首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

This study aimed to identify major proteins in the pathogenesis of coronary artery in-stent restenosis (ISR) in diabetic minipigs with sirolimus-eluting stenting, and to investigate the roles of key candidate molecules, particularly ADAM10, in human arterial smooth muscle cells (HASMCs).

Methods and Results

The stents were implanted in the coronary arteries of 15 diabetic and 26 non-diabetic minipigs, and angiography was repeated at six months. The intima of one vascular segment with significant ISR and one with non-ISR in diabetic minipigs were isolated and cultured in conditioned medium (CM). The CM was analyzed by LC-MS/MS to uncover proteins whose levels were significantly increased (≥1.5-fold) in ISR than in non-ISR tissues. After literature searching, we focused on the identified proteins, whose biological functions were most potentially related to ISR pathophysiology. Among them, ADAM10 was significantly increased in diabetic and non-diabetic ISR tissues as compared with non-ISR controls. In cell experiments, retrovirus-mediated overexpression of ADAM10 promoted growth and migration of HASMCs. The effects of ADAM10 were more remarkable in high-glucose culture than in low-glucose culture. Using shRNA and an inhibitor of γ-secretase (GSI), we found that the influences of ADAM10 were in part mediated by Notch1 and notch 3 pathway, which up-regulated Notch downstream genes and enhanced nuclear translocation of the small intracellular component of Notch1 and Notch3.

Conclusions

This study has identified significantly increased expression of ADAM10 in the ISR versus non-ISR segment in diabetic minipigs and implicates ADAM10 in the enhanced neointimal formation observed in diabetes after vascular injury.  相似文献   

2.

Objective

To evaluate the effect of hemodynamic remodeling on the survival status of the arterialized venous flaps (AVFs) and investigate the mechanism of this procedure.

Materials and Methods

Two 7 x 9 cm skin flaps in each rabbit (n=36) were designed symmetrically in the abdomen. The thoracoepigastric pedicle and one femoral artery were used as vascular sources. Four groups were included: Composite skin grafts group and arterial perfusion group were designed in one rabbit; AVF group and hemodynamic remodeling group by ligation of the thoracoepigastric vein in the middle were outlined in another rabbit. Flap viability, status of vascular perfusion and microvasculature, levels of epidermal metabolite and water content in each group were assessed.

Results

Highly congested veins and simple trunk veins were found using angiography in the AVF group; while a fairly uniform staining and plenty of small vessels were observed in the hemodynamic remodeling group. The metabolite levels of the remodeling group are comparable with those in the arterial perfusion group. There was no statistically significant difference in the percentage of flap survival between the arterial perfusion group and hemodynamic remodeling group; however, significant difference was seen between the AVF group and the hemodynamic remodeling group.

Conclusions

Under the integrated perfusion mode, the AVFs are in an over-perfusion and non-physiological hemodynamic state, resulting in unreliability and unpredictability in flap survival; under the separated perfusion mode produced by remodeling, a physiological-like circulation will be created and therefore, better flap survival can be expected.  相似文献   

3.

Background

An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF)-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1), a TGF-beta activating protein.

Methods

Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA) and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays.

Results

Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells.

Conclusion

We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion.  相似文献   

4.

Background

Osteogenic induction and bone formation are heavily affected by environmental factors, including estrogen, estrogen receptors, and coregulatory proteins, such as the recently reported proline-, glutamic acid-, and leucine-rich protein 1(Pelp1).

Objective

To investigate Pelp1 expression in rat bone mesenchymal stem cells (rBMSCs) during cell proliferation and osteogenic differentiation.

Methods

rBMSCs were cultured in routine and osteogenic differentiation media. Cell proliferation was assessed at days 1, 3, 5, 7, 9, 11, 14, and 21. Pelp1 protein expression in the nucleus and cytoplasm were detected by immunocytochemical analysis. Real-time RT-PCR and western blot were used to detect mRNA and protein expressions of Pelp1, osteocalcin (OCN), and alkaline phosphatase (ALP).

Results

Over 21 days, rBMSCs in routine culture exhibited a 1-2 day lag phase and exponential growth from day 3 to 9, plateauing at day 9, and correlated with temporal mRNA expression of Pelp1, which almost reached baseline levels at day 21. In osteogenic induction cultures, Pelp1 mRNA levels rose at day 9 and steadily increased until day 21, reaching 6.8-fold greater value compared with day 1. Interestingly, Pelp1 mRNA expression in osteogenic cultures exhibited a trend similar to that of OCN expression. Pelp1 knockdown by siRNA transfection inhibited undifferentiated rBMSC proliferation, and bone markers OCN and ALP expressions in rBMSCs cultured in routine and osteogenic differentiation media.

Conclusions

Pelp1 may be a key player in BMSCs proliferation and osteogenic differentiation, meriting further consideration as a target for development of therapies for pathological bone loss conditions, such as menopausal bone loss.  相似文献   

5.

Background And Objective

The investigation concerning the B7-H1 expression in colorectal cancer cells is at an early stage. It is unclear whether B7-H1 expression may have diagnostic or prognostic value in colorectal carcinoma. Additionally, how B7-H1 is associated with the clinical features of colorectal carcinoma is not known. In order to investigate the relationship between B7-H1 and colorectal cancer, we analyzed B7-H1 expression and its effect in clinical specimens and HCT116 cells.

Methods

Paraffin-embedded specimens from 143 eligible patients were used to investigate the expression of CD274 by immunohistochemistry. We also examined whether B7-H1 itself may be related to cell proliferation, apoptosis, migration and invasion in colon cancer HCT116 cells.

Results

Our results show that B7-H1 was highly expressed in colorectal carcinoma and was significantly associated with cell differentiation status and TNM (Tumor Node Metastasis) stage. Patients with positive B7-H1 expression showed a trend of shorter survival time. Using multivariate analysis, we demonstrate that positive B7-H1 expression is an independent predictor of colorectal carcinoma prognosis. Our results indicate that B7-H1 silencing with siRNA inhibits cell proliferation, migration and invasion. Furthermore, cell apoptosis was also increased by B7-H1 inhibition.

Conclusions

Positive B7-H1 expression is an independent predictor for colorectal carcinoma prognosis. Moreover, knockdown of B7-H1 can inhibit cell proliferation, migration and invasion.  相似文献   

6.

Objectives

Recent findings suggest that in response to repair-to-injury bone marrow mesenchymal stem cells (BMSCs) participate in the process of angiogenesis. It is unclear what role BMSCs play in the structure of the vessel wall. In present study, we aimed to determine whether BMSCs had the capacity of endothelial cells (ECs).

Methods

BMSCs were separated and cultured. FACS and RT-PCR analysis confirmed the gene expression phenotype. The capacity of migration and adhesion and the ultrastructure of BMSCs were examined. The effect of BMSCs transplantation on the vascular repair was investigated in a murine carotid artery-injured model.

Results

BMSCs could express some markers and form the tube-like structure. The migration and adhesion capacity of BMSCs increased significantly after stimulated. In addition, BMSCs had the intact cell junction. In vivo the local transfer of BMSCs differentiated into neo-endothelial cells in the injury model for carotid artery and contributed to the vascular remodeling.

Conclusion

These results showed that BMSCs could contribute to neointimal formation for vascular lesion and might be associated with the differentiation into ECs, which indicated the important therapeutic implications for vascular diseases.  相似文献   

7.
8.

Aim

The role of Sirtuin 1 (SIRT 1) in carcinogenesis is controversial. This study was to explore the association between the SIRT1 expression and the clinical characteristics, the responsiveness to chemotherapy and prognosis in Non-small cell lung cancer (NSCLC).

Methods

We enrolled 295 patients with inoperable advanced stage of NSCLC, namely, stage III (A+B) and IV NSCLC. All patients had received platinum-based chemotherapy after diagnosis and the chemotherapy response were evaluated. All patients were followed up for overall survival (OS) and progression free survival (PFS). In vitro, H292 cells were tranfected with SIRT1 small interfering RNA (siRNA). The cell biological behaviors and chemosensitivity to cisplatin treatment were studied. The in vivo tumorgenesis and metastasis assays were performed in nude mice.

Results

We found that the SIRT1 expressions were significantly associated with the tumor stage, tumor size and differentiation status. Patients with high SIRT 1 expressions had a significantly higher chance to be resistant to chemotherapy than those with low SIRT 1 expression. Patients with high expression of SIRT1 had significantly shorter OS and DFS than those with low expression. Cox analyses confirmed that the SIRT 1 expression was a strong predictor for a poor OS and PFS in NSCLC patients underwent Platinum-based chemotherapy. In vitro studies revealed that the reduced expression SIRT 1 by siRNA technique significantly inhibited cell proliferation, migration and invasion. More importantly, SIRT1 si-RNA significantly enhanced the chemosensitivity of H292 cells to cisplatin treatment. The in vivo tumorgenesis and metastasis assays showed that SIRT1 knockdown dramatically reduced the tumor volume and the metastatic ability in nude mice.

Conclusion

Collectively, our data suggest that the SIRT1 expression may be a molecular marker associated with the NSLCLC clinical features, treatment responsiveness and prognosis of advanced NSCLC.  相似文献   

9.

Background

Pulmonary arterial hypertension is usually fatal due to right ventricular failure and is frequently associated with co-existing left ventricular dysfunction. Endothelin-1 is a powerful pro-fibrotic mediator and vasoconstrictor that is elevated in pulmonary arterial hypertension. Endothelin receptor blockers are commonly used as pulmonary vasodilators, however their effect on biventricular injury, remodeling and function, despite elevated isolated right ventricular afterload is unknown.

Methods

Elevated right ventricular afterload was induced by progressive pulmonary artery banding. Seven rabbits underwent pulmonary artery banding without macitentan; 13 received pulmonary artery banding + macitentan; and 5 did not undergo inflation of the pulmonary artery band (sham-operated controls). Results: Right and left ventricular collagen content was increased with pulmonary artery banding compared to sham-operated controls and ameliorated by macitentan. Right ventricular fibrosis signaling (connective tissue growth factor and endothelin-1 protein levels); extra-cellular matrix remodeling (matrix-metalloproteinases 2 and 9), apoptosis and apoptosis-related peptides (caspases 3 and 8) were increased with pulmonary artery banding compared with sham-operated controls and decreased with macitentan.

Conclusion

Isolated right ventricular afterload causes biventricular fibrosis, right ventricular apoptosis and extra cellular matrix remodeling, mediated by up-regulation of endothelin-1 and connective tissue growth factor signaling. These pathological changes are ameliorated by dual endothelin receptor blockade despite persistent elevated right ventricular afterload.  相似文献   

10.

Background

Notch signaling plays a critical role in the maintenance of intestinal crypt epithelial cell proliferation. The aim of this study was to investigate the role of Notch signaling in the proliferation and regeneration of intestinal epithelium after intestinal ischemia reperfusion (I/R) injury.

Methods

Male Sprague-Dawley rats were subjected to sham operation or I/R by occlusion of the superior mesenteric artery (SMA) for 20 min. Intestinal tissue samples were collected at 0, 1, 2, 4, and 6 h after reperfusion. Proliferation of the intestinal epithelium was evaluated by immunohistochemical staining of proliferating nuclear antigen (PCNA). The mRNA and protein expression levels of Notch signaling components were examined using Real-time PCR and Western blot analyses. Immunofluorescence was also performed to detect the expression and location of Jagged-2, cleaved Notch-1, and Hes-1 in the intestine. Finally, the γ-secretase inhibitor DAPT and the siRNA for Jagged-2 and Hes-1 were applied to investigate the functional role of Notch signaling in the proliferation of intestinal epithelial cells in an in vitro IEC-6 culture system.

Results

I/R injury caused increased intestinal crypt epithelial cell proliferation and increased mRNA and protein expression of Jagged-2, Notch-1, and Hes-1. The immunofluorescence results further confirmed increased protein expression of Jagged-2, cleaved Notch-1, and Hes-1 in the intestinal crypts. The inhibition of Notch signaling with DAPT and the suppression of Jagged-2 and Hes-1 expression using siRNA both significantly inhibited the proliferation of IEC-6 cells.

Conclusion

The Jagged-2/Notch-1/Hes-1 signaling pathway is involved in intestinal epithelium regeneration early after I/R injury by increasing crypt epithelial cell proliferation.  相似文献   

11.

Background

Airway wall remodelling is an important pathology of asthma. Growth factor induced airway smooth muscle cell (ASMC) proliferation is thought to be the major cause of airway wall thickening in asthma. Earlier we reported that Dimethylfumarate (DMF) inhibits platelet-derived growth factor (PDGF)-BB induced mitogen and stress activated kinase (MSK)-1 and CREB activity as well as IL-6 secretion by ASMC. In addition, DMF altered intracellular glutathione levels and thereby reduced proliferation of other cell types.

Methods

We investigated the effect of DMF on PDGF-BB induced ASMC proliferation, on mitogen activated protein kinase (MAPK) activation; and on heme oxygenase (HO)-1 expression. ASMC were pre-incubated for 1 hour with DMF and/or glutathione ethylester (GSH-OEt), SB203580, hemin, cobalt-protoporphyrin (CoPP), or siRNA specific to HO-1 before stimulation with PDGF-BB (10 ng/ml).

Results

PDGF-BB induced ASMC proliferation was inhibited in a dose-dependant manner by DMF. PDGF-BB induced the phosphorylation of ERK1/2 and p38 MAPK, but not of JNK. DMF enhanced the PDGF-BB induced phosphorylation of p38 MAPK and there by up-regulated the expression of HO-1. HO-1 induction inhibited the proliferative effect of PDGF-BB. HO-1 expression was reversed by GSH-OEt, or p38 MAPK inhibition, or HO-1 siRNA, which all reversed the anti-proliferative effect of DMF.

Conclusion

Our data indicate that DMF inhibits ASMC proliferation by reducing the intracellular GSH level with subsequent activation of p38 MAPK and induction of HO-1. Thus, DMF might reduce ASMC and airway remodelling processes in asthma.  相似文献   

12.
13.

Introduction

Continuous-flow left ventricular assist devices (LVADs) are an established therapy for patients with end-stage heart failure. The short- and long-term impact of these devices on peripheral blood gene expression has not been characterized, and may provide insight into the molecular pathways mediated in response to left ventricular remodeling and an improvement in overall systemic circulation. We performed RNA sequencing to identify genes and pathways influenced by these devices.

Methods

RNA was extracted from blood of 9 heart failure patients (8 male) prior to LVAD implantation, and at 7 and 180 days postoperatively. Libraries were sequenced on an Illumina HiSeq2000 and sequences mapped to the human Ensembl GRCh37.67 genome assembly.

Results

A specific set of genes involved in regulating cellular immune response, antigen presentation, and T cell activation and survival were down-regulated 7 days after LVAD placement. 6 months following LVAD placement, the expression levels of these genes were significantly increased; yet importantly, remained significantly lower than age and sex-matched samples from healthy controls.

Conclusions

In summary, this genomic analysis identified a significant decrease in the expression of genes that promote a healthy immune response in patients with heart failure that was partially restored 6 months following LVAD implant.  相似文献   

14.

Background

Hypoxia-inducible factor 1α is the central regulator of the hypoxia-induced response which results in the up-regulation of angiogenic factors. Its activity is under precise regulation of prolyl-hydroxylase domain 2. We hypothesized that PHD2 silenced fibroblasts would increase the expression of angiogenic factors, which might contribute to the improvement of the diabetic wound healing.

Materials and Methods

50 dB/db mice were employed and randomly assigned into five groups with 10 mice in each: group 1 (untreated cell), group 2 (PHD2 silenced cell), group 3 (L-mimosine treated cells), group 4 (nontargeting siRNA treated cells) and group 5 (sham control). Fibroblasts were cultivated from the dermis of mice in each group and treated with PHD2 targeting siRNA, L-mimosine and non-targeting siRNA respectively. A fraction of the fibroblasts were employed to verify the silencing rate of PHD2 after 48 hours. The autologous fibroblasts (treated and untreated) labeled with adenovirus-GFP were implanted around the wound (Φ6mm), which was created on the dorsum of each mouse. The status of wounds was recorded periodically. Ten days postoperatively, 3 mice from each group were sacrificed and wound tissues were harvested. Molecular biological examinations were performed to evaluate the expressions of cytokines. 28 days postoperatively, the remaining mice were sacrificed. Histological examinations were performed to evaluate the densities of GFP+ cells and capillaries.

Results

The expression of PHD2 reduced to 12.5%, and the expressions of HIF-1α and VEGFa increased significantly after PHD2 siRNA treatment. With the increasing expressions of HIF-1α and VEGFa, the time to wound closure in group 2 was less than 2 weeks. Increased numbers of GFP+ cells and capillaries were observed in group 2.

Conclusion

PHD2 siRNA treatment not only increased the expression of HIF1α and VEGFa, but also improved the fibroblast proliferation. These effects might contribute to the improvement of the diabetic wound healing.  相似文献   

15.

Background/Aim

Neointimal formation after vessel injury is a complex process involving multiple cellular and molecular processes. Inhibition of intimal hyperplasia plays an important role in preventing proliferative vascular diseases, such as restenosis. In this study, we intended to identify whether sodium ferulate could inhibit neointimal formation and further explore potential mechanisms involved.

Methods

Cultured vascular smooth muscle cells (VSMCs) isolated from rat thoracic aorta were pre-treated with 200 µmol/L sodium ferulate for 1 hour and then stimulated with 1 µmol/L angiotensin II (Ang II) for 1 hour or 10% serum for 48 hours. Male Sprague-Dawley rats subjected to balloon catheter insertion were administrated with 200 mg/kg sodium ferulate (or saline) for 7 days before sacrificed.

Results

In presence of sodium ferulate, VSMCs exhibited decreased proliferation and migration, suppressed intracellular reactive oxidative species production and NADPH oxidase activity, increased SOD activation and down-regulated p38 phosphorylation compared to Ang II-stimulated alone. Meanwhile, VSMCs treated with sodium ferulate showed significantly increased protein expression of smooth muscle α-actin and smooth muscle myosin heavy chain protein. The components of Notch pathway, including nuclear Notch-1 protein, Jagged-1, Hey-1 and Hey-2 mRNA, as well as total β-catenin protein and Cyclin D1 mRNA of Wnt signaling, were all significantly decreased by sodium ferulate in cells under serum stimulation. The levels of serum 8-iso-PGF2α and arterial collagen formation in vessel wall were decreased, while the expression of contractile markers was increased in sodium ferulate treated rats. A decline of neointimal area, as well as lower ratio of intimal to medial area was observed in sodium ferulate group.

Conclusion

Sodium ferulate attenuated neointimal hyperplasia through suppressing oxidative stress and phenotypic switching of VSMCs.  相似文献   

16.

Background

Recent advances toward an effective therapy for prion diseases employ RNA interference to suppress PrPC expression and subsequent prion neuropathology, exploiting the phenomenon that disease severity and progression correlate with host PrPC expression levels. However, delivery of lentivirus encoding PrP shRNA has demonstrated only modest efficacy in vivo.

Methodology/Principal Findings

Here we describe a new siRNA delivery system incorporating a small peptide that binds siRNA and acetylcholine receptors (AchRs), acting as a molecular messenger for delivery to neurons, and cationic liposomes that protect siRNA-peptide complexes from serum degradation.

Conclusions/Significance

Liposome-siRNA-peptide complexes (LSPCs) delivered PrP siRNA specifically to AchR-expressing cells, suppressed PrPC expression and eliminated PrPRES formation in vitro. LSPCs injected intravenously into mice resisted serum degradation and delivered PrP siRNA throughout the brain to AchR and PrPC-expressing neurons. These data promote LSPCs as effective vehicles for delivery of PrP and other siRNAs specifically to neurons to treat prion and other neuropathological diseases.  相似文献   

17.

Background

Extracellular matrix (ECM) remodeling facilitates biomechanical signals in response to abnormal physiological conditions. This process is witnessed as one of the major effects of the stress imposed by catecholamines, such as epinephrine and norepinephrine (NE), on cardiac muscle cells. Matrix metalloproteinases (MMPs) are the key proteases involved in degradation of the ECM in heart.

Objectives

The present study focuses on studying the effect of curcumin on Gelatinase B (MMP-9), an ECM remodeling regulatory enzyme, in NE-induced cardiac stress. Curcumin, a bioactive polyphenol found in the spice turmeric, has been studied for its multi-fold beneficial properties. This study focuses on investigating the role of curcumin as a cardio-protectant.

Methods

H9c2 cardiomyocytes were subjected to NE and curcumin treatments to study the response in stress conditions. Effect on total collagen content was studied using Picrosirus red staining. Gelatinase B activity was assessed through Gel-Diffusion Assay and Zymographic techniques. RT-PCR, Western Blotting and Immunocytochemistry were performed to study effect on expression of gelatinase B. Further, the effect of curcumin on the localization of NF-κB, known to regulate gelatinase B, was also examined.

Results

Curcumin suppressed the increase in the total collagen content under hypertrophic stress and was found to inhibit the in-gel and in-situ gelatinolytic activity of gelatinase B. Moreover, it was found to suppress the mRNA and protein expression of gelatinase B.

Conclusions

The study provides an evidence for an overall inhibitory effect of curcumin on Gelatinase B in NE-induced hypertrophic stress in H9c2 cardiomyocytes which may contribute in the prevention of ECM remodeling.  相似文献   

18.

Background

Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM) cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4), is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities.

Methods

A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs) were cultured in vitro and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B.

Results

Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3) decreased and, myosin regulatory light chain 9 isoform a (MYL-9) increased after Nogo-B knockdown.

Conclusions

These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert its effects through ARPC 2/3 and MYL-9, is necessary for the migration and contraction of airway smooth muscle cells.  相似文献   

19.

Background

Airway remodeling is a repair process that occurs after injury resulting in increased airway hyper-responsiveness in asthma. Thymic stromal lymphopoietin (TSLP), a vital cytokine, plays a critical role in orchestrating, perpetuating and amplifying the inflammatory response in asthma. TSLP is also a critical factor in airway remodeling in asthma.

Objectives

To examine the role of TSLP-induced cellular senescence in airway remodeling of asthma in vitro and in vivo.

Methods

Cellular senescence and airway remodeling were examined in lung specimens from patients with asthma using immunohischemical analysis. Both small molecule and shRNA approaches that target the senescent signaling pathways were used to explore the role of cellular senescence in TSLP-induced airway remodeling in vitro. Senescence-Associated β-galactosidase (SA-β-Gal) staining, and BrdU assays were used to detect cellular senescence. In addition, the Stat3-targeted inhibitor, WP1066, was evaluated in an asthma mouse model to determine if inhibiting cellular senescence influences airway remodeling in asthma.

Results

Activation of cellular senescence as evidenced by checkpoint activation and cell cycle arrest was detected in airway epithelia samples from patients with asthma. Furthermore, TSLP-induced cellular senescence was required for airway remodeling in vitro. In addition, a mouse asthma model indicates that inhibiting cellular senescence blocks airway remodeling and relieves airway resistance.

Conclusion

TSLP stimulation can induce cellular senescence during airway remodeling in asthma. Inhibiting the signaling pathways of cellular senescence overcomes TSLP-induced airway remodeling.  相似文献   

20.
To study expression and function of methylthioadenosine phosphorylase (MTAP), the rate-limiting enzyme in the methionine and adenine salvage pathway, in chronic liver disease.

Design

MTAP expression was analyzed by qRT-PCR, Western blot and immunohistochemical analysis. Levels of MTA were determined by liquid chromatography-tandem mass spectrometry.

Results

MTAP was downregulated in hepatocytes in murine fibrosis models and in patients with chronic liver disease, leading to a concomitant increase in MTA levels. In contrast, activated hepatic stellate cells (HSCs) showed strong MTAP expression in cirrhotic livers. However, also MTA levels in activated HSCs were significantly higher than in hepatocytes, and there was a significant correlation between MTA levels and collagen expression in diseased human liver tissue indicating that activated HSCs significantly contribute to elevated MTA in diseased livers. MTAP suppression by siRNA resulted in increased MTA levels, NFκB activation and apoptosis resistance, while overexpression of MTAP caused the opposite effects in HSCs. The anti-apoptotic effect of low MTAP expression and high MTA levels, respectively, was mediated by induced expression of survivin, while inhibition of survivin abolished the anti-apoptotic effect of MTA on HSCs. Treatment with a DNA demethylating agent induced MTAP and reduced survivin expression, while oxidative stress reduced MTAP levels but enhanced survivin expression in HSCs.

Conclusion

MTAP mediated regulation of MTA links polyamine metabolism with NFκB activation and apoptosis in HSCs. MTAP and MTAP modulating mechanisms appear as promising prognostic markers and therapeutic targets for hepatic fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号