首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinase CK1 (casein kinase 1) isoforms are involved in the regulation of various physiological functions including apoptosis. The specific CK1 inhibitor D4476 may either inhibit or foster apoptosis. Similar to apoptosis of nucleated cells, eryptosis, the suicidal death of erythrocytes, is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+) activity following energy depletion (removal of glucose) or oxidative stress (exposure to the oxidant tert-butyl hydroperoxide [TBOOH]). Western blotting was utilized to verify that erythrocytes express the protein kinase CK1α, and FACS analysis to determine whether the CK1 inhibitor D4476 and CK1α activator pyrvinium pamoate modify forward scatter (reflecting cell volume), annexin V binding (reflecting phosphatidylserine exposure), and Fluo3 fluorescence (reflecting cytosolic Ca(2+) activity). As a result, both, human and murine erythrocytes express CK1 isoform α. Glucose depletion (48 hours) and exposure to 0.3 mM TBOOH (30 minutes) both decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence. CK1 inhibitor D4476 (10 μM) significantly blunted the decrease in forward scatter, the increase in annexin V binding and the increase in Fluo 3 fluorescence. (R)-DRF053, another CK1 inhibitor, similarly blunted the increase in annexin V binding upon glucose depletion. The CK1α specific activator pyrvinium pamoate (10 μM) significantly enhanced the increase in annexin V binding and Fluo3 fluorescence upon glucose depletion and TBOOH exposure. In the presence of glucose, pyrvinium pamoate slightly but significantly increased Fluo3 fluorescence. In conclusion, CK1 isoform α participates in the regulation of erythrocyte programmed cell death by modulating cytosolic Ca(2+) activity.  相似文献   

2.
Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved.  相似文献   

3.
Polycystin signaling is likely to be regulated by phosphorylation. While a number of potential protein kinases and their target phosphorylation sites on polycystin-1 have been identified, the corresponding phosphatases have not been extensively studied. We have now determined that polycystin-1 is a regulatory subunit for protein phosphatase-1α (PP1α). Sequence analysis has revealed the presence of a highly conserved PP1-interaction motif in the cytosolic, C-terminal tail of polycystin-1; and we have shown that transfected PP1α specifically co-immunoprecipitates with a polycystin-1 C-tail construct. To determine whether PP1α dephosphorylates polycystin-1, a PKA-phosphorylated GST-polycystin-1 fusion protein was shown to be dephosphorylated by PP1α but not by PP2B (calcineurin). Mutations within the PP1-binding motif of polycystin-1, including an autosomal dominant polycystic kidney disease (ADPKD)-associated mutation, significantly reduced PP1α-mediated dephosphorylation of polycystin-1. The results suggest that polycystin-1 forms a holoenzyme complex with PP1α via a conserved PP1-binding motif within the polycystin-1 C-tail, and that PKA-phosphorylated polycystin-1 serves as a substrate for the holoenzyme.  相似文献   

4.
《Molecular cell》2014,53(4):663-671
  1. Download : Download high-res image (85KB)
  2. Download : Download full-size image
  相似文献   

5.
6.
Staphylococcus aureus is a leading cause of bacteraemia, which frequently results in complications such as infective endocarditis, osteomyelitis and exit from the bloodstream to cause metastatic abscesses. Interaction with endothelial cells is critical to these complications and several bacterial proteins have been shown to be involved. The S. aureus extracellular adhesion protein (Eap) has many functions, it binds several host glyco-proteins and has both pro- and anti-inflammatory activity. Unfortunately its role in vivo has not been robustly tested to date, due to difficulties in complementing its activity in mutant strains. We previously found Eap to have pro-inflammatory activity, and here show that purified native Eap triggered TNFα release in whole human blood in a dose-dependent manner. This level of TNFα increased adhesion of S. aureus to endothelial cells 4-fold via a mechanism involving protein A on the bacterial surface and gC1qR/p33 on the endothelial cell surface. The contribution this and other Eap activities play in disease severity during bacteraemia was tested by constructing an isogenic set of strains in which the eap gene was inactivated and complemented by inserting an intact copy elsewhere on the bacterial chromosome. Using a murine bacteraemia model we found that Eap expressing strains cause a more severe infection, demonstrating its role in invasive disease.  相似文献   

7.
Expression and purification of proteins as fusions with glutathione S-transferase (GST) is a standard and widely employed system. In more than 2,500 published studies, GST has been used to facilitate the purification of recombinant proteins, assess protein-protein interactions, and establish protein function. In this report, we provide evidence that GST can be phosphorylated in vitro by protein kinase C-alpha (PKC-alpha) at Ser-93. Therefore, since GST itself may be a target for a number of catalytic enzymes, failure to remove the GST tag from the recombinant protein may lead to inaccurate conclusions.  相似文献   

8.
9.
Protein kinase C (PKC) isoenzymes are multi-modular proteins activated at the membrane surface to regulate signal transduction processes. When activated by second messengers, PKC undergoes a drastic conformational and spatial transition from the inactive cytosolic state to the activated membrane-bound state. The complete structure of either state of PKC remains elusive. We demonstrate, using NMR spectroscopy, that the isolated Ca2+-sensing membrane-binding C2 domain of the conventional PKCα interacts with a conserved hydrophobic motif of the kinase C-terminal region, and we report a structural model of the complex. Our data suggest that the C-terminal region plays a dual role in regulating the PKC activity: activating, through sensitization of PKC to intracellular Ca2+ oscillations; and auto-inhibitory, through its interaction with a conserved positively charged region of the C2 domain.  相似文献   

10.
11.
Anti-bone resorptive drugs such as bisphosphonates, the anti-RANKL antibody (denosumab), or selective estrogen receptor modulators (SERMs) have been developed to treat osteoporosis. Mechanisms underlying activity of bisphosphonates or denosumab in this context are understood, while it is less clear how SERMs like tamoxifen, raloxifene, or bazedoxifene inhibit bone resorption. Recently, accumulation of hypoxia inducible factor 1 alpha (Hif1α) in osteoclasts was shown to be suppressed by estrogen in normal cells. In addition, osteoclast activation and decreased bone mass seen in estrogen-deficient conditions was found to require Hif1α. Here, we used western blot analysis of cultured osteoclast precursor cells to show that tamoxifen, raloxifene, or bazedoxifene all suppress Hif1α protein accumulation. The effects of each SERM on osteoclast differentiation differed in vitro. Our results suggest that interventions such as the SERMs evaluated here could be useful to inhibit Hif1α and osteoclast activity under estrogen-deficient conditions.  相似文献   

12.
Previously we isolated a -calpain/PKC complex from skeletal muscle which suggested tight interactions between the Ca2+-dependent protease and the kinase in this tissue. Our previous studies also underlined the involvement of ubiquitous calpains in muscular fusion and differentiation. In order to precise the relationships between PKC and ubiquitous calpains in muscle cells, the expression of these two enzymes was first examined during myogenesis of embryonic myoblasts in culture.Our results show that calpains and PKC are both present in myotubes and essentially localized in the cytosolic compartment. Moreover, calpains were mainly present after 40 h of cell differentiation concomitantly with a depletion of PKC content in the particulate fraction and the appearance of PKM fragment. These results suggest a possible calpain dependent down-regulation process of PKCa in our model at the time of intense fusion.In our experimental conditions phorbol myristate acetate (PMA) induced a rapid depletion of pkc in the cytosolic fraction and its translocation toward the particulate fraction. Long term exposure of myotubes in the presence of PMA induced down-regulation of PKC, this process being partially blocked by calpain inhibitors (CS peptide and inhibitor II) and antisense oligonucleotides for the two major ubiquitous calpain isoforms (m- and -calpains).Taken together, our findings argue for an involvement of calpains in the differentiation of embryonic myoblasts by limited proteolytic cleavage of PKC.  相似文献   

13.
This study evaluated HIF-1α inhibitors under different hypoxic conditions, physiological hypoxia (5% O2) and severe hypoxia (0.1% O2). We found that chenodeoxy cholic acid (CDCA) reduced the amount of HIF-1α protein only under physiological hypoxia but not under severe hypoxia without decreasing its mRNA level. By using a proteasome inhibitor MG132 and a translation inhibitor cyclohexamide, we showed that CDCA reduced HIF-1α protein by decreasing its translation but not by enhancing its degradation. The following findings indicated that farnesoid X receptor (FXR), a CDCA receptor and its target gene, Small heterodimer partner (SHP) are not involved in this effect of CDCA. Distinctly from CDCA, MG132 prevented SHP and an exogenous FXR agonist, GW4064 from reducing HIF-1α protein. Furthermore a FXR antagonist, guggulsterone failed to prevent CDCA from decreasing HIF-1α protein. Furthermore, guggulsterone by itself reduced HIF-1α protein even in the presence of MG132. These findings suggested that CDCA and guggulsterone reduced the translation of HIF-1α in a mechanism which FXR and SHP are not involved. This study reveals novel therapeutic functions of traditional nontoxic drugs, CDCA and guggulsterone, as inhibitors of HIF-1α protein.  相似文献   

14.
Bones'' strength is achieved and maintained through adaptation to load bearing. The role of the protein kinase PKCα in this process has not been previously reported. However, we observed a phenotype in the long bones of Prkca−/− female but not male mice, in which bone tissue progressively invades the medullary cavity in the mid-diaphysis. This bone deposition progresses with age and is prevented by disuse but unaffected by ovariectomy. Castration of male Prkca−/− but not WT mice results in the formation of small amounts of intramedullary bone. Osteoblast differentiation markers and Wnt target gene expression were up-regulated in osteoblast-like cells derived from cortical bone of female Prkca−/− mice compared with WT. Additionally, although osteoblastic cells derived from WT proliferate following exposure to estradiol or mechanical strain, those from Prkca−/− mice do not. Female Prkca−/− mice develop splenomegaly and reduced marrow GBA1 expression reminiscent of Gaucher disease, in which PKC involvement has been suggested previously. From these data, we infer that in female mice, PKCα normally serves to prevent endosteal bone formation stimulated by load bearing. This phenotype appears to be suppressed by testicular hormones in male Prkca−/− mice. Within osteoblastic cells, PKCα enhances proliferation and suppresses differentiation, and this regulation involves the Wnt pathway. These findings implicate PKCα as a target gene for therapeutic approaches in low bone mass conditions.  相似文献   

15.
16.
17.
Accurate mitosis requires the chromosomal passenger protein complex (CPC) containing Aurora B kinase, borealin, INCENP, and survivin, which orchestrates chromosome dynamics. However, the chromatin factors that specify the CPC to the centromere remain elusive. Here we show that borealin interacts directly with heterochromatin protein 1α (HP1α) and that this interaction is mediated by an evolutionarily conserved PXVXL motif in the C-terminal borealin with the chromo shadow domain of HP1α. This borealin-HP1α interaction recruits the CPC to the centromere and governs an activation of Aurora B kinase judged by phosphorylation of Ser-7 in CENP-A, a substrate of Aurora B. Consistently, modulation of the motif PXVXL leads to defects in CPC centromere targeting and aberrant Aurora B activity. On the other hand, the localization of the CPC in the midzone is independent of the borealin-HP1α interaction, demonstrating the spatial requirement of HP1α in CPC localization to the centromere. These findings reveal a previously unrecognized but direct link between HP1α and CPC localization in the centromere and illustrate the critical role of borealin-HP1α interaction in orchestrating an accurate cell division.  相似文献   

18.
We analyze the characteristics of protein–protein interfaces using the largest datasets available from the Protein Data Bank (PDB). We start with a comparison of interfaces with protein cores and non-interface surfaces. The results show that interfaces differ from protein cores and non-interface surfaces in residue composition, sequence entropy, and secondary structure. Since interfaces, protein cores, and non-interface surfaces have different solvent accessibilities, it is important to investigate whether the observed differences are due to the differences in solvent accessibility or differences in functionality. We separate out the effect of solvent accessibility by comparing interfaces with a set of residues having the same solvent accessibility as the interfaces. This strategy reveals residue distribution propensities that are not observable by comparing interfaces with protein cores and non-interface surfaces. Our conclusions are that there are larger numbers of hydrophobic residues, particularly aromatic residues, in interfaces, and the interactions apparently favored in interfaces include the opposite charge pairs and hydrophobic pairs. Surprisingly, Pro-Trp pairs are over represented in interfaces, presumably because of favorable geometries. The analysis is repeated using three datasets having different constraints on sequence similarity and structure quality. Consistent results are obtained across these datasets. We have also investigated separately the characteristics of heteromeric interfaces and homomeric interfaces.  相似文献   

19.
Volatile anesthetics isoflurane possibly improves the ischemic brain injury. However, its molecular actions are still unclear. In ischemia, protein kinase C (PKC)γ and calcium/calmodulin dependent protein kinase II (CaMKII)-α are persistently translocated from cytosol to cell membranes, and diminish these translocation suggested to be neuroprotective. We thus tested a hypothesis that isoflurane inhibits PKCγ and CaMKII-α translocation after ischemic brain insults. C57Bl/6J male mice were made to inhale 1 or 2 MAC isoflurane, after which 3 or 5 min cerebral ischemia was induced by decapitation. The sampled cerebrum cortex was then homogenized and centrifuged into crude synaptosomal fractions (P2), cytosolic fractions (S3), and particulate fractions (P3). CaMKII-α and PKCγ levels of these fractions were analyzed by immunoblotting. PKCγ and CaMKII-α are translocated to synaptic membrane from cytosol by cerebral ischemia, although isoflurane significantly inhibited such translocation. These results may explain in part the cellular and molecular mechanisms of neuroprotective effects of isoflurane.  相似文献   

20.
Aldo-keto reductase 1B10 (AKR1B10) protein is a new tumor biomarker in humans. Our previous studies have shown that AKR1B10 is secreted through a lysosome-mediated nonclassical pathway, leading to an increase in the serum of breast cancer patients. This study illuminates the regulatory mechanism of AKR1B10 secretion. The cytosolic AKR1B10 associates with and is translocated to lysosomes by heat shock protein 90α (HSP90α), a chaperone molecule. Ectopic expression of HSP90α significantly increased the secretion of endogenous AKR1B10 and exogenous GFP-AKR1B10 fusion protein when cotransfected. Geldanamycin, a HSP90α inhibitor, dissociated AKR1B10-HSP90α complexes and significantly reduced AKR1B10 secretion in a dose-dependent manner. We characterized the functional domain in AKR1B10 and found that helix 10 (amino acids 233–240), located at the C terminus, regulates AKR1B10 secretion. Targeted point mutations recognized that amino acids Lys-233, Glu-236, and Lys-240 in helix 10 mediate the interaction of AKR1B10 with HSP90α. Together, our data suggest that HSP90α mediates AKR1B10 secretion through binding to its helix 10 domain. This finding is significant in exploiting the use of AKR1B10 in cancer clinics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号