首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deletion of GAS1/GGP1/CWH52 results in a lower β-glucan content of the cell wall and swollen, more spherical cells (L. Popolo, M. Vai, E. Gatti, S. Porello, P. Bonfante, R. Balestrini, and L. Alberghina, J. Bacteriol. 175:1879–1885, 1993; A. F. J. Ram, S. S. C. Brekelmans, L. J. W. M. Oehlen, and F. M. Klis, FEBS Lett. 358:165–170, 1995). We show here that gas1Δ cells release β1,3-glucan into the medium. Western analysis of the medium proteins with β1,3-glucan- and β1,6-glucan-specific antibodies showed further that at least some of the released β1,3-glucan was linked to protein as part of a β1,3-glucan–β1,6-glucan–protein complex. These data indicate that Gas1p might play a role in the retention of β1,3-glucan and/or β-glucosylated proteins. Interestingly, the defective incorporation of β1,3-glucan in the cell wall was accompanied by an increase in chitin and mannan content in the cell wall, an enhanced expression of cell wall protein 1 (Cwp1p), and an increase in β1,3-glucan synthase activity, probably caused by the induced expression of Fks2p. It is proposed that the cell wall weakening caused by the loss of Gas1p induces a set of compensatory reactions to ensure cell integrity.  相似文献   

2.
Bulone V  Girard V  Fèvre M 《Plant physiology》1990,94(4):1748-1755
Enriched 1,3-β-glucan and 1,4-β-glucan synthase fractions from the fungus Saprolegnia were isolated by rate zonal centrifugation on glycerol gradient. Purification was improved by entrapment of the enzymes in their reaction product, i.e. microfibrillar glucans. 1,3-β-Glucan synthases were separated from 1,4-β-glucan synthases following resuspension of entrapped enzymes. Sodium dodecylsulfate-polyacrylamide gel electrophoresis indicated that 1,3-β-glucan and 1,4-β-glucan synthases may have a different polypeptide composition because they were enriched for different protein subunits (34, 48, and 50 kD for the 1,3-β-glucan synthase and 60 kD for the 1,4-β-glucan synthase).  相似文献   

3.
β-1,3-Glucan and chitin are the most prominent polysaccharides of the fungal cell wall. Covalently linked, these polymers form a scaffold that determines the form and properties of vegetative and pathogenic hyphae. While the role of chitin in plant infection is well understood, the role of β-1,3-glucan is unknown. We functionally characterized the β-1,3-glucan synthase gene GLS1 of the maize (Zea mays) pathogen Colletotrichum graminicola, employing RNA interference (RNAi), GLS1 overexpression, live-cell imaging, and aniline blue fluorochrome staining. This hemibiotroph sequentially differentiates a melanized appressorium on the cuticle and biotrophic and necrotrophic hyphae in its host. Massive β-1,3-glucan contents were detected in cell walls of appressoria and necrotrophic hyphae. Unexpectedly, GLS1 expression and β-1,3-glucan contents were drastically reduced during biotrophic development. In appressoria of RNAi strains, downregulation of β-1,3-glucan synthesis increased cell wall elasticity, and the appressoria exploded. While the shape of biotrophic hyphae was unaffected in RNAi strains, necrotrophic hyphae showed severe distortions. Constitutive expression of GLS1 led to exposure of β-1,3-glucan on biotrophic hyphae, massive induction of broad-spectrum defense responses, and significantly reduced disease symptom severity. Thus, while β-1,3-glucan synthesis is required for cell wall rigidity in appressoria and fast-growing necrotrophic hyphae, its rigorous downregulation during biotrophic development represents a strategy for evading β-glucan–triggered immunity.  相似文献   

4.
The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis.  相似文献   

5.
Malassezia species are ubiquitous residents of human skin and are associated with several diseases such as seborrheic dermatitis, tinea versicolor, folliculitis, atopic dermatitis, and scalp conditions such as dandruff. Host-Malassezia interactions and mechanisms to evade local immune responses remain largely unknown. Malassezia restricta is one of the most predominant yeasts of the healthy human skin, its cell wall has been investigated in this paper. Polysaccharides in the M. restricta cell wall are almost exclusively alkali-insoluble, showing that they play an essential role in the organization and rigidity of the M. restricta cell wall. Fractionation of cell wall polymers and carbohydrate analyses showed that the polysaccharide core of the cell wall of M. restricta contained an average of 5% chitin, 20% chitosan, 5% β-(1,3)-glucan, and 70% β-(1,6)-glucan. In contrast to other yeasts, chitin and chitosan are relatively abundant, and β-(1,3)-glucans constitute a minor cell wall component. The most abundant polymer is β-(1,6)-glucans, which are large molecules composed of a linear β-(1,6)-glucan chains with β-(1,3)-glucosyl side chain with an average of 1 branch point every 3.8 glucose unit. Both β-glucans are cross-linked, forming a huge alkali-insoluble complex with chitin and chitosan polymers. Data presented here show that M. restricta has a polysaccharide organization very different of all fungal species analyzed to date.  相似文献   

6.
J. L. Brown  Z. Kossaczka  B. Jiang    H. Bussey 《Genetics》1993,133(4):837-849
Recessive mutations leading to killer resistance identify the KRE9, KRE10 and KRE11 genes. Mutations in both the KRE9 and KRE11 genes lead to reduced levels of (1 -> 6)-β-glucan in the yeast cell wall. The KRE11 gene encodes a putative 63-kD cytoplasmic protein, and disruption of the KRE11 locus leads to a 50% reduced level of cell wall (1 -> 6)-glucan. Structural analysis of the (1 -> 6)-β-glucan remaining in a kre11 mutant indicates a polymer smaller in size than wild type, but containing a similar proportion of (1 -> 6)- and (1 -> 3)-linkages. Genetic interactions among cells harboring mutations at the KRE11, KRE6 and KRE1 loci indicate lethality of kre11 kre6 double mutants and that kre11 is epistatic to kre1, with both gene products required to produce the mature glucan polymer at wild-type levels. Analysis of these KRE genes should extend knowledge of the β-glucan biosynthetic pathway, and of cell wall synthesis in yeast.  相似文献   

7.
The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.  相似文献   

8.
Particulate enzymes from suspension-cultured ryegrass (Lolium multiflorum Lam.) endosperm cells incorporated glucosyl residues from UDP-glucose and GDP-glucose into β-glucans. Three types of β-glucans were produced from UDP-glucose: 1,3-β-glucan; 1,4-β-glucan; and mixed-linkage 1,3;1,4-β-glucan. As in other systems, relatively more 1,4-β-glucan was produced from a low (10 micromolar) UDP-glucose concentration, and relatively more 1,3-β-glucan was produced from a high (1 millimolar) UDP-glucose concentration. However, in ryegrass, 1,3;1,4-β-glucan represented a major proportion of the products at both low and high UDP-glucose concentrations. The arrangement of linkages in the 1,3;1,4-β-glucan was different at the two concentrations; at the low UDP-glucose concentration, more sequences of three consecutive 1,4-linkages were produced.  相似文献   

9.
Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant''s defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants'' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is nondegradable in plants, it is reasonable that many fungal plant pathogens utilize α-1,3-glucan in the innate immune evasion mechanism and some in maintaining the structures.  相似文献   

10.
11.
Echinocandins are a new generation of novel antifungal agent that inhibit cell wall beta(1,3)-glucan synthesis and are normally cidal for the human pathogen Candida albicans. Treatment of C. albicans with low levels of echinocandins stimulated chitin synthase (CHS) gene expression, increased Chs activity, elevated chitin content and reduced efficacy of these drugs. Elevation of chitin synthesis was mediated via the PKC, HOG, and Ca(2+)-calcineurin signalling pathways. Stimulation of Chs2p and Chs8p by activators of these pathways enabled cells to survive otherwise lethal concentrations of echinocandins, even in the absence of Chs3p and the normally essential Chs1p, which synthesize the chitinous septal ring and primary septum of the fungus. Under such conditions, a novel proximally offset septum was synthesized that restored the capacity for cell division, sustained the viability of the cell, and abrogated morphological and growth defects associated with echinocandin treatment and the chs mutations. These findings anticipate potential resistance mechanisms to echinocandins. However, echinocandins and chitin synthase inhibitors synergized strongly, highlighting the potential for combination therapies with greatly enhanced cidal activity.  相似文献   

12.
The activity of 1,3-β-d-glucan synthase assayed in the presence of digitonin in a microsomal preparation from suspension-cultured cells of Glycine max can be fully inhibited by unsaturated fatty acids, trienoic acids being most effective. Lysophosphatidylcholine, platelet-activating factor, acylcarnitine, and Echinocandin B can also fully inhibit the enzyme. Inhibition is observed both when the enzyme is activated by Ca2+ or by trypsinization. At low amounts some of the substances can also cause stimulation. These effects all may result from a displacement of certain endogenous phospholipids necessary for optimal activity of the 1,3-β-d-glucan synthase.  相似文献   

13.
14.
By screening for the osmotically remediable phenotype, mutations in two genes (orlA and orlB) affecting the cell wall chitin content of Aspergillus nidulans were identified. Strains carrying temperature-sensitive alleles of these genes produce conidia which swell excessively and lyse when germinated at restrictive temperatures. Growth under these conditions is remedied by osmotic stabilizers and by N-acetylglucosamine (GlcNAc). Remediation by GlcNAc suggests that the mutations affect early steps in the synthesis of chitin. Temperature and medium shift experiments indicate that the phenotype is the result of decreased synthesis rather than increased chitin degradation and that osmotic stabilizers act to stabilize a defective wall rather than to stabilize the gene product. Two genes, orlC and orlD, which affect cell wall beta-1,3-glucan content were also identified. Walls from strains carrying mutations in these genes exhibit normal amounts of alpha-1,3-glucan and chitin but reduced amounts of beta-1,3-glucan. As for the chitin-deficient mutants, orlC and orlD mutants spontaneously lyse on conventional media but are remedied by osmotic stabilizers. These results indicate that both chitin and beta-1,3-glucan are likely to contribute to the structural rigidity of the cell wall.  相似文献   

15.
The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Δ mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Δ mutant are similar to the effects of inhibiting β-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains.  相似文献   

16.
Evidence is presented for the existence of a noncellulosic β-1,3-glucan in cotton fibers. The glucan can be isolated as distinct fractions of varying solubility. When fibers are homogenized rigorously in aqueous buffer, part of the total β-1,3-glucan is found as a soluble polymer in homogenates freed of cell walls. The proportion of total β-1,3-glucan which is found as the soluble polymer varies somewhat as a function of fiber age. The insoluble fraction of the β-1,3-glucan remains associated with the cell wall fraction. Of this cell wall β-1,3-glucan, a variable portion can be solubilized by treatment of walls with hot water, a further portion can be solubilized by alkaline extraction of the walls, and 17 to 29% of the glucan remains associated with cellulose even after alkaline extraction. A portion of this glucan can also be removed from the cell walls of intact cotton fibers by digestion with an endo-β-1,3-glucanase. The glucan fraction which can be isolated as a soluble polymer in homogenates freed of cell walls is not associated with membranous material, and we propose that it represents glucan which is also extracellular but not tightly associated with the cell wall. Enzyme digestion studies indicate that all of the cotton fiber glucan is β-linked, and methylation analyses and enzyme studies both show that the predominant linkage in the glucan is 1 → 3. The possibility of some minor branching at C-6 can also be deduced from the methylation analyses. The timing of deposition of the β-1,3-glucan during fiber development coincides closely with the onset of secondary wall cellulose synthesis. Kinetic studies performed with ovules and fibers cultured in vitro show that incorporation of radioactivity from [14C]glucose into β-1,3-glucan is linear with respect to time almost from the start of the labeling period; however, a lag is observed before incorporation into cellulose becomes linear with time, suggesting that these two different glucans are not polymerized directly from the same substrate pool. Pulse-chase experiments indicate that neither the β-1,3-glucan nor cellulose exhibits significant turnover after synthesis.  相似文献   

17.
Anti-β-glucan antibodies elicited by a laminarin-conjugate vaccine confer cross-protection to mice challenged with major fungal pathogens such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. To gain insights into protective β-glucan epitope(s) and protection mechanisms, we studied two anti-β-glucan monoclonal antibodies (mAb) with identical complementarity-determining regions but different isotypes (mAb 2G8, IgG2b and mAb 1E12, IgM). C. albicans, the most relevant fungal pathogen for humans, was used as a model.Both mAbs bound to fungal cell surface and to the β1,3-β1,6 glucan of the fungal cell wall skeleton, as shown by immunofluorescence, electron-microscopy and ELISA. They were also equally unable to opsonize fungal cells in a J774 macrophage phagocytosis and killing assay. However, only the IgG2b conferred substantial protection against mucosal and systemic candidiasis in passive vaccination experiments in rodents. Competition ELISA and microarray analyses using sequence-defined glucan oligosaccharides showed that the protective IgG2b selectively bound to β1,3-linked (laminarin-like) glucose sequences whereas the non-protective IgM bound to β1,6- and β1,4-linked glucose sequences in addition to β1,3-linked ones. Only the protective IgG2b recognized heterogeneous, polydisperse high molecular weight cell wall and secretory components of the fungus, two of which were identified as the GPI-anchored cell wall proteins Als3 and Hyr1. In addition, only the IgG2b inhibited in vitro two critical virulence attributes of the fungus, hyphal growth and adherence to human epithelial cells.Our study demonstrates that the isotype of anti-β-glucan antibodies may affect details of the β-glucan epitopes recognized, and this may be associated with a differing ability to inhibit virulence attributes of the fungus and confer protection in vivo. Our data also suggest that the anti-virulence properties of the IgG2b mAb may be linked to its capacity to recognize β-glucan epitope(s) on some cell wall components that exert critical functions in fungal cell wall structure and adherence to host cells.  相似文献   

18.
19.
Non-starch polysaccharides (NSPs) have many health benefits, including immunomodulatory activity, lowering serum cholesterol, a faecal bulking effect, enhanced absorption of certain minerals, prebiotic effects and the amelioration of type II diabetes. The principal components of the NSP in cereal grains are (1,3;1,4)-β-glucans and arabinoxylans. Although (1,3;1,4)-β-glucan (hereafter called β-glucan) is not the most representative component of wheat cell walls, it is one of the most important types of soluble fibre in terms of its proven beneficial effects on human health. In the present work we explored the genetic variability of β-glucan content in grains from a tetraploid wheat collection that had been genotyped with a 90k-iSelect array, and combined this data to carry out an association analysis. The β-glucan content, expressed as a percentage w/w of grain dry weight, ranged from 0.18% to 0.89% across the collection. Our analysis identified seven genomic regions associated with β-glucan, located on chromosomes 1A, 2A (two), 2B, 5B and 7A (two), confirming the quantitative nature of this trait. Analysis of marker trait associations (MTAs) in syntenic regions of several grass species revealed putative candidate genes that might influence β-glucan levels in the endosperm, possibly via their participation in carbon partitioning. These include the glycosyl hydrolases endo-β-(1,4)-glucanase (cellulase), β-amylase, (1,4)-β-xylan endohydrolase, xylanase inhibitor protein I, isoamylase and the glycosyl transferase starch synthase II.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号