首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vaccine-induced immunity depends on long-lived plasma cells (LLPCs) that maintain antibody levels. A recent mouse study showed that Plasmodium chaubaudi infection reduced pre-existing influenza-specific antibodies—raising concerns that malaria may compromise pre-existing vaccine responses. We extended these findings to P. yoelii infection, observing decreases in antibodies to model antigens in inbred mice and to influenza in outbred mice, associated with LLPC depletion and increased susceptibility to influenza rechallenge. We investigated the implications of these findings in Malian children by measuring vaccine-specific IgG (tetanus, measles, hepatitis B) before and after the malaria-free 6-month dry season, 10 days after the first malaria episode of the malaria season, and after the subsequent dry season. On average, vaccine-specific IgG did not decrease following acute malaria. However, in some children malaria was associated with an accelerated decline in vaccine-specific IgG, underscoring the need to further investigate the impact of malaria on pre-existing vaccine-specific antibodies.  相似文献   

2.
Infection by the neurotropic JHM strain of mouse hepatitis virus produces an acute demyelinating encephalomyelitis. While cellular immunity initially eliminates infectious virus, CNS viral persistence is predominantly controlled by humoral immunity. To better understand the distinct phases of immune control within the CNS, the kinetics of humoral immune responses were determined in infected mice. Early during clearance of the JHM strain of mouse hepatitis virus, only few virus-specific Ab-secreting cells (ASC) were detected in the periphery or CNS, although mature B cells and ASC without viral specificity were recruited into the CNS concomitant with T cells. Serum antiviral Ab and CNS virus-specific ASC became prominent only during final elimination of infectious virus. Virus-specific ASC peaked in lymphoid organs before the CNS, suggesting peripheral B cell priming and maturation. Following elimination of infectious virus, virus-specific ASC continued to increase within the CNS and then remained stable during persistence, in contrast to declining T cell numbers. These data comprise three novel findings. Rapid recruitment of B cells in the absence of specific Ab secretion supports a potential Ab-independent effector function involving lysis of virus-infected cells. Delayed recruitment relative to viral clearance and subsequent maintenance of a stable CNS ASC population demonstrate differential regulation of T and B lymphocytes within the infected CNS. This supports a critical role of humoral immunity in regulating viral CNS persistence. Lastly, altered antiviral ASC specificities following clearance of infectious virus suggest ongoing recruitment of peripheral memory cells and/or local B cell differentiation.  相似文献   

3.
Infection of mice with a series of heterologous viruses causes a reduction of memory CD8(+) T cells specific to viruses from earlier infections, but the fate of the virus-specific memory CD4(+) T cell pool following multiple virus infections has been unknown. We have previously reported that the virus-specific CD4(+) Th precursor (Thp) frequency remains stable into long-term immunity following lymphocytic choriomeningitis virus (LCMV) infection. In this study, we questioned whether heterologous virus infections or injection with soluble protein CD4 Ags would impact this stable LCMV-specific CD4(+) Thp memory pool. Limiting dilution analyses for IL-2-producing cells and intracellular cytokine staining for IFN-gamma revealed that the LCMV-specific CD4(+) Thp frequency remains relatively stable following multiple heterologous virus infections or protein Ag immunizations, even under conditions that dramatically reduce the LCMV-specific CD8(+) CTL precursor frequency. These data indicate that the CD4(+) and CD8(+) memory T cell pools are regulated independently and that the loss in CD8(+) T cell memory following heterologous virus infections is not a consequence of a parallel loss in the memory CD4(+) T cell population.  相似文献   

4.
Replication of the neurotropic JHM strain of mouse hepatitis virus within the central nervous system is controlled by cellular immunity. However, following initial clearance, virus reactivates in the absence of humoral immunity. Viral recrudescence is prevented by the transfer of antiviral antibody (Ab). To characterize the specificity and biological functions of Ab critical for maintaining viral persistence, monoclonal Abs specific for the viral spike, matrix, and nucleocapsid proteins were transferred into infected B-cell-deficient mice following initial virus clearance. Neutralizing immunoglobulin G (IgG) but not IgA anti-spike Ab suppressed virus recrudescence, reduced viral antigen in most cell types except oligodendroglia, and was associated with reduced demyelination. Nonneutralizing monoclonal Abs specific for the spike, matrix, and nucleocapsid proteins did not prevent recrudescence, demonstrating that neutralization is critical for maintaining JHM mouse hepatitis virus persistence within the central nervous system. Ab-mediated protection was not associated with alterations in virus-specific T-cell function or inflammation. Furthermore, neutralizing Ab delayed but did not prevent virus recrudescence. These data indicate that following acute viral clearance cellular immunity is ineffective in controlling virus recrudescence and suggest that the continued presence of neutralizing Ab is the essential effector in maintaining viral persistence within the central nervous system.  相似文献   

5.
IntroductionAutoantibodies contribute significantly to the pathogenesis of systemic lupus erythematosus (SLE). Unfortunately, the long-lived plasma cells (LLPCs) secreting such autoantibodies are refractory to conventional immunosuppressive treatments. Although generated long before the disease becomes clinically apparent, it remains rather unclear whether LLPC generation continues in the established disease. Here, we analyzed the generation of LLPCs, including autoreactive LLPCs, in SLE-prone New Zealand Black/New Zealand White F1 (NZB/W F1) mice over their lifetime, and their regeneration after depletion.MethodsBromodeoxyuridine pulse-chase experiments in mice of different ages were performed in order to analyze the generation of LLPCs during the development of SLE. LLPCs were enumerated by flow cytometry and autoreactive anti-double-stranded DNA (anti-dsDNA) plasma cells by enzyme-linked immunospot (ELISPOT). For analyzing the regeneration of LLPCs after depletion, mice were treated with bortezomib alone or in combination with cyclophosphamide and plasma cells were enumerated 12 hours, 3, 7, 11 and 15 days after the end of the bortezomib cycle.ResultsAutoreactive LLPCs are established in the spleen and bone marrow of SLE-prone mice very early in ontogeny, before week 4 and before the onset of symptoms. The generation of LLPCs then continues throughout life. LLPC counts in the spleen plateau by week 10, but continue to increase in the bone marrow and inflamed kidney. When LLPCs are depleted by the proteasome inhibitor bortezomib, their numbers regenerate within two weeks. Persistent depletion of LLPCs was achieved only by combining a cycle of bortezomib with maintenance therapy, for example cyclophosphamide, depleting the precursors of LLPCs or preventing their differentiation into LLPCs.ConclusionsIn SLE-prone NZB/W F1 mice, autoreactive LLPCs are generated throughout life. Their sustained therapeutic elimination requires both the depletion of LLPCs and the inhibition of their regeneration.  相似文献   

6.
Current vaccines designed to promote humoral immunity to respiratory virus infections also induce potent CD4+ T cell memory. However, little is known about the impact of primed CD4+ T cells on the immune response to heterologous viruses that are serologically distinct, but that share CD4+ T cell epitopes. In addition, the protective capacity of primed CD4+ T cells has not been fully evaluated. In the present study, we addressed these two issues using a murine Sendai virus model. Mice were primed with an HN421-436 peptide that represents the dominant CD4+ T cell epitope on the hemagglutinin-neuraminidase (HN) of Sendai virus. This vaccination strategy induced strong CD4+ T cell memory to the peptide, but did not induce Abs specific for the Sendai virus virion. Subsequent Sendai virus infection of primed mice resulted in 1) a substantially accelerated virus-specific CD4+ T cell response in the pneumonic lung; 2) enhanced primary antiviral Ab-forming cell response in the mediastinal lymph nodes; and 3) accelerated viral clearance. Interestingly, the virus-specific CD8+ T cell response in the lung and the development of long-term memory CD8+ T cells in the spleen were significantly reduced. Taken together, our data demonstrate that primed CD4+ T cells, in the absence of pre-existing Ab, can have a significant effect on the subsequent immune responses to a respiratory virus infection.  相似文献   

7.
Contributions of humoral and cellular immunity in controlling neurotropic mouse hepatitis virus persistence within the CNS were determined in B cell-deficient J(H)D and syngeneic H-2(d) B cell+ Ab-deficient mice. Virus clearance followed similar kinetics in all mice, confirming initial control of virus replication by cellular immunity. Nevertheless, virus reemerged within the CNS of all Ab-deficient mice. In contrast to diminished T cell responses in H-2(b) B cell-deficient muMT mice, the absence of B cells or Ab in the H-2(d) mice did not compromise expansion, recruitment into the CNS, or function of virus-specific CD4+ and CD8+ T cells. The lack of B cells and lymphoid architecture thus appears to manifest itself on T cell responses in a genetically biased manner. Increasing viral load did not enhance frequencies or effector function of virus-specific T cells within the CNS, indicating down-regulation of T cell responses. Although an Ab-independent antiviral function of B cells was not evident during acute infection, the presence of B cells altered CNS cellular tropism during viral recrudescence. Reemerging virus localized almost exclusively to oligodendroglia in B cell+ Ab-deficient mice, whereas it also replicated in astrocytes in B cell-deficient mice. Altered tropism coincided with distinct regulation of CNS virus-specific CD4+ T cells. These data conclusively demonstrate that the Ab component of humoral immunity is critical in preventing virus reactivation within CNS glial cells. B cells themselves may also play a subtle role in modulating pathogenesis by influencing tropism.  相似文献   

8.
CD8(+) T cells are required to control acute viral replication in the CNS following infection with neurotropic coronavirus. By contrast, studies in B cell-deficient (muMT) mice revealed Abs as key effectors in suppressing virus recrudescence. The apparent loss of initial T cell-mediated immune control in the absence of B cells was investigated by comparing T cell populations in CNS mononuclear cells from infected muMT and wild-type mice. Following viral recrudescence in muMT mice, total CD8(+) T cell numbers were similar to those of wild-type mice that had cleared infectious virus; however, virus-specific T cells were reduced at least 3-fold by class I tetramer and IFN-gamma ELISPOT analysis. Although overall T cell recruitment into the CNS of muMT mice was not impaired, discrepancies in frequencies of virus-specific CD8(+) T cells were most severe during acute infection. Impaired ex vivo cytolytic activity of muMT CNS mononuclear cells, concomitant with reduced frequencies, implicated IFN-gamma as the primary anti viral factor early in infection. Reduced virus-specific CD8(+) T cell responses in the CNS coincided with poor peripheral expansion and diminished CD4(+) T cell help. Thus, in addition to the lack of Ab, limited CD8(+) and CD4(+) T cell responses in muMT mice contribute to the ultimate loss of control of CNS infection. Using a model of virus infection restricted to the CNS, the results provide novel evidence for a role of B cells in regulating T cell expansion and differentiation into effector cells.  相似文献   

9.
The human gamma-herpesviruses, EBV and Kaposi's sarcoma-associated herpesvirus, establish life-long latency and can reactivate in immunocompromised individuals. T cells play an important role in controlling persistent EBV infection, whereas a role for humoral immunity is less clear. The murine gamma-herpesvirus-68 has biological and structural similarities to the human gamma-herpesviruses, and provides an important in vivo experimental model for dissecting mechanisms of immune control. In the current studies, CD28(-/-) mice were used to address the role of Abs in control of persistent murine gamma-herpesvirus-68 infection. Lytic infection was controlled in the lungs of CD28(-/-) mice, and latency was maintained in B cells at normal frequencies. Although class-switched virus-specific Abs were initially generated in the absence of germinal centers, titers and viral neutralizing activity rapidly waned. T cell depletion in CD28(-/-) mice with compromised Ab responses, but not in control mice with intact Ab responses, resulted in significant recrudescence from latency, both in the spleen and the lung. Recrudescence could be prevented by passive transfer of immune serum. These data directly demonstrate an important contribution of humoral immunity to control of gamma-herpesvirus latency, and have significant implications for clinical intervention.  相似文献   

10.
The presence of both cell-mediated and humoral immunity is important in protection from and clearance of a number of infectious pathogens. We describe novel vaccine regimens using combinations of plasmid DNA, poxvirus and protein to induce strong Ag-specific T cell and Ab responses simultaneously in a murine model. Intramuscular (i.m.) immunization with plasmid DNA encoding the middle Ag of hepatitis B (DNA) concurrently with a commercial hepatitis B virus (HBV) vaccine (Engerix-B) followed by boosting immunizations with both modified vaccinia virus Ankara (MVA) encoding the middle Ag of HBV and Engerix-B induced high levels of CD4(+) and CD8(+) T cells and high titer Ab responses to hepatitis B surface Ag (HbsAg). Substitution of Engerix-B with adjuvant-free rHBsAg induced similar T cell responses and greatly enhanced Ab levels. Repeated immunizations with recombinant or nonrecombinant MVA mixed with Ag induced higher titers of Abs compared with immunization with either Ag or Engerix-B further demonstrating this novel adjuvant effect of MVA. The poxviruses NYVAC, fowlpox (FP9) and ALVAC, and to a lesser extent, adenovirus, also displayed similar adjuvant properties when used in combination with rHBsAg. The use of poxviruses as an adjuvant for protein to concurrently induce Ag-specific T cells and Abs could be applied to the development of vaccines for many diseases, including HIV and malaria, where both cell mediated and humoral immunity may be important for protection.  相似文献   

11.
Whole inactivated virus (WIV) vaccines derived from the FL4 cell line protect cats against challenge with feline immunodeficiency virus (FIV). To investigate the correlates of protective immunity induced by WIV, we established an immunization regimen which protected a proportion of the vaccinates against challenge. A strong correlation was observed between high virus neutralizing antibody titers and protection following challenge. To investigate further the immune mechanisms responsible for immunity, all of the vaccinates were rechallenged 35 weeks following the initial challenge. Results of virus isolation from peripheral blood mononuclear cells indicated that 9 of 10 vaccinates were protected from viremia following the second challenge, suggesting that vaccine-induced immunity to FIV persisted for at least 8 months. However, more stringent analysis for evidence of infection revealed that 5 of 10 vaccinates harbored virus in lymphoid tissues. Unlike the protection observed immediately following vaccination, which correlated positively with virus neutralizing antibody titer, the ability to resist a second challenge with FIV was more closely correlated with the induction of Env-specific cytotoxic T-cell activity. The results indicate that both virus-specific humoral immunity and cellular immunity play a role in the protection induced in cats by WIV immunization but their relative importance may be dependent on the interval between vaccination and exposure to virus.  相似文献   

12.
Recognition of pathogen-associated molecular patterns by pattern recognition receptors of the innate immune system is crucial for the initiation of innate and adaptive responses and for immunological memory. We investigated the role of TLR7 in the induction of adaptive immunity and long-term memory following influenza virus infection and vaccination in C57BL/6 mice. During infection with influenza A/PR8/34 virus, the absence of either TLR7 or MyD88 leads to reduced virus-specific antibodies in the serum and antibody-secreting cells in their secondary lymphoid organs, particularly in bone marrow. In spite of this, the absence of TLR7/MyD88 signaling did not impair the production of protective antibodies. Following immunization with the 2009 pandemic inactivated split vaccine, TLR7(-/-) mice had significantly lower levels of germinal center formation, antibody-secreting cells, and circulating influenza virus-specific antibodies than control animals. Consequently, TLR7(-/-) mice failed to develop protective immunological memory upon challenge. Furthermore, the immunogenicity of the split vaccine was likely due to TLR7 recognition of virion RNA, as its removal from the split vaccine significantly reduced the levels of influenza virus-specific antibodies and compromised the vaccine protective efficacy in mice. Taken together, our data demonstrate that TLR7 plays an important role in vaccine-induced humoral immune responses to influenza virus through the interaction with viral RNA present in the split vaccine.  相似文献   

13.
Long-lived plasma cells that reside in the bone marrow constitutively produce antibody in the absence of antigen and are the cellular basis of durable humoral immunity. The generation of these long-lived plasma cells depends upon a series of highly orchestrated interactions between antigen-specific CD4 T cells and B cells and the formation of germinal centers (GCs). In this study, we have examined the role of the cytokine interleukin-21 (IL-21) in regulating humoral immunity during acute viral infections. Using IL-21 receptor-deficient (IL-21R−/−) mice, we found that virus-specific CD4 T cells were generated after infection with lymphocytic choriomeningitis virus (LCMV) and that these CD4 T cells differentiated into T follicular helper (TFH)-like cells in the absence of IL-21 signaling. There was also no defect in the formation of GCs, although after day 15 these GCs disappeared faster in IL-21R−/− mice than in wild-type mice. Isotype switching and the initial LCMV-specific IgG response were normal in IL-21R−/− mice. However, these mice exhibited a profound defect in generating long-lived plasma cells and in sustaining antibody levels over time. Similar results were seen after infection of IL-21R−/− mice with vesicular stomatitis virus and influenza virus. Using chimeric mice containing wild-type or IL-21R−/− CD4 T cells and B cells, we showed that both B and CD4 T cells need IL-21 signaling for generating long-term humoral immunity. Taken together, our results highlight the importance of IL-21 in humoral immunity to viruses.  相似文献   

14.
Liang B  Hyland L  Hou S 《Journal of virology》2001,75(11):5416-5420
Nasal immunoglobulin A provides an initial defense against inhaled respiratory pathogens. However, it is not known whether the nasal-associated lymphoid tissues (NALT) are able to mount an effective long-lasting pathogen-specific immune response, nor is it known whether functional differences exist between the organized NALT (O-NALT) and the diffuse NALT lining the nasal passages (D-NALT). Here we show that although both the O-NALT and the D-NALT are capable of producing virus-specific antibody in response to influenza virus infection, the frequency of specific antibody-forming cells in the D-NALT is much greater than the frequency observed in the O-NALT. Furthermore, we show that the D-NALT but not the O-NALT is the site of long-term virus-specific humoral immunity which lasts for the life of the animal. These results indicate that the D-NALT is not only the major effector site of the NALT but also the site of local long-term specific antibody production.  相似文献   

15.
Development of long-term humoral immunity is a major goal of vaccination, but the mechanisms involved in the formation of long-term Ab responses are still being determined. In this study, we identify a previously unknown requirement for MyD88, an adaptor molecule that mediates signals at most TLRs, for the generation of long-term humoral immunity during live virus infection. Polyoma virus-infected MyD88 knockout mice generated strong acute T cell-dependent antiviral IgM and IgG responses and developed germinal centers. Activation-induced cytidine deaminase, an enzyme required for isotype switching and somatic hypermutation, was also induced in germinal center B cells, similar to wild-type mice. However, MyD88 knockout mice failed to develop bone marrow plasma cells and did not maintain long-term serum antiviral Ab responses. The isotype distribution of antiviral IgG responses was also altered; serum IgG2a and IgG2b levels were diminished, whereas IgG1 responses were not affected. The requirement for MyD88 for the formation of long-term humoral immunity to polyoma virus was intrinsic to B cells and was independent of IL-1R and IL-18R, cytokine receptors that also signal through MyD88. Our findings show that MyD88-dependent signaling pathways in B cells are essential for effectively generating long-term Ab responses and implicate a role for TLR in the formation of long-term humoral immunity.  相似文献   

16.
Rat virus (RV) is a common parvovirus of laboratory rodents which can disrupt rat-based research. Prenatal or perinatal infection can be pathogenic or lead to persistent infection, whereas infection of adult rats is typically self-limiting. Effects on the host immune system have been documented during RV infection, but little is known about immune responses necessary for viral clearance. Our studies were conducted to identify humoral and cellular responses to the predominant capsid protein, VP2, during experimental infection of adult rats. We observed VP2-specific proliferation, gamma interferon production, and an immunoglobulin G2a humoral response that is maintained for at least 35 days following RV infection. These results strongly suggest the induction of virus-specific Th1-mediated immunity.  相似文献   

17.
In this study, we investigate the state of T cell-mediated immunity in B cell-deficient (B(-/-)) mice infected with two strains of lymphocytic choriomeningitis virus known to differ markedly in their capacity to persist. In B(-/-) C57BL mice infected with the more persisting virus, virus-specific CD8(+) T cells are initially generated that are qualitatively similar to those in wild-type mice. However, although cell numbers are well sustained over time, the capacity to produce cytokines is rapidly impaired. In similarly infected B(-/-) BALB/c mice, virus-specific CD8(+) T cells are completely deleted, indicating that host genotype influences the severity of the T cell defect. In B(-/-) C57BL mice infected with the less persisting virus, CD8(+) T cell dysfunction was not as pronounced, although it was clearly present. Most importantly, the appearance of dysfunctional CD8(+) T cells clearly precedes recrudescence of detectable virus, indicating that the T cell defect is not simply a secondary event due to virus buildup resulting from the failure of B(-/-) mice to produce neutralizing Abs. In contrast with CD8(+) T cells, which initially respond almost as in wild-type mice, the priming of virus-specific CD4(+) T cells was markedly impaired in B(-/-) mice infected with either virus strain. Thus, our results indicate that B cells play an important role in antiviral immunity not only as Ab producers, but also in promoting an optimal and sustained T cell response. The T cell defects are likely to contribute to the chronic course of viral infection in B(-/-) mice.  相似文献   

18.
In this study we investigate the attributes of virus-specific memory CD8 T cells which most effectively control secondary infections. By rechallenging mice that had cleared primary lymphocytic choriomeningitis virus infections, we revealed that the secondary response is remarkably swift. Within 6 h following secondary infection, the production of gamma interferon becomes detectable directly ex vivo. During this protective phase of the secondary response, a very early elaboration of effector activities is preferentially exhibited by T cells specific for the viral NP396 epitope. This wave of activation contains the infection primarily before the initiation of the proliferative phase of the secondary response. Marked expansion is observed, but its magnitude differs depending on the epitope specificity of the responding cells; between 42 and 48 h following infection, approximately 70% of NP396-specific memory cells are in the S phase of the cell cycle, as assessed by bromodeoxyuridine incorporation studies. Epitope-dependent differences during the proliferative phase of the secondary response were confirmed by adoptive transfer studies with CFSE-labeled T cells. Although NP396-specific T cells typically dominate secondary responses, the broader multiepitope-specific population of antiviral T cells is beneficial for controlling a variant virus with an escape mutation in this epitope. These findings indicate that the induction and maintenance of a focused response contribute to the clearance of secondary infections; however, a more diverse pool of antiviral T cells facilitates long-term immunity to mutable pathogens.  相似文献   

19.
Chikungunya virus (CHIKV) is an alphavirus responsible for numerous epidemics throughout Africa and Asia, causing infectious arthritis and reportedly linked with fatal infections in newborns and elderly. Previous studies in animal models indicate that humoral immunity can protect against CHIKV infection, but despite the potential efficacy of B-cell-driven intervention strategies, there are no virus-specific vaccines or therapies currently available. In addition, CHIKV has been reported to elicit long-lasting virus-specific IgM in humans, and to establish long-term persistence in non-human primates, suggesting that the virus might evade immune defenses to establish chronic infections in man. However, the mechanisms of immune evasion potentially employed by CHIKV remain uncharacterized. We previously described two human monoclonal antibodies that potently neutralize CHIKV infection. In the current report, we have characterized CHIKV mutants that escape antibody-dependent neutralization to identify the CHIKV E2 domain B and fusion loop "groove" as the primary determinants of CHIKV interaction with these antibodies. Furthermore, for the first time, we have also demonstrated direct CHIKV cell-to-cell transmission, as a mechanism that involves the E2 domain A and that is associated with viral resistance to antibody-dependent neutralization. Identification of CHIKV sub-domains that are associated with human protective immunity, will pave the way for the development of CHIKV-specific sub-domain vaccination strategies. Moreover, the clear demonstration of CHIKV cell-to-cell transmission and its possible role in the establishment of CHIKV persistence, will also inform the development of future anti-viral interventions. These data shed new light on CHIKV-host interactions that will help to combat human CHIKV infection and inform future studies of CHIKV pathogenesis.  相似文献   

20.
Infection with seasonal influenza A viruses induces immunity to potentially pandemic influenza A viruses of other subtypes (heterosubtypic immunity). We recently demonstrated that vaccination against seasonal influenza prevented the induction of heterosubtypic immunity against influenza A/H5N1 virus induced by infection with seasonal influenza in animal models, which correlated with the absence of virus-specific CD8(+) T cell responses. Annual vaccination of all healthy children against influenza has been recommended, but the impact of vaccination on the development of the virus-specific CD8(+) T cell immunity in children is currently unknown. Here we compared the virus-specific CD8(+) T cell immunity in children vaccinated annually with that in unvaccinated children. In the present study, we compared influenza A virus-specific cellular and humoral responses of unvaccinated healthy control children with those of children with cystic fibrosis (CF) who were vaccinated annually. Similar virus-specific CD4(+) T cell and antibody responses were observed, while an age-dependent increase of the virus-specific CD8(+) T cell response that was absent in vaccinated CF children was observed in unvaccinated healthy control children. Our results indicate that annual influenza vaccination is effective against seasonal influenza but hampers the development of virus-specific CD8(+) T cell responses. The consequences of these findings are discussed in the light of the development of protective immunity to seasonal and future pandemic influenza viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号