、直链淀粉含量、胶稠度下降的趋势。总体上随着时间的推进,品种品质性状的相似度和优质率逐步提高。但由于品质性状在不同年份的变异程度有所不同,品质性状的综合表现差异依然较大。随着时间的推进,水稻品种间亲缘系数表现出先下降后上升的特点,每个亲本直接育成品种数呈现出上升趋势。257份水稻品种共形成22个骨干亲本,利用的骨干亲本也越来越集中,丰锦、辽粳5号、辽粳326、辽粳454、辽粳294、辽星1号是辽宁省水稻育种中重要的优质骨干亲本。今后辽宁省水稻优质品种选育过程中应在利用现有骨干亲本的基础上,拓宽品种遗传基础,将外观品质、加工品质的优化作为品质改良的主要方向。  相似文献   

20.
In plant breeding with intensive selection, the haplotype patterns in the targeted chromosomal regions may become monogenic among local populations with the most desirable combination of loci. This study demonstrated that the chromosomal region surrounding qLTG3-1 was under selection during rice breeding programs in a local region of Japan, Hokkaido. qLTG3-1 is a major quantitative trait loci controlling tolerance to low-temperature at the seed germination stage in rice, termed low-temperature germinability. A clear association between qLTG3-1 alleles and low-temperature germinability was detected among 64 rice cultivars from Hokkaido. The allele with a loss-of-function mutation seemed to be selected during rice breeding programs. Comparison of haplotype patterns along with the short arm of chromosome 3 revealed that the selection of qLTG3-1 alleles was focused on a distinct chromosomal region of at most 130 kb. In the short arm of chromosome 3, two major traits associated with the adaptability to local conditions have been identified; eating quality and heading date. This study demonstrated that recombinant haplotype patterns for these traits might shape the adaptability to local environmental conditions and market demands during rice breeding programs in addition to the selection of qLTG3-1 alleles. The present results provide new opportunities for the design of hybridization combinations based on the haplotype patterns of chromosomal regions under selection during rice breeding programs in local regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号