首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The power performance of the bio-electrochemical fuel cells (BEFCs) depends mainly on the energy harvesting ability of the anode material. The anode materials with low bandgap energy and high electrochemical stability are highly desirable in the BEFCs. To address this issue, a novel anode is designed using indium tin oxide (ITO) modified by chromium oxide quantum dots (CQDs). The CQDs were synthesized using facile and advanced pulsed laser ablation in liquid (PLAL) technique. The combination of ITO and CQDs improved the optical properties of the photoanode by exhibiting a broad range of absorption in the visible to UV region. A systematic study has been performed to optimize the amount of CQDs and green Algae (Alg) film grown using the drop casting method. Chlorophyll (a, b, and total) content of algal cultures (with different concentrations) were optimized to investigate the power generation performance of each cell. The BEFC cell (ITO/Alg10/Cr3//Carbon) with optimized amounts of Alg and CQDs demonstrated enhanced photocurrent generation of 120 mA cm−2 at a photo-generated potential of 24.6 V m−2. The same device exhibited a maximum power density of 7 W m−2 under continuous light illumination. The device also maintained 98% of its initial performance after 30 repeated cycles of light on–off measurements.  相似文献   

2.
Pentose and humic acids (HA) are the main components of hydrolysates, the liquid fraction produced during thermohydrolysis of lignocellulosic material. Electricity generation integrated with xylose (typical pentose) degradation as well as the effect of HA on electricity production in microbial fuel cells (MFCs) was examined. Without HA addition the maximum power density increased from 39.5 mW/m(2) to 83 mW/m(2) when initial xylose concentrations increased from 1.5 to 30 mM, while coulombic efficiency ranged from 13.5% to 52.4% for xylose concentrations of 15 and 0.5 mM, respectively. Compared to controls where HAs were not added, addition of commercial HA resulted in increase of power density and coulombic efficiency, which ranged from 7.5% to 67.4% and 24% to 92.6%, respectively. Digested manure wastewater (DMW) was tested as potential mediator for power generation due to its content of natural HA, and although it could produce higher coulombic efficiency namely 32.2% than the control of 18.3%, showed lower power density which was approx. 57 mW/m(2) in comparison to power density of the control which was 69 mW/m(2). Presence of commercial HA or DMW in the anode chamber resulted in faster xylose degradation and formation of more oxidized products (acetate and formate) as well as less reduced products (lactate and ethanol) compared to the controls. The reduced power generation in the presence of DMW was attributed to the presence of bacterial inhibitors such as phenolic compounds. Therefore, new feedstocks for MFCs, containing both mediators and substrates, such as lignocellulose hydrolysates should be considered for their applicability in MFCs.  相似文献   

3.
Sustainable electricity was generated from glucose in up-flow air-cathode microbial fuel cells (MFCs) with carbon cloth cathode and carbon granular anode. Plastic sieves rather than membrane were used to separate the anode and cathode. Based on 1g/l glucose as substrate, a maximum volumetric power density of 25+/-4 W/m(3) (89 A/m(3)) was obtained for the MFC with a sieve area of 30 cm(2) and 49+/-3 W/m(3) (215 A/m(3)) for the MFC with a sieve area of 60 cm(2). The increased power density with larger sieve area was mainly due to the decrease of internal resistance according to the electrochemistry impedance spectroscopy analysis. Increasing the sieve area from 30 cm(2) to 60 cm(2) resulted in a decrease of overall internal resistance from 41 ohm to 27.5 ohm and a decrease of ohmic resistance from 24.3 ohm to 14 ohm. While increasing operational recirculation ratio (RR) decreased internal resistance and increased power output at low substrate concentration, the effect of RR on cell performance was negligible at higher substrate concentration.  相似文献   

4.
Scaling up microbial fuel cells and other bioelectrochemical systems   总被引:6,自引:0,他引:6  
Scientific research has advanced on different microbial fuel cell (MFC) technologies in the laboratory at an amazing pace, with power densities having reached over 1 kW/m3 (reactor volume) and to 6.9 W/m2 (anode area) under optimal conditions. The main challenge is to bring these technologies out of the laboratory and engineer practical systems for bioenergy production at larger scales. Recent advances in new types of electrodes, a better understanding of the impact of membranes and separators on performance of these systems, and results from several new pilot-scale tests are all good indicators that commercialization of the technology could be possible within a few years. Some of the newest advances and future challenges are reviewed here with respect to practical applications of these MFCs for renewable energy production and other applications.  相似文献   

5.
In a two-electrode system, freshwater sediment was used as a fuel to examine the relationship between current generation and organic matter consumption with different types of electrode. Sediment microbial fuel cells using porous electrodes showed a superior performance in terms of generating current when compared with the use of non-porous electrodes. The maximum current densities with thicker and thin porous electrodes were 45.4 and 37.6 mA m−2, respectively, whereas the value with non-porous electrodes was 13.9 mA m−2. The amount of organic matter removed correlated with the current produced. The redox potential in the anode area under closed-circuit conditions was +246.3 ± 67.7 mV, while that under open-circuit conditions only reached −143.0 ± 7.18 mV. This suggests that an application of this system in organic-rich sediment could provide environmental benefits such as decreasing organic matter and prohibiting methane emission in conjunction with electricity production via an anaerobic oxidation process.  相似文献   

6.
Single-chamber microbial fuel cell (SMFC)-I consisted of 4 separator-electrode assemblies (SEAs) with two types of cation exchange membrane (CEM: Nafion and CMI 7000) and an anion exchange membrane (AEM: AMI 7001). SMFC-II consisted of 4 SEAs with Nafion and three types of nonwoven fabric. SMFC-I and -II were inoculated with anaerobic digested and activated sludge, respectively, and operated under fed-batch mode. In SMFC I, AEM-SEA showed a maximum power density (PDmax). Nafion-SEA showed a PDmax in SMFC II, which was similar to that of Nafion–SEA of SMFC I. Although different bacteria were developed in SMFC-I (Deltaproteobacteria and Firmicutes) and SMFC-II (Gammaproteobacteria, Betaproteobacteria and Bacteroidetes), the inoculum type little affects electricity generation. Variations of pH and oxygen in biofilm have influenced microbial community structure and electricity generation according to the electrode and separator material. Although the electricity generation of non-woven fabric-SEA was less than that of Nafion-SEA, the use of non-woven fabrics is expected to reduce the construction and operating costs of MFCs.  相似文献   

7.
8.
Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ~80 mW m?2 (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.  相似文献   

9.
Fermentative hydrogen production, as a process for clean energy recovery from organic wastewater, is limited by its low hydrogen yield due to incomplete conversion of substrates, with most of the fermentation products being volatile fatty acids (VFAs). Thus, further recovery of the energy from VFAs is expected. In this work, microbial fuel cell (MFC) was applied to recover energy in the form of electricity from mixed VFAs of acetate, propionate, and butyrate. Response surface methodology was adopted to investigate the relative contribution and possible interactions of the three components of VFAs. A stable electricity generation was demonstrated in MFCs after the enrichment of electrochemically active bacteria. Analysis showed that power density was more sensitive to the composition of mixed VFAs than coulombic efficiency. The electricity generation could mainly be attributed to the portion of acetate and propionate. However, the two components showed an antagonistic effect when propionate exceeded 19%, causing a decrease in coulombic efficiency. Butyrate was found to exert a negative impact on both power density and coulombic efficiency. Denaturing gradient gel electrophoresis profiles revealed the enrichment of electrochemically active bacteria from the inoculum sludge. Proteobacteria (Beta-, Delta-) and Bacteroidetes were predominant in all VFA-fed MFCs. Shifts in bacterial community structures were observed when different compositions of VFA mixtures were used as the electron donor. The overall electron recovery efficiency may be increased from 15.7% to 27.4% if fermentative hydrogen production and MFC processes are integrated.  相似文献   

10.
Microbial fuel cell (MFC) is an emerging technology for sustainable energy generation and waste treatment. This paper reviews the potential of a gaseous substrate when it is combined with a mediator in an MFC to generate electricity and to treat toxic gaseous pollutants. Most MFCs for waste water treatment often cannot use mediator to enhance the electron transfer from the microbe to the anode because of the difficulty in recovering the expensive and potentially toxic compound. Combining gas feeds with mediators is possible since the soluble mediator would remain in the anode chamber as the gas passes through the reactor. In addition, this type of MFC is possible to be integrated into an anaerobic biofiltration system (BF-MFC), where the biofilter removes the gaseous contaminant and produces the reduced mediator and the MFC produces the electricity and recycles the reoxidised mediator. This paper also talks about the past research on gaseous feed MFCs, and reviews the mechanism and strategies of electron transfer in MFC using redox mediator. The advantages, process parameters and challenges of BF-MFC are discussed. This knowledge is very much required in the design and scale up of BF-MFC. This paper will be useful for those who work in the area of gaseous pollutant treatment and electricity generation.  相似文献   

11.
In this work, sediment microbial fuel cell (SMFC) with granule activated carbon (GAC) cathode and stainless steel anode was constructed in laboratory tests and various factors on SMFC power output were investigated. The maximum power densities for the SMFC with GAC cathode was 3.5 mW m−2, it was much higher than SMFC with round stainless steel cathode. Addition of cellulose reduced the output power from SMFC at the beginning of experiments, while the output power was found to increase after adding cellulose to sediments on day 90 of operation. On 160 day, maximum power density from the SMFC with adding 0.2% cellulose reached to 11.2 mW m−2. In addition, the surface morphology of stainless steel anode on day 90 was analyzed by scanning electron microscope. It was found that the protection layer of the stainless steel as electrode in SMFCs was destroyed to some extent.  相似文献   

12.
Microbial fuel cells (MFCs) generate electricity from waste but to date the technology’s development and scale-up has been held-up by the need to incorporate expensive materials. A costly but vital component is the ion exchange membrane (IEM) which conducts protons between the anode and cathode electrodes. The current study compares natural rubber as an alternative material to two commercially available IEMs. Initially, the material proved impermeable to protons, but gradually a working voltage was generated that improved with time. After 6 months, MFCs with natural rubber membrane outperformed those with anion exchange membrane (AEM) but cation exchange membrane (CEM) produced 109 % higher power and 16 % higher current. After 11 months, polarisation experiments showed a decline in performance for both commercially available membranes while natural rubber continued to improve and generated 12 % higher power and 54 % higher current than CEM MFC. Scanning electron microscope images revealed distinct structural changes and the formation of micropores in natural latex samples that had been employed as IEM for 9 months. It is proposed that the channels and micropores formed as a result of biodegradation were providing pathways for proton transfer, reflected by the steady increase in power generation over time. These improvements may also be aided by the establishment of biofilms that, in contrast, caused declining performance in the CEM. The research demonstrates for the first time that the biodegradation of a ubiquitous waste material operating as IEM can benefit MFC performance while also improving the reactor’s lifetime compared to commercially available membranes.  相似文献   

13.
The electricity generation, electrochemical and microbial characteristics of five microbial fuel cells (MFCs) with different three-dimensional electrodes (graphite and carbon felt, 2mm and 5mm graphite granules and graphite wool) was examined in relation to the applied loading rate and the external resistance. The graphite felt electrode yielded the highest maximum power output amounting up to 386Wm(-3) total anode compartment (TAC). However, based on the continuous current generation, limited differences between the materials were registered. Doubling the loading rate to 3.3gCODL(-1)TACd(-1) resulted only in an increased current generation when the external resistance was low (10.5-25Omega) or during polarization. Conversely, lowering the external resistance resulted in a steady increase of both the kinetic capacities of the biocatalyst and the continuous current generation from 77 (50Omega) up to 253 (10.5Omega)Am(-3)TAC. Operating a MFC at an external resistance close to its internal resistance, allows to increase the current generation from enhanced loading rates while maximizing the power generation.  相似文献   

14.
Electricity can be directly generated by bacteria in microbial fuel cells (MFCs) from a variety of biodegradable substrates, including cellulose. Particulate materials have not been extensively examined for power generation in MFCs, but in general power densities are lower than those produced with soluble substrates under similar conditions likely as a result of slow hydrolysis rates of the particles. Cellulases are used to achieve rapid conversion of cellulose to sugar for ethanol production, but these enzymes have not been previously tested for their effectiveness in MFCs. It was not known if cellulases would remain active in an MFC in the presence of exoelectrogenic bacteria or if enzymes might hinder power production by adversely affecting the bacteria. Electricity generation from cellulose was therefore examined in two-chamber MFCs in the presence and absence of cellulases. The maximum power density with enzymes and cellulose was 100 +/- 7 mW/m(2) (0.6 +/- 0.04 W/m(3)), compared to only 12 +/- 0.6 mW/m(2) (0.06 +/- 0.003 W/m(3)) in the absence of the enzymes. This power density was comparable to that achieved in the same system using glucose (102 +/- 7 mW/m(2), 0.56 +/- 0.038 W/m(3)) suggesting that the enzyme successfully hydrolyzed cellulose and did not otherwise inhibit electricity production by the bacteria. The addition of the enzyme doubled the Coulombic efficiency (CE) to CE = 51% and increased COD removal to 73%, likely as a result of rapid hydrolysis of cellulose in the reactor and biodegradation of the enzyme. These results demonstrate that cellulases do not adversely affect exoelectrogenic bacteria that produce power in an MFC, and that the use of these enzymes can increase power densities and reactor performance.  相似文献   

15.
The rate of anodic electron transfer is one of the factors limiting the performance of microbial fuel cells (MFCs). It is known that phenazine-based metabolites produced by Pseudomonas species can function as electron shuttles for Pseudomonas themselves and also, in a syntrophic association, for Gram-positive bacteria. In this study, we have investigated whether phenazine-based metabolites and their producers could be used to improve the electricity generation of a MFC operated with a mixed culture. Both anodic supernatants obtained from MFCs operated with a Pseudomonas strain (P-PCA) producing phenazine-1-carboxylic acid (PCA) and those from MFCs operated with a strain (P-PCN) producing phenazine-1-carboxamide (PCN) exerted similarly positive effects on the electricity generation of a mixed culture. Replacing supernatants of MFCs operated with a mixed culture with supernatants of MFCs operated with P-PCN could double the currents generated. Purified PCA and purified PCN had similar effects. If the supernatant of an engineered strain overproducing PCN was used, the effect could be maintained over longer time courses, resulting in a 1.5-fold increase in the production of charge. Bioaugmentation of the mixed culture MFCs using slow release tubes containing P-PCN not only doubled the currents but also maintained the effect over longer periods. The results demonstrated the electron-shuttling effect of phenazine-based compounds produced by Pseudomonas species and their capacity to improve the performance of MFCs operated with mixed cultures. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Wang G  Huang L  Zhang Y 《Biotechnology letters》2008,30(11):1959-1966
A novel approach to Cr(VI)-contaminated wastewater treatment was investigated using microbial fuel cell technologies in fed-batch mode. By using synthetic Cr(VI)-containing wastewater as catholyte and anaerobic microorganisms as anodic biocatalyst, Cr(VI) at 100 mg/l was completely removed during 150 h (initial pH 2). The maximum power density of 150 mW/m2 (0.04 mA/cm2) and the maximum open circuit voltage of 0.91 V were generated with Cr(VI) at 200 mg/l as electron acceptor. This work verifies the possibility of simultaneous electricity production and cathodic Cr(VI) reduction.  相似文献   

17.
Two different microbial fuel cell (MFC) configurations were investigated for electricity production from ethanol and methanol: a two-chambered, aqueous-cathode MFC; and a single-chamber direct-air cathode MFC. Electricity was generated in the two-chamber system at a maximum power density typical of this system (40+/-2 mW/m2) and a Coulombic efficiency (CE) ranging from 42% to 61% using ethanol. When bacteria were transferred into a single-chamber MFC known to produce higher power densities with different substrates, the maximum power density increased to 488+/-12 mW/m2 (CE = 10%) with ethanol. The voltage generated exhibited saturation kinetics as a function of ethanol concentration in the two-chambered MFC, with a half-saturation constant (Ks) of 4.86 mM. Methanol was also examined as a possible substrate, but it did not result in appreciable electricity generation. Analysis of the anode biofilm and suspension from a two-chamber MFC with ethanol using 16S rDNA-based techniques indicated that bacteria with sequences similar to Proteobacterium Core-1 (33.3% of clone library sequences), Azoarcus sp. (17.4%), and Desulfuromonas sp. M76 (15.9%) were significant members of the anode chamber community. These results indicate that ethanol can be used for sustained electricity generation at room temperature using bacteria on the anode in a MFC.  相似文献   

18.
Six polyalcohols derived from lignocellulosic carbohydrates were investigated as carbon sources for electricity generation in single-chamber mediator-less microbial fuel cells (MFCs) for the first time. Electricity was directly generated from all polyalcohols tested, including pentitols (xylitol, arabitol, and ribitol) and hexitols (galactitol, mannitol, and sorbitol). Bacterial cultures initially enriched using acetate could be adapted to these substrates with varied adaptation times. The resultant maximum power density ranged from 1490+/-160 mW/m(2) to 2650+/-10 mW/m(2) at current densities between 0.58 mA/cm(2) and 0.78 mA/cm(2). Galactitol generated the highest maximum power density, while mannitol resulted in the lowest one. The estimated maximum voltage output at an external resistance of 120 Omega ranged between 0.24 V and 0.34 V with half saturation kinetic constants varied from 298 mg/L to 753 mg/L. The removal of chemical oxygen demand (COD) was above 91% for all polyalcohols except sorbitol (71%). Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene segments of the anode biofilms showed the influence of substrates (polyalcohols) on the anode microbial populations.  相似文献   

19.
A single-compartmented microbial fuel cell composed of a graphite felt anode modified with Neutral Red (NR-anode) and a porous Fe(II)-carbon cathode (FeC-cathode) were compared for electricity generation from Microbacterium sp. and Pseudomonas sp. under identical conditions. Pseudomonas sp. was more than four times the size of Microbacterium sp. based on SEM images. In cyclic voltammetry, the redox reaction between Microbacterium sp and electrode was three times the rate observed between Pseudomonas sp. and the electrode based on the Y-axis (current) variation of cyclic voltammogram. The electric power generated by Microbacterium sp. was approx 3–4 times higher than that with Pseudomonas sp. during incubation for more than 150 days in the fuel cell.  相似文献   

20.
Fei Zhang  Zhen He 《Process Biochemistry》2012,47(12):2146-2151
This study presented a dual-cathode microbial fuel cell (MFC) that was designed to accomplish nitrification in its outer cathode and denitrification in the inner cathode. The MFC was continuously operated for more than 150 days and achieved organic removal of 85–99% in the anode, depending on the initial organic loading rates. More than 96% of the ammonium was removed, while the total nitrogen removal was between 66.7 and 89.6%, largely affected by the remaining nitrate in the effluent of the inner cathode. The coulombic efficiency suggested that the nitrate was primarily removed by bioelectrochemcial denitrification in the inner cathode, especially at the low nitrogen loading rates. However, a higher nitrogen loading rate encouraged nitrate migration through the anion exchange membrane, thereby being removed by conventional denitrification. The preliminary energy analysis suggested that the energy production in the dual-cathode MFC could potentially support its pumping system. To achieve an energy-neutral system, aeration must be omitted in the future design and passive oxygen supply should be considered with a proper design of the outer cathode. Those results demonstrated the feasibility of using a tubular dual-cathode MFC to remove both organics and nitrogen while producing electricity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号