首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Gui  Runfei  Mo  Zhaowen  Zeng  Shan  Wen  Zhiqiang  Long  Weisi 《Journal of Plant Growth Regulation》2023,42(3):1604-1613

Compared with the standard method of manual fertilizer broadcasting (MFB), mechanized hill-drilling direct-seeding with deep application of slow-release nitrogen fertilizer (MHDDF) is an efficient method to integrate both fertilization and seeding. However, there are few studies that combine the use of slow-release fertilizer with MHDDF. We sought to explore the combined effect of MHDDF with slow-release fertilizer on rice yield and nitrogen, phosphorus, and potassium utilization, compared to MFB. We compared three different MHDDF methods (D30: 450 kg ha?1, D40: 600 kg ha?1, D50: 750 kg ha?1), with one MFB method (B50: 750 kg ha?1), and one control (CK: 0 kg ha?1). We found that the yield of all MHDDF method was higher than that of both the MFB method. Yield was the highest in the D50 treatment and was 14.14–46.03% higher than that in B50 treatment. Biomass accumulation, nutrient accumulation, and nutrient use efficiency were similarly higher in MHDDF method than both MFB and CK. Compared to B50, the D50 treatment increased nitrogen recovery efficiency by 170.53–231.50%, phosphorus recovery efficiency by 480.00–724.25%, and potassium recovery efficiency by 201.55–169.59%. Overall, we found that combining MHDDF with slow-release fertilizer was an effective method to increase rice yield and nutrient use efficiency compared with MFB.

  相似文献   

2.
The present study was undertaken to assess the benefit and compare the functioning of AM fungi on wheat grown conventionally and on beds. Ten treatment combinations were used, treatments 1 and 2: no fertilizers with and without arbuscular mycorrhizal (AM) fungi (In vitro produced Glomus intraradices); 3:100% of recommended NPK: (120 kg ha−1 N; 60 kg ha−1 P; 50 kg ha−1 K), and 4 and 5: 75% of recommended NPK dose with and without AM inoculation in a 5 × 2 split-plot design on wheat using conventional/flat system and elevated/raised bed system. The maximum grain yield (3.84 t ha−1) was obtained in AM fungi inoculated plots of raised bed system applied with 75% NPK and was found higher (although non- significant) than the conventional (3.73 t ha−1) system. The AM inoculation at 75% fertilizer application can save 8.47, 5.38 kg P and 16.95, 10.75 kg N ha−1, respectively, in bed and conventional system. While comparing the yield response with 100% fertilizer application alone, AM inoculation was found to save 20.30, 15.79 kg P and 40.60, 31.59 kg N ha−1, respectively, in beds and conventional system. Mycorrhizal inoculation at 75% NPK application particularly in raised bed system seems to be more efficient in saving fertilizer inputs and utilizing P for producing higher yield and growth unlike non-mycorrhizal plants of 100% P. Besides the yield, mycorrhizal plants grown on beds had higher AM root colonization, soil dehydrogenases activity, and P-uptake. The present study indicates that the inoculation of AM fungi to wheat under raised beds is better response (although non-significantly higher) to conventional system and could be adopted for achieving higher yield of wheat at reduced fertilizer inputs after field validation.  相似文献   

3.
Biochar is beneficial for improving soil quality and crop productivity. However, the long‐term effects of biochar addition on temporal dynamics of plant shoot and root growth, and the changes in soil properties and nitrogen (N) leaching are still obscure. Here, based on a long‐term (7 years) biochar field experiment with rice in northwest China, we investigated the effects of two biochar rates (0 and 9 t ha?1 year?1) and two N fertilizer rates (0 and 300 kg N ha?1 year?1) on shoot and root growth, root morphology, N leaching, and soil physicochemical properties. The results showed that both biochar and N fertilizer significantly promoted rice growth, with their interaction significant only in some cases. Both fertilizers enhanced rice shoot biomass and N accumulation in various growth stages as well as increased grain yield. Nitrogen fertilizer significantly promoted root growth regardless of biochar application. However, biochar application without N fertilizer increased root biomass and length during the whole growth period, except in the booting stage; biochar with N application promoted root growth at tillering, reduced root biomass but maintained root length with low root diameter and high specific root length during the jointing and booting stages, and then delayed root senescence in the grain filling stage. Long‐term applications of biochar and N fertilizer reduced 10%–12% bulk density of topsoil compared to the control treatment with no N fertilizer and no biochar. Long‐term biochar application also improved soil total organic carbon and concentrations of available N, phosphorus, and potassium. In addition, biochar and N fertilizer applied together significantly reduced nitrate and ammonium concentration in leachate at different soil depths. In conclusion, biochar could regulate root growth, root morphology, soil properties, and N leaching to increase rice N fertilizer‐use efficiency.  相似文献   

4.
Ali  Izhar  Zhao  Quan  Wu  Ke  Ullah  Saif  Iqbal  Anas  Liang  He  Zhang  Jing  Muhammad  Ihsan  Amanullah  Khan  Abdullah  Khan  Asad Ali  Jiang  Ligeng 《Journal of Plant Growth Regulation》2022,41(6):2406-2420

The over use of synthetic nitrogen (N) fertilizers is the major anthropogenic cause of low N-use efficiency and environmental damage in wetland rice production. Biochar (B) addition to soil is suggested as a climate change mitigation tool that supports carbon sequestration and reduces N losses and greenhouse gas emissions from the soil. Therefore, this study assessed the effect of four levels of B (0, 10, 20 and 30 t ha?1) combined with two levels of N (135 and 180 kg ha?1) on soil health, roots dynamics, physiological attributes, and yield components of rice. The addition of B at 30 t ha?1 combined with 135 N kg ha?1 increased chlorophyll content, net photosynthetic rate, biomass, and grain yield by 104%, 64%, 12%, and 30%, respectively, over control. Further, root traits such as total root length (TRL), total root volume (TRV), total root surface area (TRSA), and total average root diameter (TARD) were improved under 30 t ha?1 combined with 135 N kg ha?1 by 20%, 13%, 13%, and 25%, respectively, than non-biochar treatment under lower N application. Improvements in these traits resulted from higher N uptake due to improved soil physiochemical properties and soil microbial biomass combined with biochar. Interestingly, enhanced N metabolizing enzyme activities, including nitrate reductase (NR), glutamine synthetase (GS), and glutamine oxoglutarate aminotransferase (GOGAT) in biochar-treated plots, further supported the increases in these traits. Our results revealed that the integration of 30 t B ha?1 with 135 kg N ha?1 is a favorable option for enhancing soil health and rice grain yield.

  相似文献   

5.

Background and aims

Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention.

Methods

Biochar derived from maize stover was applied to a maize cropping system in central New York State at rates of 0, 1, 3, 12, and 30 t?ha-1 in 2007. Secondary N fertilizer was added at 100, 90, 70, and 50 % of the recommended rate (108 kg N ha-1). Nitrogen fertilizer enriched with 15?N was applied in 2009 to the 0 and 12 t?ha-1 of biochar at 100 and 50 % secondary N application.

Results

Maize yield and plant N uptake did not change with biochar additions (p?>?0.05; n?=?3). Less N (by 82 %; p?<?0.05) was lost after biochar application through leaching only at 100 %?N fertilization. The reason for an observed 140 % greater retention of applied 15?N in the topsoil may have been the incorporation of added 15?N into microbial biomass which increased approximately three-fold which warrants further research. The low leaching of applied fertilizer 15?N (0.42 % of applied N; p?<?0.05) and comparatively high recovery of applied 15?N in the soil (39 %) after biochar additions after one cropping season may also indicate greater overall N retention through lower gaseous or erosion N losses with biochar.

Conclusions

Addition of biochar to fertile soil in a temperate climate did not improve crop growth or N use efficiency, but increased retention of fertilizer N in the topsoil.  相似文献   

6.
Soil moisture and nitrogen (N) are two of the most important factors affecting the production of medicinal plants. So, the management strategy of these factors is critical and to be identified. In order to study the application of zeolite (Z) (0 and 10 ton ha?1) in S. officinalis culture medium under different irrigation regimes (30 % depletion of available soil water (ASW)) and 60 % depletion of ASW) and N (0, 75 and 150 kg N ha?1) a split-factorial experiment was carried out with three replicates in 2018. The highest fresh and dry weight were achieved at irrigation after 30 % depletion of ASW while using 150 kg N ha?1 and 10 ton Z ha?1. Maximum water use efficiency (WUE) (22.10 g.L-1) was obtained after 60 % depletion of ASW and 150 kg N ha?1 and 10 ton Z ha?1. Besides, the maximum nitrogen use efficiency (NUE) was obtained after 60 % depletion of ASW and 75 kg N ha?1 and 10 ton Z ha?1 (14.25 kg.kg-1N). Maximum essential oil (EO) content (1.06%) and cis-Thujone were obtained from plants subjected to 60 % depletion of ASW and, application of 75 kg N ha?1 and 10 ton Z ha?1. Applying Z with N, in different irrigation regimes did improve soil conditions for achieving higher, WUE and NUE, increased the EO content and yield while decreasing the negative effects from water-deficit stress and has provided a direction towards a stable system.  相似文献   

7.
Biochar soil amendment (BSA) had been advocated as a promising approach to mitigate greenhouse gas (GHG) emissions in agriculture. However, the net GHG mitigation potential of BSA remained unquantified with regard to the manufacturing process and field application. Carbon footprint (CF) was employed to assess the mitigating potential of BSA by estimating all the direct and indirect GHG emissions in the full life cycles of crop production including production and field application of biochar. Data were obtained from 7 sites (4 sites for paddy rice production and 3 sites for maize production) under a single BSA at 20 t/ha?1 across mainland China. Considering soil organic carbon (SOC) sequestration and GHG emission reduction from syngas recycling, BSA reduced the CFs by 20.37–41.29 t carbon dioxide equivalent ha?1 (CO2‐eq ha?1) and 28.58–39.49 t CO2‐eq ha?1 for paddy rice and maize production, respectively, compared to no biochar application. Without considering SOC sequestration and syngas recycling, the net CF change by BSA was in a range of ?25.06 to 9.82 t CO2‐eq ha?1 and ?20.07 to 5.95 t CO2‐eq ha?1 for paddy rice and maize production, respectively, over no biochar application. As the largest contributors among the others, syngas recycling in the process of biochar manufacture contributed by 47% to total CF reductions under BSA for rice cultivation while SOC sequestration contributed by 57% for maize cultivation. There was a large variability of the CF reductions across the studied sites whether in paddy rice or maize production, due likely to the difference in GHG emission reductions and SOC increments under BSA across the sites. This study emphasized that SOC sequestration should be taken into account the CF calculation of BSA. Improved biochar manufacturing technique could achieve a remarkable carbon sink by recycling the biogas for traditional fossil‐fuel replacement.  相似文献   

8.
Effah  Zechariah  Li  Lingling  Xie  Junhong  Liu  Chang  Xu  Aixia  Karikari  Benjamin  Anwar  Sumera  Zeng  Min 《Journal of Plant Growth Regulation》2023,42(2):1120-1133

It is critical for spring wheat (Triticum aestivum L.) production in the semi-arid Loess Plateau to understand the impact of nitrogen (N) fertilizer on changes in N metabolism, photosynthetic parameters, and their relationship with grain yield and quality. The photosynthetic capacity of flag leaves, dry matter accumulation, and N metabolite enzyme activities from anthesis to maturity were studied on a long-term fertilization trial under different N rates [0 kg ha?1(N1), 52.5 kg ha?1 (N2), 105 kg ha?1 (N3), 157.5 kg ha?1 (N4), and 210 kg ha?1 (N5)]. It was observed that N3 produced optimum total dry matter (5407 kg ha?1), 1000 grain weight (39.7 g), grain yield (2.64 t ha?1), and protein content (13.97%). Our results showed that N fertilization significantly increased photosynthetic parameters and N metabolite enzymes at all growth stages. Nitrogen harvest index, partial productivity factor, agronomic recovery efficiency, and nitrogen agronomic efficiency were decreased with increased N. Higher N rates (N3–N5) maintained higher photosynthetic capacity and dry matter accumulation and lower intercellular CO2 content. The N supply influenced NUE by improving photosynthetic properties. The N3 produced highest chlorophyll content, photosynthetic rate, stomatal conductance and transpiration rate, grain yield, grain protein, dry matter, grains weight, and N metabolite enzyme activities compared to the other rates (N1, N2, N4, and N5). Therefore, increasing N rates beyond the optimum quantity only promotes vegetative development and results in lower yields.

  相似文献   

9.
In the highlands of Western Kenya, we investigated the reversibility of soil productivity decline with increasing length of continuous maize cultivation over 100 years (corresponding to decreasing soil organic carbon (SOC) and nutrient contents) using organic matter additions of differing quality and stability as a function of soil texture and inorganic nitrogen (N) additions. The ability of additions of labile organic matter (green and animal manure) to improve productivity primarily by enhanced nutrient availability was contrasted with the ability of stable organic matter (biochar and sawdust) to improve productivity by enhancing SOC. Maize productivity declined by 66% during the first 35 years of continuous cropping after forest clearing. Productivity remained at a low level of 3.0 t grain ha-1 across the chronosequence stretching up to 105 years of continuous cultivation despite full N–phosphorus (P)–potassium (K) fertilization (120–100–100 kg ha−1). Application of organic resources reversed the productivity decline by increasing yields by 57–167%, whereby responses to nutrient-rich green manure were 110% greater than those from nutrient-poor sawdust. Productivity at the most degraded sites (80–105 years since forest clearing) increased in response to green manure to a greater extent than the yields at the least degraded sites (5 years since forest clearing), both with full N–P–K fertilization. Biochar additions at the most degraded sites doubled maize yield (equaling responses to green manure additions in some instances) that were not fully explained by nutrient availability, suggesting improvement of factors other than plant nutrition. There was no detectable influence of texture (soils with either 11–14 or 45–49% clay) when low quality organic matter was applied (sawdust, biochar), whereas productivity was 8, 15, and 39% greater (P < 0.05) on sandier than heavier textured soils with high quality organic matter (green and animal manure) or only inorganic nutrient additions, respectively. Across the entire degradation range, organic matter additions decreased the need for additional inorganic fertilizer N irrespective of the quality of the organic matter. For low quality organic resources (biochar and sawdust), crop yields were increasingly responsive to inorganic N fertilization with increasing soil degradation. On the other hand, fertilizer N additions did not improve soil productivity when high quality organic inputs were applied. Even with the tested full N–P–K fertilization, adding organic matter to soil was required for restoring soil productivity and most effective in the most degraded sites through both nutrient delivery (with green manure) and improvement of SOC (with biochar).  相似文献   

10.
Avoidable or inappropriate nitrogen (N) fertilizer rates harmfully affect the yield production and ecological value. Therefore, the aims of this study were to optimize the rate and timings of N fertilizer to maximize yield components and photosynthetic parameter of soybean. This field experiment consists of five fertilizer N rates: 0, 75, 150, 225 and 300 kg N ha−1 arranged in main plots and four N fertilization timings: V5 (trifoliate leaf), R2 (full flowering stage) and R4 (full poding stage), and R6 (full seeding stage) growth stages organized as subplots. Results revealed that 225 kg N ha−1 significantly enhanced grain yield components, total chlorophyll (Chl), photosynthetic rate (PN), and total dry biomass and N accumulation by 20%, 16%, 28%, 7% and 12% at R4 stage of soybean. However, stomatal conductance (gs), leaf area index (LAI), intercellular CO2 concentration (Ci) and transpiration rate (E) were increased by 12%, 88%, 10%, 18% at R6 stage under 225 kg N ha−1. Grain yield was significantly associated with photosynthetic characteristics of soybean. In conclusion, the amount of nitrogen 225 kg ha−1 at R4 and R6 stages effectively promoted the yield components and photosynthetic characteristics of soybean.  相似文献   

11.
The impact of agricultural management on global warming potential (GWP) and greenhouse gas intensity (GHGI) is not well documented. A long‐term fertilizer experiment in Chinese double rice‐cropping systems initiated in 1990 was used in this study to gain an insight into a complete greenhouse gas accounting of GWP and GHGI. The six fertilizer treatments included inorganic fertilizer [nitrogen and phosphorus fertilizer (NP), nitrogen and potassium fertilizer (NK), and balanced inorganic fertilizer (NPK)], combined inorganic/organic fertilizers at full and reduced rate (FOM and ROM), and no fertilizer application as a control. Methane (CH4) and nitrous oxide (N2O) fluxes were measured using static chamber method from November 2006 through October 2009, and the net ecosystem carbon balance was estimated by the changes in topsoil (0–20 cm) organic carbon (SOC) density over the 10‐year period 1999–2009. Long‐term fertilizer application significantly increased grain yields, except for no difference between the NK and control plots. Annual topsoil SOC sequestration rate was estimated to be 0.96 t C ha?1 yr?1 for the control and 1.01–1.43 t C ha?1 yr?1 for the fertilizer plots. Long‐term inorganic fertilizer application tended to increase CH4 emissions during the flooded rice season and significantly increased N2O emissions from drained soils during the nonrice season. Annual mean CH4 emissions ranged from 621 kg CH4 ha?1 for the control to 1175 kg CH4 ha?1 for the FOM plots, 63–83% of which derived from the late‐rice season. Annual N2O emission averaged 1.15–4.11 kg N2O–N ha?1 in the double rice‐cropping systems. Compared with the control, inorganic fertilizer application slightly increased the net annual GWPs, while they were remarkably increased by combined inorganic/organic fertilizer application. The GHGI was lowest for the NP and NPK plots and highest for the FOM and ROM plots. The results of this study suggest that agricultural economic viability and GHGs mitigation can be simultaneously achieved by balanced fertilizer application.  相似文献   

12.

Aims

A field experiment was conducted to investigate the effect of biochar on maize yield and greenhouse gases (GHGs) in a calcareous loamy soil poor in organic carbon from Henan, central great plain, China.

Methods

Biochar was applied at rates of 0, 20 and 40?t?ha?1 with or without N fertilization. With N fertilization, urea was applied at 300?kg?N ha?1, of which 60% was applied as basal fertilizer and 40% as supplementary fertilizer during crop growth. Soil emissions of CO2, CH4 and N2O were monitored using closed chambers at 7?days intervals throughout the whole maize growing season (WMGS).

Results

Biochar amendments significantly increased maize production but decreased GHGs. Maize yield was increased by 15.8% and 7.3% without N fertilization, and by 8.8% and 12.1% with N fertilization under biochar amendment at 20?t?ha?1 and 40?t?ha?1, respectively. Total N2O emission was decreased by 10.7% and by 41.8% under biochar amendment at 20?t?ha?1 and 40?t?ha?1 compared to no biochar amendment with N fertilization. The high rate of biochar (40?t?ha?1) increased the total CO2 emission by 12% without N fertilization. Overall, biochar amendments of 20?t?ha?1 and 40?t?ha?1 decreased the total global warming potential (GWP) of CH4 and N2O by 9.8% and by 41.5% without N fertilization, and by 23.8% and 47.6% with N fertilization, respectively. Biochar amendments also decreased soil bulk density and increased soil total N contents but had no effect on soil mineral N.

Conclusions

These results suggest that application of biochar to calcareous and infertile dry croplands poor in soil organic carbon will enhance crop productivity and reduce GHGs emissions.  相似文献   

13.
Biochar application to croplands has been proposed as a potential strategy to decrease losses of soil‐reactive nitrogen (N) to the air and water. However, the extent and spatial variability of biochar function at the global level are still unclear. Using Random Forest regression modelling of machine learning based on data compiled from the literature, we mapped the impacts of different biochar types (derived from wood, straw, or manure), and their interactions with biochar application rates, soil properties, and environmental factors, on soil N losses (NH3 volatilization, N2O emissions, and N leaching) and crop productivity. The results show that a suitable distribution of biochar across global croplands (i.e., one application of <40 t ha?1 wood biochar for poorly buffered soils, such as those characterized by soil pH<5, organic carbon<1%, or clay>30%; and one application of <80 t ha?1 wood biochar, <40 t ha?1 straw biochar, or <10 t ha?1 manure biochar for other soils) could achieve an increase in global crop yields by 222–766 Tg yr?1 (4%–16% increase), a mitigation of cropland N2O emissions by 0.19–0.88 Tg N yr?1 (6%–30% decrease), a decline of cropland N leaching by 3.9–9.2 Tg N yr?1 (12%–29% decrease), but also a fluctuation of cropland NH3 volatilization by ?1.9–4.7 Tg N yr?1 (?12%–31% change). The decreased sum of the three major reactive N losses amount to 1.7–9.4 Tg N yr?1, which corresponds to 3%–14% of the global cropland total N loss. Biochar generally has a larger potential for decreasing soil N losses but with less benefits to crop production in temperate regions than in tropical regions.  相似文献   

14.
Improving nitrogen (N) use efficiency (NUE) in crop plants is important to reduce the negative impact of excessive N on the environment. Although biochar-blended fertilizer had been increasingly tested in crop production, the fate of fertilized N in soil and plant had not been elucidated in field conditions. In this study, a novel biochar-blended urea (BU) was prepared by pelleting maize straw biochar, bentonite, sepiolite, carboxymethylcellulose sodium, and chitosan with urea (commercial urea without biochar [CU]). N fertilization in a winter wheat field was treated with BU and CU at both 265 kg N ha?1 (HL) and 186 kg N ha?1 (LN). Within a treatment plot, a microplot was fertilized with 15N-labeled urea at a relevant N level. We investigated the influence of fertilizer management on biomass, grain yield, bioaccumulation of nutrient, soil properties, 15N isotopic abundance, and greenhouse gas emissions. Microscopic and spectroscopic analysis showed that micro/nanonetwork of biochar could bind N to form a loss control agglomerated particle, and organo-mineral coatings on BU may protect N from quick release. Compared with CU, BU significantly increased grain yield by 13% and 38%, and grain N allocation by 19% and 55%, respectively, at HN and LN level. The total recovery of urea 15N in wheat plant (15N based NUE) was 32.8% under CU regardless of N rates but increased to 41.7% (HN rate) and 56.3% (LN rate) under BU. Whereas, the soil proportion (soil residual 15N) was 20.1% and 13.4% under CU but 32.5% and 18.8% under BU, in 0-20cm topsoil, respectively, at HN and LN rate. Compared with the CU, BU had no effect on CO2 and CH4 emissions but significantly reduced the total N2O emission by 23%–28%. These important findings suggested that BU can be beneficial to uplift plant NUE to reduce reactive N loading but boost crop production.  相似文献   

15.

The increasing world population has forced excessive chemical fertilizer and irrigation to complete the global food demand, deteriorating the water quality and nutrient losses. Short-term studies do not compile the evidences; therefore, the study aimed to identify the effectiveness of reduced doses of inorganic fertilizer and water-saving practices, hence, a six-year experiment (2015–2020) was conducted in China to address the knowledge gap. The experimental treatments were: farmer accustomed fertilization used as control (525:180:30 kg NPK ha−1), fertilizer decrement (450:150:15 kg NPK ha−1), fertilizer decrement + water-saving irrigation (450:150:15 kg NPK ha−1), application of organic and inorganic fertilizer + water-saving irrigation (375:120:0 kg NPK ha−1 + 4.5 tones organic fertilizer ha−1), and application of controlled-release fertilizer (80:120:15 kg NPK ha−1). Each treatment was replicated thrice following a randomized complete block design. The results achieved herein showed that control has the highest losses in the six-year study for total nitrogen (225.97 mg L−1), total soluble nitrogen (121.58 mg L−1), nitrate nitrogen (0.93 mg L−1), total phosphorus (0.57 mg L−1), and total soluble phosphorus (0.57 mg L−1) respectively. Reduced fertilizer and water application improved crop nutrient uptake, nitrogen concentration was significantly enhanced with organic and inorganic fertilizer + water-saving irrigation, P concentration was increased with fertilizer decrement + water-saving irrigation, and K concentration was improved with fertilizer decrement + water-saving irrigation. Hence, this study concludes that reduced inorganic fertilizer dose combined with water-saving practices is significantly helpful in reducing nutrient leaching losses and improving nutrient uptake and water pollution. Further studies are needed to explore the impacts of reduced fertilization and water-saving irrigation on leaching losses. The benefits at different climatic conditions, soil types, and fertilizer types with application methods are also a research gap.

  相似文献   

16.
Agricultural production of biogas maize (Zea mays L.) causes hazards to aquatic ecosystems through high levels of nitrogen (N) inputs. Newly introduced and already established perennial crops such as the cup plant (Silphium perfoliatum L.) and perennial grass mixtures offer the possibility of more environmentally friendly agricultural bioenergy production. The objectives of this field study were to quantify and compare soil mineral N, water infiltration, water runoff, soil erosion and N leaching under maize, permanent cup plant, and a perennial grass mixture. The study was conducted from October 2016 to March 2019 in Braunschweig, Germany. Plots with cup plant and grass mixture exhibited lower mineral N contents than maize, especially between 30 and 90 cm soil depth. Soil water infiltration was significantly different between the three crops. The grass mixture had the highest infiltration rates (6.2 mm/min averaged across 3 years), followed by cup plant (3.6 mm/min) and maize (0.9 mm/min). During wet periods, higher N leaching was found for maize (up to 42 kg N ha?1 year?1) than for cup plant (up to 5 kg N ha?1 year?1) or the grass mixture (up to 11 kg N ha?1 year?1). While runoff and erosion for cup plant and the grass mixture were negligible during the study period, considerable amounts of runoff water and eroded sediment of up to 1.5 Mg ha?1 year?1 were collected from the maize plots despite the near flat terrain of the experimental field. Overall, permanent cup plant proved suitable as a component for energy cropping systems to reduce the risk of N leaching and soil erosion, which is particularly important for the preventive flood protection in view of the more frequent occurrence of high intensity rainfall under climate change conditions.  相似文献   

17.
Biochar application to agricultural soils is rapidly emerging as a new management strategy for its potential role in carbon sequestration, soil quality improvements, and plant growth promotion. The aim of our study was to investigate the effects of biochars derived from white clover residues and poultry manure on soil quality characteristics, growth and N accumulation in maize (Zea mays L.) and wheat (Triticum aestivum L.) grown in a loam soil under greenhouse conditions. Treatments comprised of: untreated control; mineral N fertilizer (urea N, UN) at the rate of 200, and 100 mg N kg-1, white clover residues biochar (WCRB), poultry manure biochar (PMB) at 30 Mg ha–1, and the possible combinations of WCRB+PMB (50:50), UN+WCRB (50:50), UN+PMB (50:50), and UN+WCRB+PMB (50:25:25). The treatments were arranged in a completely randomized design with three replications. Results indicated a significant increase in the growth and biomass production of maize and wheat supplemented with biochars alone or mixed with N fertilizer. Biochars treatments showed varying impact on plant growth depended upon the type of the biochar, and in general plant growth under PMB was significantly higher than that recorded under WCRB. The growth characteristics in the combined treatments (half biochar+half N) were either higher or equivalent to that recorded under full fertilizer N treatment (N200). The biochar treatments WCRB, PMB, and WCRB+PMB (50:50) increased maize shoot N by 18, 26 and 21%, respectively compared to the control while wheat shoot N did not show positive response. The N-uptake by maize treated with WCRB, PMB, and WCRB+PMB (50:50) was 54, 116, and 90 mg g-1 compared to the 33 mg g-1 in the control while the N-uptake by wheat was 41, 60, and 53 mg g-1 compared to 24 mg g-1 in the control. The mixed treatments (half biochar+half N) increased N-uptake by 2.3folds in maize and 1.7 to 2.5folds in wheat compared to the N100 showing increasing effect of biochar on N use efficiency of applied N. Post-harvest soil analysis indicated a significant increase in pH, organic matter, organic C, total N, C:N, and porosity (% pore space) by the added biochars while bulk density (BD) was significantly decreased. The organic matter content in the soil amended with biochars ranged between 19.5 and 23.2 g kg-1 compared to 11.7 and 10.2 g kg-1 in the control and N fertilizer treatments while the BD of biochars amended soils (WCRB, PMB, and WCRB+PMB) was 1.07, 1.17, and 1.11 g cm-3 compared to 1.28 g cm-1 in the control. In summary, the results of present study highlight the agronomic benefits of biochars in improving the quality of the soil, and promoting growth, yield and N accumulation of both maize and wheat with a consequent benefit to agriculture.  相似文献   

18.
Restoration of soil organic carbon (SOC) in arable lands represents potential sink for atmospheric CO2. The strategies for restoration of SOC include the appropriate land use management, cropping sequence, fertilizer and organic manures application. To achieve this goal, the dynamics of SOC and nitrogen (N) in soils needs to be better understood for which the long-term experiments are an important tool. A study was thus conducted to determine SOC and nitrogen dynamics in a long-term experiment in relation to inorganic, integrated and organic fertilizer application in rice-cowpea system on a sandy loam soil (Typic Rhodualf). The fertilizer treatments during rice included (i) 100% N (@ 100 kg N ha?1), (ii) 100% NP (100 kg N and 50 kg P2O5 ha?1), (iii) 100% NPK (100 kg N, 50 kg P2O5 and 50 kg K2O ha?1) as inorganic fertilizers, (iv) 50% NPK + 50% farm yard manure (FYM) (@ 5 t ha?1) and (v) FYM alone @ 10 t ha?1 compared with (vi) control treatment i.e. without any fertilization. The N alone or N and P did not have any significant effect on soil carbon and nitrogen. The light fraction carbon was 53% higher in NPK + FYM plots and 56% higher in FYM plots than in control plots, in comparison to 30% increase with inorganic fertilizers alone. The microbial biomass carbon and water-soluble carbon were relatively higher both in FYM or NPK + FYM plots. The clay fraction had highest concentration of C and N followed by silt, fine sand and coarse sand fractions in both surface (0–15 cm) and subsurface soil layers (15–30 cm). The C:N ratio was lowest in the clay fraction and increased with increase in particle size. The C and N enrichment ratio was highest for the clay fraction followed by silt and both the sand fractions. Relative decrease in enrichment ratio of clay in treatments receiving NPK and or FYM indicates comparatively greater accumulation of C and N in soil fractions other than clay.  相似文献   

19.
Pakistan ranks third among the chickpea growing countries of the world. Chickpea need less water that is why it is preferred by the farmers of the arid and semi- arid zone. The chickpea crop is severely infested by many weeds which reduce its yield and also deteriorate the quality of the grains. The un-availability of high competitive cultivars also had impact on the annual yield production of chickpea crop. The focus of the study was to evaluate sound, feasible and economic weed management strategies to uplift the yield of chickpea crop. The Southern districts of Khyber Pakhtunkhwa are the major producer of chickpea crop. Therefore keeping in view the importance of the crop and as well as the problems associated with the crops, the experiments were conducted at Ahmad Wala Research Station Karak during years 201112 and 2012–13 with Randomized Complete Block design with split split arrangement having four replications. Sowing was done on October 16th during both the studied years. To evaluate the potential of irrigation verses rainfed conditions five cultivars i.e. Karak-1, Karak-2, Sheenghar, Lawaghar and KC-98 and ten weed management techniques i.e. Stomp 330 EC (Pendimethalin), Stomp 330 EC + Hand Weeding (HW) at 60 DAS, Dual Gold 960 EC (S-Metolachlor), Dual Gold 960 EC + HW at 60 DAS, HW one time at (30 DAS), HW two times at (30 and 60 DAS), HW three times at (30, 60 and 90 DAS), White plastic mulch, Black plastic mulch and weedy check were tested. The data was recorded on the below mentioned parameters i.e. weed density m?2 at 60 DAS, number of productive branches plant?1, number of pods plant?1, number of grain pods?1, number of nodules plant?1, grain yield (kg ha?1) and Cost-benefit ratio (CBR). Results of the two years study revealed that with the exception of number of grains pods?1, and cost benefit ratio, all the vegetative and yield parameters were significantly different during both the studied years. Comparing the effect of irrigation regimes versus rainfed conditions significantly (p < .05) difference was recorded in all parameters while the maximum values were in irrigated plots as compared to rainfed conditions. Significant (p < .05) difference was recorded in weeds density at 60 DAS (64.13 m?2) found in irrigated plots as compared to rainfed conditions. The year wise comparison of the varieties was significant (p < .05) in number of pods plant?1, grain yield (kg ha?1). The varieties were also found with significant difference. After 60 days the minimum weed density (60.68 m?2) was found in Karak-2 and the maximum weed density at 60 DAS (62.42 m?2) was recorded in Sheenghar. Among the varieties the maximum values were found number of productive branches plant?1 (15.89), number of pods plant?1 (45.52), was found in Karak-1.The maximum number of grains pod?1 (l.93) was found in Karak-2. The maximum number of nodules plant?1 (28.54) in Sheenghar and grain yield (1484.1 kg ha?1) and cost benefit ratio (3.32) was recorded in Lawaghar. The year wise comparison of weed management parameters was also significant in different parameters. However among the treatments after 60 DAS the minimum weed density (51.15 m?2) was recorded in black and white plastic and the maximum weed density (99.54 m?2) was recorded in the weedy check. Among the applied treatments for weed management the maximum number of productive branches plant?1 (16.83), number of pods plant?1 (52.46), number of grains pod?1 (2.16) and grain yield (1659.75 kg ha?1) was recorded in HW three times treatments while on the other hand maximum number of nodules plant?1 (29.96) was recorded in both black and white plastic mulches. The maximum cost benefit ratio (3.39) was recorded in Stomp 330 EC. The minimum number of nodules plant?1 (25.35) was found in Dual Gold EC 960 treated plots. The minimum number of productive branches plant?1 (13.32), number of pods plant?1 (31.47), number of grains pod?1 (l.68) and grain yield (1148.4 kg ha?1) was found in weedy check. The minimum cost benefit ratio (2.54) was found in black plastic mulches treated plots. From the above findings it is concluded that chickpea variety Lawaghar grown in the arid zone need subsequent irrigation. HW, black and white plastic mulches were found efficient for weed management but costly. However, the herbicide Stomp 330 EC was found efficient in weed control and gained maximum CBR in the experimental trial at Southern districts of Khyber Pakhtunkhwa province of Pakistan.  相似文献   

20.
Soil salinity is the main constraint for crop productivity in many parts of the world. Application of silicon (Si) and chitosan (Chi) can improve crop growth under saline soil conditions. The current study was aimed to examine the effects of Si and Chi on mitigation of salinity, morphological and physiological attributes as well as the antioxidant system of maize (Zea mays L.) under saline soil conditions. A field experiment was conducted that comprised of nine treatments as follows: (i) Control (no amendment), (ii) Silicon 40 kg ha−1 (Si1), (iii) Chitosan 15 kg ha−1 (Chi1), (iv) Si1 + Chi1, (v) Silicon 80 kg ha−1 (Si2), (vi) Chitosan 30 kg ha−1 (Chi2), (vii) Si2 + Chi2, (viii) Si1 + Chi2 and (ix) Si2 + Chi1. Application of Si and Chi substantially improved the morphological and physiological attributes as well as antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) of maize plants, and combined application of Si and Chi was more effective when compared with Si and Chi treatments separately. Membrane stability index was improved by 25%, relative water content by 26%, chlorophyll a by 69% and b by 56% with combined application of Si and chitosan (Si2 + Chi2) compared with control. The SOD, POD and CAT increased by 36%, 38% and 65% with Si2 + Chi2 compared with control. The results suggest that Si and Chi application is the possible option for alleviating salinity stress in maize plant. Further research is suggested to examine Si and Chi effects on various crop''s growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号