首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Efficient bioluminescence resonance energy transfer (BRET) from a bioluminescent protein to a fluorescent protein with high fluorescent quantum yield has been utilized to enhance luminescence intensity, allowing single-cell imaging in near real time without external light illumination.

Methodology/Principal Findings

We applied BRET to develop an autoluminescent Ca2+ indicator, BRAC, which is composed of Ca2+-binding protein, calmodulin, and its target peptide, M13, sandwiched between a yellow fluorescent protein variant, Venus, and an enhanced Renilla luciferase, RLuc8. Adjusting the relative dipole orientation of the luminescent protein''s chromophores improved the dynamic range of BRET signal change in BRAC up to 60%, which is the largest dynamic range among BRET-based indicators reported so far. Using BRAC, we demonstrated successful visualization of Ca2+ dynamics at the single-cell level with temporal resolution at 1 Hz. Moreover, BRAC signals were acquired by ratiometric imaging capable of canceling out Ca2+-independent signal drifts due to change in cell shape, focus shift, etc.

Conclusions/Significance

The brightness and large dynamic range of BRAC should facilitate high-sensitive Ca2+ imaging not only in single live cells but also in small living subjects.  相似文献   

3.
4.
The long-term use of indwelling catheters results in a high risk from urinary tract infections (UTI) and blockage. Blockages often occur from crystalline deposits, formed as the pH rises due to the action of urease-producing bacteria; the most commonly found species being Proteus mirabilis. These crystalline biofilms have been found to develop on all catheter materials with P. mirabilis attaching to all surfaces and forming encrustations. Previous studies have mainly relied on electron microscopy to describe this process but there remains a lack of understanding into the stages of biofilm formation. Using an advanced light microscopy technique, episcopic differential interference contrast (EDIC) microscopy combined with epifluorescence (EF), we describe a non-destructive, non-contact, real-time imaging method used to track all stages of biofilm development from initial single cell attachment to complex crystalline biofilm formation. Using a simple six-well plate system, attachment of P. mirabilis (in artificial urine) to sections of silicone and hydrogel latex catheters was tracked over time (up to 24 days). Using EDIC and EF we show how initial attachment occurred in less than 1 h following exposure to P. mirabilis. This was rapidly followed by an accumulation of an additional material (indicated to be carbohydrate based using lectin staining) and the presence of highly elongated, motile cells. After 24 h exposure, a layer developed above this conditioning film and within 4 days the entire surface (of both catheter materials) was covered with diffuse crystalline deposits with defined crystals embedded. Using three-dimensional image reconstruction software, cells of P. mirabilis were seen covering the crystal surfaces. EDIC microscopy could resolve these four components of the complex crystalline biofilm and the close relationship between P. mirabilis and the crystals. This real-time imaging technique permits study of this complex biofilm development with no risk of artefacts due to sample manipulation. A full understanding of the stages and components involved in crystalline encrustation formation will aid in the development of new protocols to manage and ultimately prevent catheter blockage.  相似文献   

5.
A novel, genetically encoded, ratiometric pH probe (RaVC) was constructed to image and measure intracellular pH in living hyphae of Aspergillus niger. RaVC is a chimeric protein based on the pH-sensitive probe pHluorin, which was partially codon optimized for expression in Aspergillus. Intracellular pH imaging and measurement was performed by simultaneous, dual-excitation confocal ratio imaging. The mean cytoplasmic pH measured was 7.4 to 7.7 based on calibrating RaVC in situ within nigericin-treated hyphae. Pronounced, longitudinal cytoplasmic pH gradients were not observed in the apical 20 μm of actively growing hyphae at the periphery of 18-h-old colonies. The cytoplasmic pH remained unchanged after prolonged growth in buffered medium with pH values between 2.5 or 9.5. Sudden changes in external pH significantly changed cytoplasmic pH by <1.3 pH units, but it returned to its original value within 20 min following treatment. The weak acid and antifungal food preservative sorbic acid caused prolonged, concentration-dependent intracellular acidification. The inhibition of ATPases with N-ethylmaleimide, dicychlohexylcarbodimide, or sodium azide caused the cytoplasmic pH to decrease by <1 pH unit. Treatment with the protonophore carbonyl cyanide m-chlorophenylhydrazone or cyanide p-(trifluoromethoxy) phenylhydrazone reduced the cytoplasmic pH by <1 pH unit. In older hyphae from 32-h-old cultures, RaVC became sequestered within large vacuoles, which were shown to have pH values between 6.2 and 6.5. Overall, our study demonstrates that RaVC is an excellent probe for visualizing and quantifying intracellular pH in living fungal hyphae.Cytoplasmic pH is a physiological parameter that is tightly regulated by a complex interaction of H+ transport, H+-consuming and -producing reactions, and H+ buffering (10, 38). Maintaining pH within a physiological range is very important for protein stability, enzyme and ion channel activity, and many other processes that are required for cell growth, development, and survival (38). It has been proposed that intracellular pH serves as a mechanism by which cells coordinate the regulation of various processes that lack any other common regulating factors and may provide a link between the metabolic state and physiological responses (10).The most reliable measurements of cytoplasmic pH in filamentous fungi in single living hyphae have indicated a pH of ∼7.6. These measurements have been obtained using the ratiometric imaging of a dextran-conjugated, pH-sensitive dye injected into the cytoplasm to avoid sequestration into organelles (34). Changes in external pH were found to cause only small transient changes in the cytoplasmic pH, indicating that hyphae have a tightly regulated intracellular pH homeostatic mechanism. Rigorous quantitative analyses of cytoplasmic pH in growing hyphae and tip-growing plant cells have found no evidence for the existence of pronounced, tip-focused cytoplasmic pH gradients or for such gradients being required for the regulation of tip growth (4, 13, 34). These results contradicted previous reports of cytoplasmic pH gradients in hyphae (2, 25, 40, 41). Changes in cytoplasmic pH have been implicated in regulating protein synthesis, enzyme activities, and fermentation productivity in filamentous fungi (24) and cell cycle progression in fission yeast (26).The recent sequencing and analysis of the genome of the filamentous fungus Aspergillus niger has revealed a complex machinery for H+ transport that will play important roles in pH homeostasis and signaling (35). Key components of this machinery are five plasma membrane P-type H+-ATPases; one vacuolar V-type H+-ATPase; one mitochondrial membrane F0F1-ATP synthase; five K+, Na+/H+ antiporters; and six Ca+/H+ antiporters (5).Previous methods of measuring intracellular pH in filamentous fungi commonly have been fraught with problems. Loading hyphae with dextran-conjugated pH dyes or using pH-sensitive microelectrodes requires cells to be physically impaled with micropipettes or microelectrodes (42) and is technically demanding to perform without harming the cells under study (12, 33). Intracellular pH measurements with free pH-sensitive dyes often suffer from problems associated with dye loading and dye sequestration within organelles (21, 33). There are also reports on the use of radiolabeled membrane-permeable acids (3) and 31P nuclear magnetic resonance (NMR) for intracellular pH measurement (18, 19, 20) in fungi. However, both of these methods require extensive sample manipulation and do not allow the imaging of intracellular pH in single living cells. Ideal probes for imaging and measuring intracellular pH in single living cells should possess several key properties. These include having a high selectivity for H+ over other ions present; allowing the accurate quantification of intracellular pH; providing high temporal and spatial resolution; not interfering with normal physiological activities or cellular responses; exhibiting low cell toxicity; having a high signal-to-noise ratio; and having the possibility of being targeted to specific organelles.A novel approach for noninvasive intracellular pH measurements has been the development of a recombinant pH-sensitive probe based on mutated green fluorescent protein (GFP) (6, 17, 29, 43). Miesenbock et al. (29) introduced a ratiometric pH probe of this type, which they named pHluorin. Problems normally encountered with single-wavelength dyes are reduced by using ratiometric probes. These problems include distinguishing between differences in intracellular pH and variations in dye brightness due to a variable intracellular dye concentration, dye photobleaching, or dye leakage from cells (33). Thus, pHluorin is very suitable as a noninvasive probe in living cells for imaging and measuring intracellular pH (26, 29, 43), but its use with filamentous fungi has not been reported previously.The aims of this study were to (i) develop an improved version of the pHluorin probe (which we call RaVC) for intracellular pH imaging in filamentous fungi; (ii) obtain measurements of cytoplasmic pH in hyphae of A. niger expressing RaVC by using confocal ratio imaging; (iii) confirm or disprove that a pronounced, tip-focused, cytoplasmic pH gradient is absent in growing hyphae of A. niger; and (iv) assess the effects of changing the external pH, and of treating hyphae with known pH modulators, on intracellular pH homeostasis in A. niger.  相似文献   

6.
At least 10 million individuals worldwide are co-infected with immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV). These two viruses are transmitted most primarily by exposure to infected blood or blood products. Various nucleic acid assays have been developed for diagnostics and therapeutic monitoring of infections. In the present study, a multiplex real-time PCR assay for simultaneous detection of HCV and HIV-1 using molecular beacons were designed and validated. A well-conserved region in the HIV-1 pol gene and 5′NCR of HCV genome were used for primers and molecular beacon design. The analysis of scalar concentrations of the samples indicated that this multiplex procedure detects at least 1,000 copies/ml of HIV-1 and 100 copies/ml of HCV with linear reference curve (R 2 > 0.94). The results demonstrate that a specificity of 100 % and sensitivity of 96 % can be achieved. The analytical sensitivity study with BLAST software demonstrated that the primers do not attach to any other sequences except for that of HIV-1 or HCV. The primers and molecular beacon probes only detected HIV-1 and all major variants of HCV. This assay may represent an alternative rapid and relatively inexpensive screening method for detection of HIV-1/HCV co-infection especially in blood screening.  相似文献   

7.
8.
New approaches for imaging dynamic processes involving RNAs in living cells are continuously being developed and optimized. The use of molecular beacons synthesized from 2'-O-methylribonucleotides (which are resistant to cellular nucleases) is an established approach for visualizing native mRNAs in real time. In order to spatially and temporally resolve dynamic steps involving RNA in cells, molecular beacons need to efficiently hybridize to their RNA targets. To expand the repertoire of target sites accessible to molecular beacons, we decreased the length of their probe sequences and altered their backbone by the inclusion of LNA (locked nucleic acid) nucleotides. We named these new LNA/2'-O-methyl RNA chimera oligonucleotides "tiny molecular beacons". We analyzed these tiny molecular beacons and found that the incorporation of just a few LNA nucleotides enables these shorter probes to stably anneal to more structured regions of the RNA than is possible with conventional molecular beacons. The ease of synthesis of tiny molecular beacons and the flexibility to couple them to a large variety of fluorophores and quenchers render them optimal for the detection of less abundant and/or highly structured RNAs. To determine their efficiency to detect endogenous mRNAs in live specimens, we designed tiny molecular beacons that were specific for oskar mRNA and microinjected them into living Drosophila melanogaster oocytes. We then imaged the live oocytes via spinning disk confocal microscopy. The results demonstrate that tiny molecular beacons hybridize to target mRNA at faster rates than classically designed molecular beacons and are able to access previously inaccessible target regions.  相似文献   

9.
Networks of protein-protein interactions play key roles in numerous important biological processes in living subjects. An effective methodology to assess protein-protein interactions in living cells of interest is protein-fragment complement assay (PCA). Particularly the assays using fluorescent proteins are powerful techniques, but they do not directly track interactions because of its irreversibility or the time for chromophore formation. By contrast, PCAs using bioluminescent proteins can overcome these drawbacks. We herein describe an imaging method for real-time analysis of protein-protein interactions using multicolor luciferases with different spectral characteristics. The sensitivity and signal-to-background ratio were improved considerably by developing a carboxy-terminal fragment engineered from a click beetle luciferase. We demonstrate its utility in spatiotemporal characterization of Smad1–Smad4 and Smad2–Smad4 interactions in early developing stages of a single living Xenopus laevis embryo. We also describe the value of this method by application of specific protein-protein interactions in cell cultures and living mice. This technique supports quantitative analyses and imaging of versatile protein-protein interactions with a selective luminescence wavelength in opaque or strongly auto-fluorescent living subjects.  相似文献   

10.
Analysis of accumulation of repair and checkpoint proteins at repair sites in yeast nuclei has conventionally used chemical agents, ionizing radiation or induction of endonucleases to inflict localized damage. In addition to these methods, similar studies in mammalian cells have used laser irradiation, which has the advantage that damage is inflicted at a specific nuclear region and at a precise time, and this allows accurate kinetic analysis of protein accumulation at DNA damage sites. We show here that it is feasible to use short pulses of near-infrared laser irradiation to inflict DNA damage in subnuclear regions of yeast nuclei by multiphoton absorption. In conjunction with use of fluorescently-tagged proteins, this allows quantitative analysis of protein accumulation at damage sites within seconds of damage induction. PCNA accumulated at damage sites rapidly, such that maximum accumulation was seen approximately 50 s after damage, then levels declined linearly over 200–1000 s after irradiation. RPA accumulated with slower kinetics such that hardly any accumulation was detected within 60 s of irradiation, and levels subsequently increased linearly over the next 900 s, after which levels were approximately constant (up to ca. 2700 s) at the damage site. This approach complements existing methodologies to allow analysis of key damage sensors and chromatin modification changes occurring within seconds of damage inception.  相似文献   

11.
pH in the extracellular matrix of bacterial biofilms is of central importance for microbial metabolism. Biofilms possess a complex three-dimensional architecture characterized by chemically different microenvironments in close proximity. For decades, pH measurements in biofilms have been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit the monitoring of horizontal pH gradients in biofilms in real time. Quantitative fluorescence microscopy can overcome these problems, but none of the hitherto employed methods differentiated accurately between extracellular and intracellular microbial pH and visualized extracellular pH in all areas of the biofilms. Here, we developed a method to reliably monitor extracellular biofilm pH microscopically with the ratiometric pH-sensitive dye C-SNARF-4, choosing dental biofilms as an example. Fluorescent emissions of C-SNARF-4 can be used to calculate extracellular pH irrespective of the dye concentration. We showed that at pH values of <6, C-SNARF-4 stained 15 bacterial species frequently isolated from dental biofilm and visualized the entire bacterial biomass in in vivo-grown dental biofilms with unknown species composition. We then employed digital image analysis to remove the bacterial biomass from the microscopic images and adequately calculate extracellular pH values. As a proof of concept, we monitored the extracellular pH drop in in vivo-grown dental biofilms fermenting glucose. The combination of pH ratiometry with C-SNARF-4 and digital image analysis allows the accurate monitoring of extracellular pH in bacterial biofilms in three dimensions in real time and represents a significant improvement to previously employed methods of biofilm pH measurement.  相似文献   

12.
Fluorescence superresolution (SR) microscopy, or fluorescence nanoscopy, provides nanometer scale detail of cellular structures and allows for imaging of biological processes at the molecular level. Specific SR imaging methods, such as localization-based imaging, rely on stochastic transitions between on (fluorescent) and off (dark) states of fluorophores. Imaging multiple cellular structures using multi-color imaging is complicated and limited by the differing properties of various organic dyes including their fluorescent state duty cycle, photons per switching event, number of fluorescent cycles before irreversible photobleaching, and overall sensitivity to buffer conditions. In addition, multiple color imaging requires consideration of multiple optical paths or chromatic aberration that can lead to differential aberrations that are important at the nanometer scale. Here, we report a method for sequential labeling and imaging that allows for SR imaging of multiple targets using a single fluorophore with negligible cross-talk between images. Using brightfield image correlation to register and overlay multiple image acquisitions with ~10 nm overlay precision in the x-y imaging plane, we have exploited the optimal properties of AlexaFluor647 for dSTORM to image four distinct cellular proteins. We also visualize the changes in co-localization of the epidermal growth factor (EGF) receptor and clathrin upon EGF addition that are consistent with clathrin-mediated endocytosis. These results are the first to demonstrate sequential SR (s-SR) imaging using direct stochastic reconstruction microscopy (dSTORM), and this method for sequential imaging can be applied to any superresolution technique.  相似文献   

13.
A hybrid protein, tPA/GFP, consisting of rat tissue plasminogen activator (tPA) and green fluorescent protein (GFP) was expressed in PC12 cells and used to study the distribution, secretory behavior, and dynamics of secretory granules containing tPA in living cells with a neuronal phenotype. High-resolution images demonstrate that tPA/GFP has a growth cone-biased distribution in differentiated cells and that tPA/GFP is transported in granules of the regulated secretory pathway that colocalize with granules containing secretogranin II. Time-lapse images of secretion reveal that secretagogues induce substantial loss of cellular tPA/GFP fluorescence, most importantly from growth cones. Time-lapse images of the axonal transport of granules containing tPA/GFP reveal a surprising complexity to granule dynamics. Some granules undergo canonical fast axonal transport; others move somewhat more slowly, especially in highly fluorescent neurites. Most strikingly, granules traffic bidirectionally along neurites to an extent that depends on granule accumulation, and individual granules can reverse their direction of motion. The retrograde component of this bidirectional transport may help to maintain cellular homeostasis by transporting excess tPA/GFP back toward the cell body. The results presented here provide a novel view of the axonal transport of secretory granules. In addition, the results suggest that tPA is targeted for regulated secretion from growth cones of differentiated cells, strategically positioning tPA to degrade extracellular barriers or to activate other barrier-degrading proteases during axonal elongation.  相似文献   

14.
Numerous studies have utilized molecular beacons (MBs) to image RNA expression in living cells; however, there is growing evidence that the sensitivity of RNA detection is significantly hampered by their propensity to emit false-positive signals. To overcome these limitations, we have developed a new RNA imaging probe called ratiometric bimolecular beacon (RBMB), which combines functional elements of both conventional MBs and siRNA. Analogous to MBs, RBMBs elicit a fluorescent reporter signal upon hybridization to complementary RNA. In addition, an siRNA-like double-stranded domain is used to facilitate nuclear export. Accordingly, live-cell fluorescent imaging showed that RBMBs are localized predominantly in the cytoplasm, whereas MBs are sequestered into the nucleus. The retention of RBMBs within the cytoplasmic compartment led to >15-fold reduction in false-positive signals and a significantly higher signal-to-background compared with MBs. The RBMBs were also designed to possess an optically distinct reference fluorophore that remains unquenched regardless of probe confirmation. This reference dye not only provided a means to track RBMB localization, but also allowed single cell measurements of RBMB fluorescence to be corrected for variations in probe delivery. Combined, these attributes enabled RBMBs to exhibit an improved sensitivity for RNA detection in living cells.  相似文献   

15.
The epithelial-mesenchymal transition (EMT) plays important roles in tumor progression to metastasis. Thus, the development of an imaging probe that can monitor transient periods of the EMT process in live cells is required for a better understanding of metastatic process. Inspired by the fact that the mRNA expression levels of zinc finger E-box-binding homeobox 1 (ZEB1) increase when cells adopt mesenchyme characteristics and that microRNA-200a (miR-200a) can bind to ZEB1 mRNA, we conjugated molecular beacon (MB) mimicking mature miR-200a to magnetic nanoparticles (miR-200a-MB-MNPs) and devised an imaging method to observe transitional changes in the cells during EMT. Transforming growth factor-β1 treated epithelial cells and breast cancer cell lines representing both epithelial and mesenchymal phenotypes were used for the validation of miR-200a-MB-MNPs as an EMT imaging probe. The real-time imaging of live cells acquired with the induction of EMT revealed an increase in fluorescence signals by miR-200a-MB-MNPs, cell morphology alterations, and the loss of cell-cell adhesion. Our results suggest that miR-200a-MB-MNPs can be used as an imaging probe for the real-time monitoring of the EMT process in live cells.  相似文献   

16.
17.
The T-cell actin cytoskeleton mediates adaptive immune system responses to peptide antigens by physically directing the motion and clustering of T-cell receptors (TCRs) on the cell surface. When TCR movement is impeded by externally applied physical barriers, the actin network exhibits transient enrichment near the trapped receptors. The coordinated nature of the actin density fluctuations suggests that they are composed of filamentous actin, but it has not been possible to eliminate de novo polymerization at TCR-associated actin polymerizing factors as an alternative cause. Here, we use a dual-probe cytoskeleton labeling strategy to distinguish between stable and polymerizing pools of actin. Our results suggest that TCR-associated actin consists of a relatively high proportion of the stable cytoskeletal fraction and extends away from the cell membrane into the cell. This implies that actin enrichment at mechanically trapped TCRs results from three-dimensional bunching of the existing filamentous actin network.The T-cell actin cytoskeleton is critical for proper antigen recognition by the mammalian adaptive immune system. During T-cell receptor (TCR) triggering by antigen peptides presented on major histocompatibility proteins (pMHCs) on the surfaces of antigen-presenting cells (APCs), the T-cell actin cytoskeleton adopts a pattern of centrosymmetric retrograde flow (1–3). This simultaneously promotes further TCR triggering (4) and rearranges various T-cell membrane proteins and their APC counterparts into an organized cell-cell interface termed the immunological synapse (IS) (5–7). During this process, TCRs form microclusters that move to the center of the IS in an actin-dependent manner (8,9). When engineered physical barriers interrupt the centripetal motion of TCR clusters, actin flow slows near the pinned microclusters, and the cytoskeletal network transiently accumulates and dissipates at the sites (10,11). The amplitude and duration of the induced cytoskeletal fluctuations are much greater than would be expected for a random distribution of independent objects, indicating that the actin in the local environment is coordinated. Whether this coordination arises from a rearrangement in the existing F-actin network or represents de novo polymerization of the cytoskeleton, as predicted by the association of TCRs with actin polymerizing factors (12), remains unclear. Here, we use a dual-probe cytoskeleton labeling approach that has previously been applied to distinguish between stable and dynamic populations of actin by exploiting the different relative affinities of monomeric actin and actin-binding proteins toward each population (13). This strategy reveals that TCR-associated actin is composed primarily of the stable cytoskeletal fraction and that local enrichment results from three-dimensional bunching of the existing filamentous actin network.Primary T cells from mice transgenic for the AND TCR were triggered using synthetic APCs consisting of supported lipid bilayers functionalized with pMHC and the integrin ligand intercellular adhesion molecule 1. Nanopatterned metal grids on the bilayer substrate acted as diffusion barriers that prevented lateral transport of TCR-pMHC complexes (14,15). Transient enrichment of actin at TCR clusters trapped at these barriers was visualized using fluorescent fusions of actin itself (mKate2-β-actin) and the F-actin binding domain of utrophin (EGFP-UtrCH). Such a dual-probe strategy theoretically allows for discrimination between different pools of actin: dynamic populations characterized by high polymerization and/or short filament fragments tend to be relatively better labeled by direct actin fusions whereas stable populations composed of longer filaments can support higher labeling by fluorescent fusions of F-actin binding proteins. This visualization method has been validated in Xenopus oocytes, where it distinguishes actin populations during wound healing (13). It has not been explicitly applied to T cells; however, simultaneous labeling of the Jurkat cell cytoskeleton using EGFP-actin and Alexa 568-phalloidin reveals distinct populations of actin consistent with the results expected from Xenopus (13,16).Our results show that the T-cell periphery is relatively enriched in mKate2-β-actin (Fig. 1 C, box 1), while EGFP-UtrCH dominates toward the center of the IS (Fig. 1 C, box 2). We infer from this probe distribution that the cytoskeleton at the T-cell periphery is composed of short fragments and is a site of active polymerization, whereas at the center of the IS, actin filaments are longer and predominantly stable. This is consistent with previous models of the T-cell actin network (3,16). An effective way to highlight each of these cytoskeletal regions is to consider the relative ratios of the two probes at each location. In this case, a high UtrCH/actin ratio corresponds to stable actin, and a high actin/UtrCH ratio corresponds to dynamic actin (Fig. 1 D). When T cells are treated with cytochalasin D, an inhibitor of actin polymerization, the overall UtrCH/actin ratio of the cell decreases as would be expected from a general decrease in polymerized actin (see Movie S7 and Movie S8 in the Supporting Material). However, it should be noted that photobleaching can also shift the UtrCH/actin ratio over time. We limit quantitative analysis of the ratio to its spatial gradients at a single time point, but such analysis is possible in systems that permit rigorous calibration for probe expression and photobleaching.Open in a separate windowFigure 1Ratiometric imaging of the cytoskeleton in live T cells distinguishes between dynamic and stable actin populations. (A) mKate2-β-actin, (B) EGFP-UtrCH, and (C) merged images of a triggered T cell show different actin pools. The cutouts in panel C correspond to (1) a region high in dynamic actin featuring short, polymerizing filaments and/or actin monomers and (2) a region with a stable actin population featuring longer filaments to which UtrCH can bind. (D) The UtrCH/actin ratio image highlights pools of relatively high UtrCH (red) or actin (blue). (Scale bars: 5 μm.)Actin enrichment at trapped TCR clusters incorporates both mKate2-β-actin (Fig. 2, A and C) and EGFP-UtrCH (Fig. 2, B and C). The relative UtrCH/actin ratio at these sites (Fig. 2 D, box 2) is quite high relative to nearby background areas (Fig. 2 D, box 1), indicating that the actin is derived primarily from the stable actin population.Open in a separate windowFigure 2Receptor-induced cytoskeletal enrichment at sites of pinned TCRs corresponds to a primarily stable actin fraction. (A) mKate2-β-actin, (B) EGFP-UtrCH, and (C) merged images of a triggered T cell interacting with a nanopatterned supported lipid bilayer show actin enrichment corresponding to putative sites of pinned TCRs. (D) The UtrCH/actin ratio is high at sites displaying actin enrichment, indicating a primarily stable actin fraction in (1) these regions compared to (2) nearby background areas. (Scale bars: 5 μm.)The three-dimensional distribution of TCR-associated actin was analyzed in dual-labeled live T cells using a spinning disk confocal microscope. The recordings show actin extending away from the cell membrane in the vicinity of trapped TCRs, while the rest of the actin cytoskeleton remains relatively flat (Fig. 3 and see Fig. S1 in the Supporting Material). These protrusions of actin away from the membrane surface are predominantly composed of stable, filamentous actin, as indicated by their relatively high UtrCH/actin ratio (Fig. 3 B).Open in a separate windowFigure 3Three-dimensional ratiometric imaging shows that actin enrichment extends away from the cell membrane. Single planes from (A) merged mKate2-β-actin and EGFP-UtrCH and (B) UtrCH/actin ratio three-dimensional stacks show actin enrichment at the cell membrane. Cutouts represent Z projections passing through sites of (1) enrichment and (2) nearby background regions. The color distribution in panel B is analogous to that in Figs. 1D and and22D, and is omitted for clarity. (Scale bar: 5 μm in the x axis only. Scale box: 1 μm.)Our interpretation of these results is that the filamentous actin network is relatively dense at sites of pinned TCRs. This is the simplest explanation out of several possibilities, one of which is formin-mediated mKate2-β-actin-deficient actin nucleation (17). Filament bunching at pinned TCRs can arise from consistent biophysical properties without assuming heterogeneity between the biochemistry of these receptors and other actin-associated proteins such as those at the cell edge, where locally high probe ratios are absent.Although TCRs are intentionally trapped as part of this experimental strategy, it is likely APCs can naturally impede TCR ligand mobilities under certain circumstances, and this has been shown to impact T-cell signaling (18,19). Actin architecture near cell surface proteins has been extensively studied in focal adhesions of fibroblasts (20), but the lack of stress fibers in T cells makes it unlikely that the two structures are similar. Thus, receptor-induced cytoskeletal enrichment at TCR clusters adds to the catalog of actin behaviors in situ, which is conveniently probed by techniques such as ratiometric dual-probe imaging in live cells. These techniques can be coupled to various spatial analysis algorithms to further extend their utility.  相似文献   

18.
The T-cell actin cytoskeleton mediates adaptive immune system responses to peptide antigens by physically directing the motion and clustering of T-cell receptors (TCRs) on the cell surface. When TCR movement is impeded by externally applied physical barriers, the actin network exhibits transient enrichment near the trapped receptors. The coordinated nature of the actin density fluctuations suggests that they are composed of filamentous actin, but it has not been possible to eliminate de novo polymerization at TCR-associated actin polymerizing factors as an alternative cause. Here, we use a dual-probe cytoskeleton labeling strategy to distinguish between stable and polymerizing pools of actin. Our results suggest that TCR-associated actin consists of a relatively high proportion of the stable cytoskeletal fraction and extends away from the cell membrane into the cell. This implies that actin enrichment at mechanically trapped TCRs results from three-dimensional bunching of the existing filamentous actin network.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号