首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

A Chikungunya (CHIK) outbreak hit La Réunion Island in 2005–2006. The implicated vector was Aedes albopictus. Here, we present the first study on the susceptibility of Ae. albopictus populations to sympatric CHIKV isolates from La Réunion Island and compare it to other virus/vector combinations.

Methodology and Findings

We orally infected 8 Ae. albopictus collections from La Réunion and 3 from Mayotte collected in March 2006 with two Chikungunya virus (CHIKV) from La Réunion: (i) strain 05.115 collected in June 2005 with an Alanine at the position 226 of the glycoprotein E1 and (ii) strain 06.21 collected in November 2005 with a substitution A226V. Two other CHIKV isolates and four additional mosquito strains/species were also tested. The viral titer of the infectious blood-meal was 107 plaque forming units (pfu)/mL. Dissemination rates were assessed by immunofluorescent staining on head squashes of surviving females 14 days after infection. Rates were at least two times higher with CHIKV 06.21 compared to CHIKV 05.115. In addition, 10 individuals were analyzed every day by quantitative RT-PCR. Viral RNA was quantified on (i) whole females and (ii) midguts and salivary glands of infected females. When comparing profiles, CHIKV 06.21 produced nearly 2 log more viral RNA copies than CHIKV 05.115. Furthermore, females infected with CHIKV 05.115 could be divided in two categories: weakly susceptible or strongly susceptible, comparable to those infected by CHIKV 06.21. Histological analysis detected the presence of CHIKV in salivary glands two days after infection. In addition, Ae. albopictus from La Réunion was as efficient vector as Ae. aegypti and Ae. albopictus from Vietnam when infected with the CHIKV 06.21.

Conclusions

Our findings support the hypothesis that the CHIK outbreak in La Réunion Island was due to a highly competent vector Ae. albopictus which allowed an efficient replication and dissemination of CHIKV 06.21.  相似文献   

2.

Background

Aedes aegypti and Aedes albopictus are potential vectors of chikungunya virus (CHIKV). The recent CHIKV outbreaks were caused by a new variant characterized by a mutation in the E1 glycoprotein gene (E1-226V) which has favored a better transmissibility by Ae. albopictus. As Ae. albopictus tends to replace Ae. aegypti in many regions, one question remained: is Ae. albopictus as efficient as Ae. aegypti to transmit the variant E1-226V of CHIKV?

Methodology and Findings

We infected orally both species with the variant E1-226V and estimated the infection, the viral dissemination, and the transmission rate by real time RT-PCR. Additionally, we used an in vitro assay to determine the amount of virus delivered by mosquitoes in their saliva. We found that Ae. aegypti as well as Ae. albopictus ensured a high replication of the virus which underwent an efficient dissemination as detectable in the salivary glands at day 2 post-infection (pi). Infectious CHIKV particles were delivered by salivary glands from day 2 with a maximum at day 6 pi for Ae. albopictus (103.3 PFU) and day 7 pi for Ae. aegypti (102.5 PFU).

Conclusions

Ae. albopictus is slightly more efficient than Ae. aegypti to transmit the variant E1-226V of CHIKV. These results will help to design an efficient vector control to limit transmission as soon as the first human cases are diagnosed.  相似文献   

3.

Background

Mosquito-borne Chikungunya virus (CHIKV) has recently re-emerged globally. The epidemic East/Central/South African (ECSA) strains have spread for the first time to Asia, which previously only had endemic Asian strains. In Malaysia, the ECSA strain caused an extensive nationwide outbreak in 2008, while the Asian strains only caused limited outbreaks prior to this. To gain insight into these observed epidemiological differences, we compared genotypic and phenotypic characteristics of CHIKV of Asian and ECSA genotypes isolated in Malaysia.

Methods and Findings

CHIKV of Asian and ECSA genotypes were isolated from patients during outbreaks in Bagan Panchor in 2006, and Johor in 2008. Sequencing of the CHIKV strains revealed 96.8% amino acid similarity, including an unusual 7 residue deletion in the nsP3 protein of the Asian strain. CHIKV replication in cells and Aedes mosquitoes was measured by virus titration. There were no differences in mammalian cell lines. The ECSA strain reached significantly higher titres in Ae. albopictus cells (C6/36). Both CHIKV strains infected Ae. albopictus mosquitoes at a higher rate than Ae. aegypti, but when compared to each other, the ECSA strain had much higher midgut infection and replication, and salivary gland dissemination, while the Asian strain infected Ae. aegypti at higher rates.

Conclusions

The greater ability of the ECSA strain to replicate in Ae. albopictus may explain why it spread far more quickly and extensively in humans in Malaysia than the Asian strain ever did, particularly in rural areas where Ae. albopictus predominates. Intergenotypic genetic differences were found at E1, E2, and nsP3 sites previously reported to be determinants of host adaptability in alphaviruses. Transmission of CHIKV in humans is influenced by virus strain and vector species, which has implications for regions with more than one circulating CHIKV genotype and Aedes species.  相似文献   

4.

Background

First described in humans in 1964, reports of co-infections with dengue (DENV) and chikungunya (CHIKV) viruses are increasing, particularly after the emergence of chikungunya (CHIK) in the Indian Ocean in 2005–2006 due to a new variant highly transmitted by Aedes albopictus. In this geographic area, a dengue (DEN) outbreak transmitted by Ae. albopictus took place shortly before the emergence of CHIK and co-infections were reported in patients. A co-infection in humans can occur following the bite of two mosquitoes infected with one virus or to the bite of a mosquito infected with two viruses. Co-infections in mosquitoes have never been demonstrated in the field or in the laboratory. Thus, we question about the ability of a mosquito to deliver infectious particles of two different viruses through the female saliva.

Methodology/Principal Findings

We orally exposed Ae. albopictus from La Reunion Island with DENV-1 and CHIKV isolated respectively during the 2004–2005 and the 2005–2006 outbreaks on this same island. We were able to show that Ae. albopictus could disseminate both viruses and deliver both infectious viral particles concomitantly in its saliva. We also succeeded in inducing a secondary infection with CHIKV in mosquitoes previously inoculated with DENV-1.

Conclusions/Significance

In this study, we underline the ability of Ae. albopictus to be orally co-infected with two different arboviruses and furthermore, its capacity to deliver concomitantly infectious particles of CHIKV and DENV in saliva. This finding is of particular concern as Ae. albopictus is still expanding its geographical range in the tropical as well as in the temperate regions. Further studies are needed to try to elucidate the molecular/cellular basis of this phenomenon.  相似文献   

5.

Background

Wolbachia inherited intracellular bacteria can manipulate the reproduction of their insect hosts through cytoplasmic incompatibility (CI), and certain strains have also been shown to inhibit the replication or dissemination of viruses. Wolbachia strains also vary in their relative fitness effects on their hosts and this is a particularly important consideration with respect to the potential of newly created transinfections for use in disease control.

Methodology/Principal Findings

In Aedes albopictus mosquitoes transinfected with the wMel strain from Drosophila melanogaster, which we previously reported to be unable to transmit dengue in lab challenges, no significant detrimental effects were observed on egg hatch rate, fecundity, adult longevity or male mating competitiveness. All these parameters influence the population dynamics of Wolbachia, and the data presented are favourable with respect to the aim of taking wMel to high population frequency. Challenge with the chikungunya (CHIKV) virus, for which Ae. albopictus is an important vector, was conducted and the presence of wMel abolished CHIKV dissemination to the saliva.

Conclusions/significance

Taken together, these data suggest that introducing wMel into natural Ae. albopictus populations using bidirectional CI could be an efficient strategy for preventing or reducing the transmission of arboviruses by this species.  相似文献   

6.

Background

The mosquito Ae. albopictus is usually adapted to the peri-domestic environment and typically breeds outdoors. However, we observed its larvae in most containers within homes in northern peninsular Malaysia. To anticipate the epidemiological implications of this indoor-breeding, we assessed some fitness traits affecting vectorial capacity during colonization process. Specifically, we examined whether Ae. albopictus exhibits increased survival, gonotrophic activity and fecundity due to the potential increase in blood feeding opportunities.

Methodology/Principal Findings

In a series of experiments involving outdoors and indoors breeding populations, we found that Ae. albopictus lives longer in the indoor environment. We also observed increased nighttime biting activity and lifetime fecundity in indoor/domestic adapted females, although they were similar to recently colonized females in body size.

Conclusion/Significance

Taken together these data suggest that accommodation of Ae. albopictus to indoor/domestic environment may increase its lifespan, blood feeding success, nuisance and thus vectorial capacity (both in terms of increased vector-host contacts and vector population density). These changes in the breeding behavior of Ae. albopictus, a potential vector of several human pathogens including dengue viruses, require special attention.  相似文献   

7.

Background

The chikungunya (CHIK) outbreak that struck La Reunion Island in 2005 was preceded by few human cases of Dengue (DEN), but which surprisingly did not lead to an epidemic as might have been expected in a non-immune population. Both arboviral diseases are transmitted to humans by two main mosquito species, Aedes aegypti and Aedes albopictus. In the absence of the former, Ae. albopictus was the only species responsible for viral transmission on La Reunion Island. This mosquito is naturally super-infected with two Wolbachia strains, wAlbA and wAlbB. While Wolbachia does not affect replication of CHIK virus (CHIKV) in Ae. albopictus, a similar effect was not observed with DEN virus (DENV).

Methods/Principal Findings

To understand the weak vectorial status of Ae. albopictus towards DENV, we used experimental oral infections of mosquitoes from La Reunion Island to characterize the impact of Wolbachia on DENV infection. Viral loads and Wolbachia densities were measured by quantitative PCR in different organs of Ae. albopictus where DENV replication takes place after ingestion. We found that: (i) Wolbachia does not affect viral replication, (ii) Wolbachia restricts viral density in salivary glands, and (iii) Wolbachia limits transmission of DENV, as infectious viral particles were only detected in the saliva of Wolbachia-uninfected Ae. albopictus, 14 days after the infectious blood-meal.

Conclusions

We show that Wolbachia does not affect the replication of DENV in Ae. albopictus. However, Wolbachia is able to reduce viral infection of salivary glands and limit transmission, suggesting a role of Wolbachia in naturally restricting the transmission of DENV in Ae. albopictus from La Reunion Island. The extension of this conclusion to other Ae. albopictus populations should be investigated.  相似文献   

8.

Background

Aedes albopictus, the Asian tiger mosquito, is a vector of several arboviruses including dengue and chikungunya, and is also a significant nuisance mosquito. It is one of the most invasive of mosquitoes with a relentlessly increasing geographic distribution. Conventional control methods have so far failed to control Ae. albopictus adequately. Novel genetics-based strategies offer a promising alternative or aid towards efficient control of this mosquito.

Methodology/Principal Findings

We describe here the isolation, characterisation and use of the Ae. albopictus Actin-4 gene to drive a dominant lethal gene in the indirect flight muscles of Ae. albopictus, thus inducing a conditional female-specific late-acting flightless phenotype. We also show that in this context, the Actin-4 regulatory regions from both Ae. albopictus and Ae. aegypti can be used to provide conditional female-specific flightlessness in either species.

Conclusion/Significance

With the disease-transmitting females incapacitated, the female flightless phenotype encompasses a genetic sexing mechanism and would be suitable for controlling Ae. albopictus using a male-only release approach as part of an integrated pest management strategy.  相似文献   

9.

Introduction

Aedes albopictus is a very invasive and aggressive insect vector that causes outbreaks of dengue fever, chikungunya disease, and yellow fever in many countries. Vector ecology and disease epidemiology are strongly affected by environmental changes. Urbanization is a worldwide trend and is one of the most ecologically modifying phenomena. The purpose of this study is to determine how environmental changes due to urbanization affect the ecology of Aedes albopictus.

Methods

Aquatic habitats and Aedes albopictus larval population surveys were conducted from May to November 2013 in three areas representing rural, suburban, and urban settings in Guangzhou, China. Ae. albopictus adults were collected monthly using BG-Sentinel traps. Ae. albopictus larva and adult life-table experiments were conducted with 20 replicates in each of the three study areas.

Results

The urban area had the highest and the rural area had the lowest number of aquatic habitats that tested positive for Ae. albopictus larvae. Densities in the larval stages varied among the areas, but the urban area had almost two-fold higher densities in pupae and three-fold higher in adult populations compared with the suburban and rural areas. Larvae developed faster and the adult emergence rate was higher in the urban area than in suburban and rural areas. The survival time of adult mosquitoes was also longer in the urban area than it was in suburban and rural areas. Study regions, surface area, water depth, water clearance, surface type, and canopy coverage were important factors associated with the presence of Ae. albopictus larvae.

Conclusions

Urbanization substantially increased the density, larval development rate, and adult survival time of Ae. albopictus, which in turn potentially increased the vector capacity, and therefore, disease transmissibility. Mosquito ecology and its correlation with dengue virus transmission should be compared in different environmental settings.  相似文献   

10.

Background

Zika virus (ZIKV) is a little known arbovirus until it caused a major outbreak in the Pacific Island of Yap in 2007. Although the virus has a wide geographic distribution, most of the known vectors are sylvatic Aedes mosquitoes from Africa where the virus was first isolated. Presently, Ae. aegypti is the only known vector to transmit the virus outside the African continent, though Ae. albopictus has long been a suspected vector. Currently, Ae. albopictus has been shown capable of transmitting more than 20 arboviruses and its notoriety as an important vector came to light during the recent chikungunya pandemic. The vulnerability of Singapore to emerging infectious arboviruses has stimulated our interest to determine the competence of local Ae. albopictus to transmit ZIKV.

Methodology/Principal Findings

To determine the competence of Ae. albopictus to ZIKV, we orally infected local mosquito strains to a Ugandan strain virus. Fully engorged mosquitoes were maintained in an environmental chamber set at 29°C and 80–85%RH. Twelve mosquitoes were then sampled daily from day one to seven and on day 10 and 14 post infection (pi). Zika virus titre in the midgut and salivary glands of each mosquito were determined using tissue culture infectious dose50 assay, while transmissibility of the virus was determined by detecting viral antigen in the mosquito saliva by qRT-PCR. High dissemination and transmission rate of ZIKV were observed. By day 7-pi, all mosquitoes have disseminated infection and 73% of these mosquitoes have ZIKV in their saliva. By day 10-pi, all mosquitoes were potentially infectious.

Conclusions/Significance

The study highlighted the potential of Ae. albopictus to transmit ZIKV and the possibility that the virus could be established locally. Nonetheless, the threat of ZIKV can be mitigated by existing dengue and chikungunya control program being implemented in Singapore.  相似文献   

11.

Background

Aedes albopictus has recently been implicated as a major vector in the emergence of dengue and chikungunya in several parts of India, like Orissa, which is gradually gaining endemicity for arboviral diseases. Ae. albopictus is further known to be naturally infected with Wolbachia (maternally inherited bacterium), which causes cytoplasmic incompatibility (CI) in mosquitoes leading to sperm-egg incompatibility inducing the death of embryo. Knowledge of genetic diversity of Ae. albopictus, along with revealing the type of Wolbachia infection in Ae. albopictus is important to explore the genetic and biological characteristics of Ae. albopictus, prior to exploring the uses of CI-based vector control strategies. In this study, we assessed the population genetic structure and the pattern of Wolbachia infection in Ae. albopictus mosquitoes of Orissa.

Methods and Results

Ae. albopictus mosquitoes were collected from 15 districts representing the four physiographical regions of Orissa from 2010–2012, analyzed for genetic variability at seven microsatellite loci and genotyped for Wolbachia strain detection using wsp gene primers. Most microsatellite markers were successfully amplified and were polymorphic, showing moderate genetic structure among all geographic populations (FST = 0.088). Genetic diversity was high (FST = 0.168) in Coastal Plains populations when compared with other populations, which was also evident from cluster analyses that showed most Coastal Plains populations consisted of a separate genetic cluster. Genotyping analyses revealed that Wolbachia-infected Ae. albopictus field populations of Orissa were mostly superinfected with wAlbA and wAlbB strains. Wolbachia superinfection was more pronounced in the Coastal Plain populations.

Conclusion

High genetic structure and Wolbachia superinfection, observed in the Coastal Plain populations of Orissa suggested it to be genetically and biologically more unique than other populations, and hence could influence their vectorial attributes. Such high genetic diversity observed among Coastal Plains populations could be attributed to multiple introductions of Ae. albopictus in this region.  相似文献   

12.

Background

Chikungunya virus (CHIKV) has emerged as one of the most important arboviruses of public health significance in the past decade. The virus is mainly maintained through human-mosquito-human cycle. Other routes of transmission and the mechanism of maintenance of the virus in nature are not clearly known. Vertical transmission may be a mechanism of sustaining the virus during inter-epidemic periods. Laboratory experiments were conducted to determine whether Aedes aegypti, a principal vector, is capable of vertically transmitting CHIKV or not.

Methodology/Principal Findings

Female Ae. aegypti were orally infected with a novel ECSA genotype of CHIKV in the 2nd gonotrophic cycle. On day 10 post infection, a non-infectious blood meal was provided to obtain another cycle of eggs. Larvae and adults developed from the eggs obtained following both infectious and non-infectious blood meal were tested for the presence of CHIKV specific RNA through real time RT-PCR. The results revealed that the larvae and adults developed from eggs derived from the infectious blood meal (2nd gonotrophic cycle) were negative for CHIKV RNA. However, the larvae and adults developed after subsequent non-infectious blood meal (3rd gonotrophic cycle) were positive with minimum filial infection rates of 28.2 (1∶35.5) and 20.2 (1∶49.5) respectively.

Conclusion/Significance

This study is the first to confirm experimental vertical transmission of emerging novel ECSA genotype of CHIKV in Ae. aegypti from India, indicating the possibilities of occurrence of this phenomenon in nature. This evidence may have important consequence for survival of CHIKV during adverse climatic conditions and inter-epidemic periods.  相似文献   

13.

Background

Since 2005, cases of chikungunya (CHIK) were caused by an unusual vector, Aedes albopictus. This mosquito, present in Europe since 1979, has gained importance since its involvement in the first CHIK outbreak in Italy in 2007. The species is capable of transmitting experimentally 26 arboviruses. However, the vectorial status of its temperate populations has remained little investigated. In 2010, autochthonous cases of CHIK and dengue (DEN) were reported in southeastern France. We evaluated the potential of a French population of Ae. albopictus in the transmission of both viruses.

Methodology and Principal Findings

We used two strains of each virus, CHIK and DEN: one strain was isolated from an imported case, and one from an autochthonous case. We used as controls Aedes aegypti from India and Martinique, the source of the imported cases of CHIK and DEN, respectively. We showed that Ae. albopictus from Cagnes-sur-Mer (AL-CSM) was as efficient as the typical tropical vector Ae. aegypti from India to experimentally transmit both CHIK strains isolated from patients in Fréjus, with around 35–67% of mosquitoes delivering up to 14 viral particles at day 3 post-infection (pi). The unexpected finding came from the high efficiency of AL-CSM to transmit both strains of DENV-1 isolated from patients in Nice. Almost 67% of Ae. albopictus AL-CSM which have ensured viral dissemination were able to transmit at day 9 pi when less than 21% of the typical DEN vector Ae. aegypti from Martinique could achieve transmission.

Conclusions/Significance

Temperate Ae. albopictus behaves differently compared to its counterpart from tropical regions, where recurrent epidemic outbreaks occur. Its potential responsibility for outbreaks in Europe should not be minimized.  相似文献   

14.

Background

Aedes albopictus (Skuse, 1884) (Diptera: Culicidae), a mosquito native to Asia, has recently invaded all five continents. In Central Africa it was first reported in the early 2000s, and has since been implicated in the emergence of arboviruses such as dengue and chikungunya in this region. Recent genetic studies of invasive species have shown that multiple introductions are a key factor for successful expansion in new areas. As a result, phenotypic characters such as vector competence and insecticide susceptibility may vary within invasive pest species, potentially affecting vector efficiency and pest management. Here we assessed the genetic variability and population genetics of Ae. albopictus isolates in Cameroon (Central Africa), thereby deducing their likely geographic origin.

Methods and Results

Mosquitoes were sampled in 2007 in 12 localities in southern Cameroon and analyzed for polymorphism at six microsatellite loci and in two mitochondrial DNA regions (ND5 and COI). All the microsatellite markers were successfully amplified and were polymorphic, showing moderate genetic structureamong geographic populations (FST = 0.068, P<0.0001). Analysis of mtDNA sequences revealed four haplotypes each for the COI and ND5 genes, with a dominant haplotype shared by all Cameroonian samples. The weak genetic variation estimated from the mtDNA genes is consistent with the recent arrival of Ae. albopictus in Cameroon. Phylogeographic analysis based on COI polymorphism indicated that Ae. albopictus populations from Cameroon are related to tropical rather than temperate or subtropical outgroups.

Conclusion

The moderate genetic diversity observed among Cameroonian Ae. albopictus isolates is in keeping with recent introduction and spread in this country. The genetic structure of natural populations points to multiple introductions from tropical regions.  相似文献   

15.

Background

Chikungunya virus (CHIKV) has reemerged as a life threatening pathogen and caused large epidemics in several countries. So far, no licensed vaccine or effective antivirals are available and the treatment remains symptomatic. In this context, development of effective and safe prophylactics and therapeutics assumes priority.

Methods

We evaluated the efficacy of the siRNAs against ns1 and E2 genes of CHIKV both in vitro and in vivo. Four siRNAs each, targeting the E2 (Chik-1 to Chik-4) and ns1 (Chik-5 to Chik-8) genes were designed and evaluated for efficiency in inhibiting CHIKV growth in vitro and in vivo. Chik-1 and Chik-5 siRNAs were effective in controlling CHIKV replication in vitro as assessed by real time PCR, IFA and plaque assay.

Conclusions

CHIKV replication was completely inhibited in the virus-infected mice when administered 72 hours post infection. The combination of Chik-1 and Chik-5 siRNAs exhibited additive effect leading to early and complete inhibition of virus replication. These findings suggest that RNAi capable of inhibiting CHIKV growth might constitute a new therapeutic strategy for controlling CHIKV infection and transmission.  相似文献   

16.

Background

Over the last 30 years, the Asian tiger mosquito, Aedes albopictus, has rapidly spread around the world. The European distribution comprises the Mediterranean basin with a first appearance in Switzerland in 2003. Early identification of the most suitable areas in Switzerland allowing progressive invasion by this species is considered crucial to suggest adequate surveillance and control plans.

Methodology/Principal Findings

We identified the most suitable areas for invasion and establishment of Ae. albopictus in Switzerland. The potential distribution areas linked to the current climatic suitability were assessed using remotely sensed land surface temperature data recorded by the MODIS satellite sensors. Suitable areas for adult survival and overwintering of diapausing eggs were also identified for future climatic conditions, considering two different climate change scenarios (A1B, A2) for the periods 2020–2049 and 2045–2074. At present, the areas around Lake Geneva in western Switzerland provide suitable climatic conditions for Ae. albopictus. In northern Switzerland, parts of the Rhine valley, around Lake Constance, as well as the surroundings of Lake Neuchâtel, appear to be suitable for the survival at least of adult Ae. albopictus. However, these areas are characterized by winters currently being too cold for survival and development of diapausing eggs. In southern Switzerland, Ae. albopictus is already well-established, especially in the Canton of Ticino. For the years 2020–2049, the predicted possible spread of the tiger mosquito does not differ significantly from its potential current distribution. However, important expansions are obtained if the period is extended to the years 2045–2074, when Ae. albopictus may invade large new areas.

Conclusions/Significance

Several parts of Switzerland provide suitable climatic conditions for invasion and establishment of Ae. albopictus. The current distribution and rapid spread in other European countries suggest that the tiger mosquito will colonize new areas in Switzerland in the near future.  相似文献   

17.

Background

Aedes albopictus is an invasive species which continues expanding its geographic range and involvement in mosquito-borne diseases such as chikungunya and dengue. Host selection patterns by invasive mosquitoes are critically important because they increase endemic disease transmission and drive outbreaks of exotic pathogens. Traditionally, Ae. albopictus has been characterized as an opportunistic feeder, primarily feeding on mammalian hosts but occasionally acquiring blood from avian sources as well. However, limited information is available on their feeding patterns in temperate regions of their expanded range. Because of the increasing expansion and abundance of Ae. albopictus and the escalating diagnoses of exotic pathogens in travelers returning from endemic areas, we investigated the host feeding patterns of this species in newly invaded areas to further shed light on its role in disease ecology and assess the public health threat of an exotic arbovirus outbreak.

Methodology/Principal Findings

We identified the vertebrate source of 165 blood meals in Ae. albopictus collected between 2008 and 2011 from urban and suburban areas in northeastern USA. We used a network of Biogents Sentinel traps, which enhance Ae. albopictus capture counts, to conduct our collections of blooded mosquitoes. We also analyzed blooded Culex mosquitoes collected alongside Ae. albopictus in order to examine the composition of the community of blood sources. We found no evidence of bias since as expected Culex blood meals were predominantly from birds (n = 149, 93.7%) with only a small proportion feeding on mammals (n = 10, 6.3%). In contrast, Aedes albopictus fed exclusively on mammalian hosts with over 90% of their blood meals derived from humans (n = 96, 58.2%) and domesticated pets (n = 38, 23.0% cats; and n = 24, 14.6% dogs). Aedes albopictus fed from humans significantly more often in suburban than in urban areas (χ2, p = 0.004) and cat-derived blood meals were greater in urban habitats (χ2, p = 0.022). Avian-derived blood meals were not detected in any of the Ae. albopictus tested.

Conclusions/Significance

The high mammalian affinity of Ae. albopictus suggests that this species will be an efficient vector of mammal- and human-driven zoonoses such as La Crosse, dengue, and chikungunya viruses. The lack of blood meals obtained from birds by Ae. albopictus suggest that this species may have limited exposure to endemic avian zoonoses such as St. Louis encephalitis and West Nile virus, which already circulate in the USA. However, growing populations of Ae. albopictus in major metropolitan urban and suburban centers, make a large autochthonous outbreak of an arbovirus such as chikungunya or dengue viruses a clear and present danger. Given the difficulties of Ae. albopictus suppression, we recommend that public health practitioners and policy makers install proactive measures for the imminent mitigation of an exotic pathogen outbreak.  相似文献   

18.

Background

MiRNAs and phasiRNAs are negative regulators of gene expression. These small RNAs have been extensively studied in plant model species but only 10 mature microRNAs are present in miRBase version 21, the most used miRNA database, and no phasiRNAs have been identified for the model legume Phaseolus vulgaris. Thanks to the recent availability of the first version of the common bean genome, degradome data and small RNA libraries, we are able to present here a catalog of the microRNAs and phasiRNAs for this organism and, particularly, we suggest new protagonists in the symbiotic nodulation events.

Results

We identified a set of 185 mature miRNAs, including 121 previously unpublished sequences, encoded by 307 precursors and distributed in 98 families. Degradome data allowed us to identify a total of 181 targets for these miRNAs. We reveal two regulatory networks involving conserved miRNAs: those known to play crucial roles in the establishment of nodules, and novel miRNAs present only in common bean, suggesting a specific role for these sequences. In addition, we identified 125 loci that potentially produce phased small RNAs, with 47 of them having all the characteristics of being triggered by a total of 31 miRNAs, including 14 new miRNAs identified in this study.

Conclusions

We provide here a set of new small RNAs that contribute to the broader knowledge of the sRNAome of Phaseolus vulgaris. Thanks to the identification of the miRNA targets from degradome analysis and the construction of regulatory networks between the mature microRNAs, we present here the probable functional regulation associated with the sRNAome and, particularly, in N2-fixing symbiotic nodules.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1639-5) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

The recent re-emergence of Chikungunya virus (CHIKV) in India after 32 years and its worldwide epidemics with unprecedented magnitude raised a great public health concern.

Methods and Findings

In this study, a biological comparison was carried out between a novel 2006 Indian CHIKV outbreak strain, DRDE-06 and the prototype strain S-27 in mammalian cells in order to understand their differential infection pattern. Results showed that S-27 produced maximum number of progenies (2.43E+06 PFU/ml) at 20 to 24 hours post infection whereas DRDE-06 produced more than double number of progenies around 8 hours post infection in mammalian cells. Moreover, the observation of cytopathic effect, detection of viral proteins and viral proliferation assay confirmed the remarkably faster and significantly higher replication efficiency of DRDE-06. Moreover, our mutational analysis of whole genome of DRDE-06 revealed the presence of nineteen mutations as compared to S-27, whereas the analysis of 273 global isolates showed the consistent presence of fifteen out of nineteen mutations in almost all outbreak isolates. Further analysis revealed that ∼46% of recent outbreak strains including DRDE-06 do not contain the E1-A226V mutation which was earlier shown to be associated with the adaptation of CHIKV in a new vector species, Aedes albopictus.

Conclusions

A novel 2006 Indian CHIKV outbreak strain, DRDE-06 exhibits different pattern of infection as compared to prototype strain, S-27. This might be associated to some specific mutations observed in genome wide mutational analysis in DRDE-06 which emphasizes the need of future experimental investigation.  相似文献   

20.

Background

The Asian tiger mosquito, Aedes albopictus (Skuse), is a vector of several arboviruses including dengue and chikungunya. This highly invasive species originating from Southeast Asia has travelled the world in the last 30 years and is now established in Europe, North and South America, Africa, the Middle East and the Caribbean. In the absence of vaccine or antiviral drugs, efficient mosquito control strategies are crucial. Conventional control methods have so far failed to control Ae. albopictus adequately.

Methodology/Principal Findings

Germline transformation of Aedes albopictus was achieved by micro-injection of embryos with a piggyBac-based transgene carrying a 3xP3-ECFP marker and an attP site, combined with piggyBac transposase mRNA and piggyBac helper plasmid. Five independent transgenic lines were established, corresponding to an estimated transformation efficiency of 2–3%. Three lines were re-injected with a second-phase plasmid carrying an attB site and a 3xP3-DsRed2 marker, combined with PhiC31 integrase mRNA. Successful site-specific integration was observed in all three lines with an estimated transformation efficiency of 2–6%.

Conclusions/Significance

Both piggybac- and site-specific PhiC31-mediated germline transformation of Aedes albopictus were successfully achieved. This is the first report of Ae. albopictus germline transformation and engineering, a key step towards studying and controlling this species using novel molecular techniques and genetic control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号