首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of cnidarian-dinoflagellate endosymbioses is dependent upon communication between the host gastrodermal cell and the symbionts housed within it. Although the molecular mechanisms remain to be elucidated, existing evidence suggests that the establishment of these endosymbioses may involve the sorting of membrane proteins. The present study examined the role of host gastrodermal membranes in regulating symbiont (genus Symbiodinium) photosynthesis in the stony coral Euphyllia glabrescens. In comparison with the photosynthetic behavior of Symbiodinium in culture, the Symbiodinium populations within isolated symbiotic gastrodermal cells (SGCs) exhibited a significant degree of photo-inhibition, as determined by a decrease in the photochemical efficiency of photosystem II (F v/F m). This photo-inhibition coincided with increases in plasma membrane perturbation and oxidative activity in the SGCs. Membrane trafficking in SGCs was examined using the metabolism of a fluorescent lipid analog, N-[5-(5,7-dimethyl boron dipyrromethene difluoride)-1-pentanoyl]-D-erythro-Sphingosylphosphoryl-choline (BODIPY-Sphingomyelin or BODIPY-SM). Light irradiation altered both membrane distribution and trafficking of BODIPY-SM, resulting in metabolic changes. Cholesterol depletion of the SGC plasma membranes by methyl-??-cyclodextrin retarded BODIPY-SM degradation and further augmented Symbiodinium photo-inhibition. These results indicate that Symbiodinium photo-inhibition may be related to perturbation of the host gastrodermal membrane, providing evidence for the pivotal role of host membrane trafficking in the regulation of this environmentally important coral-dinoflagellate endosymbiosis.  相似文献   

2.
Symbiosomes are specific intracellular membrane‐bound vacuoles containing microalgae in a mutualistic Cnidaria (host)–dinoflagellate (symbiont) association. The symbiosome membrane is originally derived from host plasma membranes during phagocytosis of the symbiont; however, its molecular components and functions are not clear. In order to investigate the protein components of the symbiosome membranes, homogenous symbiosomes were isolated from the sea anemone Aiptasia pulchella and their purities and membrane intactness examined by Western blot analysis for host contaminants and microscopic analysis using various fluorescent probes, respectively. Pure and intact symbiosomes were then subjected to biotinylation by a cell impermeant agent (Biotin‐XX sulfosuccinimidyl ester) to label membrane surface proteins. The biotinylated proteins, both Triton X‐100 soluble and insoluble fractions, were subjected to 2‐D SDS‐PAGE and identified by MS using an LC‐nano‐ESI‐MS/MS. A total of 17 proteins were identified. Based on their different subcellular origins and functional categories, it indicates that symbiosome membranes serve as the interface for interaction between host and symbiont by fulfilling several crucial cellular functions such as those of membrane receptors/cell recognition, cytoskeletal remodeling, ATP synthesis/proton homeostasis, transporters, stress responses/chaperones, and anti‐apoptosis. The results of proteomic analysis not only indicate the molecular identity of the symbiosome membrane, but also provide insight into the possible role of symbiosome membranes during the endosymbiotic association.  相似文献   

3.
Comparative Proteomics of Symbiotic and Aposymbiotic Juvenile Soft Corals   总被引:1,自引:0,他引:1  
The symbiotic association between corals and photosynthetic unicellular algae is of great importance in coral reef ecosystems. The study of symbiotic relationships is multidisciplinary and involves research in phylogeny, physiology, biochemistry, and ecology. An intriguing phase in each symbiotic relationship is its initiation, in which the partners interact for the first time. The examination of this phase in coral–algae symbiosis from a molecular point of view is still at an early stage. In the present study we used 2-dimensional polyacrylamide gel electrophoresis to compare patterns of proteins synthesized in symbiotic and aposymbiotic primary polyps of the Red Sea soft coral Heteroxenia fuscescens. This is the first work to search for symbiosis-specific proteins during the natural onset of symbiosis in early host ontogeny. The protein profiles reveal changes in the host soft coral proteome through development, but surprisingly virtually no changes in the host proteome as a function of symbiotic state.  相似文献   

4.
Fishman Y  Zlotkin E  Sher D 《PloS one》2008,3(7):e2603

Background

Algal-cnidarian symbiosis is one of the main factors contributing to the success of cnidarians, and is crucial for the maintenance of coral reefs. While loss of the symbionts (such as in coral bleaching) may cause the death of the cnidarian host, over-proliferation of the algae may also harm the host. Thus, there is a need for the host to regulate the population density of its symbionts. In the green hydra, Chlorohydra viridissima, the density of symbiotic algae may be controlled through host modulation of the algal cell cycle. Alternatively, Chlorohydra may actively expel their endosymbionts, although this phenomenon has only been observed under experimentally contrived stress conditions.

Principal Findings

We show, using light and electron microscopy, that Chlorohydra actively expel endosymbiotic algal cells during predatory feeding on Artemia. This expulsion occurs as part of the apocrine mode of secretion from the endodermal digestive cells, but may also occur via an independent exocytotic mechanism.

Significance

Our results demonstrate, for the first time, active expulsion of endosymbiotic algae from cnidarians under natural conditions. We suggest this phenomenon may represent a mechanism whereby cnidarians can expel excess symbiotic algae when an alternative form of nutrition is available in the form of prey.  相似文献   

5.

Background

The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH) from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues.

Methodology/Principal Findings

A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4-deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs), which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a ‘shared metabolic adaptation’ between the symbiotic partners. Additionally, gene expression induced by enhanced solar irradiance reveals a cellular mechanism of light-induced coral bleaching that invokes a Ca2+-binding synaptotagmin-like regulator of SNARE protein assembly of phagosomal exocytosis, whereby algal partners are lost from the symbiosis.

Conclusions/Significance

Bioinformatics analyses of DNA sequences obtained by differential gene expression of a coral exposed to high solar irradiance has revealed the identification of putative genes encoding key steps of the MAA biosynthetic pathway. Revealed also by this treatment are genes that implicate exocytosis as a cellular process contributing to a breakdown in the metabolically essential partnership between the coral host and endosymbiotic algae, which manifests as coral bleaching.  相似文献   

6.
The endosymbiotic relationship between cnidarians and photosynthetic dinoflagellate algae provides the foundation of coral reef ecosystems. This essential interaction is globally threatened by anthropogenic disturbance. As such, it is important to understand the molecular mechanisms underpinning the cnidarian–algal association. Here we investigated phosphorylation‐mediated protein signalling as a mechanism of regulation of the cnidarian–algal interaction, and we report on the generation of the first phosphoproteome for the coral model system Aiptasia. Mass spectrometry‐based phosphoproteomics using data‐independent acquisition allowed consistent quantification of over 3,000 phosphopeptides totalling more than 1,600 phosphoproteins across aposymbiotic (symbiont‐free) and symbiotic anemones. Comparison of the symbiotic states showed distinct phosphoproteomic profiles attributable to the differential phosphorylation of 539 proteins that cover a broad range of functions, from receptors to structural and signal transduction proteins. A subsequent pathway enrichment analysis identified the processes of “protein digestion and absorption,” “carbohydrate metabolism,” and “protein folding, sorting and degradation,” and highlighted differential phosphorylation of the “phospholipase D signalling pathway” and “protein processing in the endoplasmic reticulum.” Targeted phosphorylation of the phospholipase D signalling pathway suggests control of glutamate vesicle trafficking across symbiotic compartments, and phosphorylation of the endoplasmic reticulum machinery suggests recycling of symbiosome‐associated proteins. Our study shows for the first time that changes in the phosphorylation status of proteins between aposymbiotic and symbiotic Aiptasia anemones may play a role in the regulation of the cnidarian–algal symbiosis. This is the first phosphoproteomic study of a cnidarian–algal symbiotic association as well as the first application of quantification by data‐independent acquisition in the coral field.  相似文献   

7.
Flexibility in biological systems is seen as an important driver of macro-ecosystem function and stability. Spatially constrained endosymbiotic settings, however, are less studied, although environmental thresholds of symbiotic corals are linked to the function of their endosymbiotic dinoflagellate communities. Symbiotic flexibility is a hypothesized mechanism that corals may exploit to adapt to climate change. This study explores the flexibility of the coral–Symbiodinium symbiosis through quantification of Symbiodinium ITS2 sequence assemblages in a range of coral species and genera. Sequence assemblages are expressed as an index of flexibility incorporating phylogenetic divergence and relative abundance of Symbiodinium sequences recovered from the host. This comparative analysis reveals profound differences in the flexibility of corals for Symbiodinium, thereby classifying corals as generalists or specifists. Generalists such as Acropora and Pocillopora exhibit high intra- and inter-species flexibility in their Symbiodinium assemblages and are some of the most environmentally sensitive corals. Conversely, specifists such as massive Porites colonies exhibit low flexibility, harbour taxonomically narrow Symbiodinium assemblages, and are environmentally resistant corals. Collectively, these findings challenge the paradigm that symbiotic flexibility enhances holobiont resilience. This underscores the need for a deeper examination of the extent and duration of the functional benefits associated with endosymbiotic diversity and flexibility under environmental stress.  相似文献   

8.
9.
The unique mutualism between corals and their photosynthetic zooxanthellae (Symbiodinium spp.) is the driving force behind functional assemblages of coral reefs. However, the respective roles of hosts and Symbiodinium in this endosymbiotic association, particularly in response to environmental challenges (e.g., high sea surface temperatures), remain unsettled. One of the key obstacles is to produce and maintain aposymbiotic coral hosts for experimental purposes. In this study, a simple and gentle protocol to generate aposymbiotic coral hosts (Isopora palifera and Stylophora pistillata) was developed using repeated incubation in menthol/artificial seawater (ASW) medium under light and in ASW in darkness, which depleted more than 99% of Symbiodinium from the host within 4∼8 days. As indicated by the respiration rate, energy metabolism (by malate dehydrogenase activity), and nitrogen metabolism (by glutamate dehydrogenase activity and profiles of free amino acids), the physiological and biochemical performances of the menthol-induced aposymbiotic corals were comparable to their symbiotic counterparts without nutrient supplementation (e.g., for Stylophora) or with a nutrient supplement containing glycerol, vitamins, and a host mimic of free amino acid mixture (e.g., for Isopora). Differences in biochemical responses to menthol-induced bleaching between Stylophora and Isopora were attributed to the former digesting Symbiodinium rather than expelling the algae live as found in the latter species. Our studies showed that menthol could successfully bleach corals and provided aposymbiotic corals for further exploration of coral-alga symbioses.  相似文献   

10.
11.
A method that uses marker fatty acids (FAs) is widely applied in investigations of trophic and symbiotic relationships. In a search for new lipid markers, we determined the total lipid FA composition, as well as the composition of molecular species of mono- and digalactosyl diacylglycerols (MGDGs and DGDGs), which are specific galactolipids of thylakoid membranes, in zooxanthellae (endosymbiotic dinoflagellates) of the tropical soft coral Capnella sp. Some FAs of zooxanthellae were suggested for use as marker polyunsaturated FAs (PUFAs). Thirteen molecular species of MGDGs and ten molecular species of DGDGs were detected using the method of high-resolution tandem mass spectrometry. All marker PUFAs of zooxanthellae were found in acyl groups of galactolipids. The major molecular species of DGDGs (18:4/18:4, 18:4/20:5, and 16:2/22:6) and the unique molecular species of MGDGs (16:4/18:5) were described. The identification of several polyunsaturated molecular species of galactolipids that contain marker FAs allowed us to propose that this lipid group be used as molecular lipid markers of zooxanthellae for the study of symbiont–host interactions in soft corals.  相似文献   

12.
Scleractinian corals are known to suffer bleaching or loss of their symbiotic zooxanthellae under conditions of elevated seawater temperatures often associated with climate change (i.e. global warming). This can occur on a massive scale and has caused the decimation of reefs on a global basis. During the bleaching process, the expelled zooxanthellae suffer cell damage from heat stress, characterized by irreversible ultrastructural and physiological changes which are symptomatic of cell degeneration and death (called apoptosis) or necrosis. A question that remains unanswered, however, is whether the coral hosts themselves are sensitive to seawater temperatures, and, if so, to what degree? In a controlled experiment, we exposed corals Acropora hyacinthus (Dana, 1846) and Porites solida (Forskål, 1775) with their symbiotic zooxanthellae (Symbiodinium sp.) to temperatures of 28 °C (control), 30 °C, 32 °C, and 34 °C for 48 h and also to 36 °C for 12 h. We assessed coral and zooxanthellar cells in-situ for symptoms of apoptosis and necrosis using transmission electron microscopy (TEM), fluorescent microscopy (FM), and flow cytometry (FC). We found that the coral host cells in-situ exhibited, for the most part, little or no mortality from increased seawater temperatures. Damage to the coral hosts only occurred under conditions of prolonged exposure (≥ 12 h) at high temperatures (34 °C), or at exceptionally high temperatures (e.g. 36 °C). On the other hand, we found high levels of apoptosis and necrosis in the zooxanthellae in-situ under all treatment conditions of elevated seawater temperatures. We found that during bleaching, the host cells are not experiencing much mortality - but the zooxanthellae, even while still within the host, are. The host corals exhibit exaptation to accommodate temperatures as high as ≥ 34 °C. Temperature stress within these highly specific and coevolved symbiotic systems is derived not from host sensitivity to temperature, but from the symbiont's sensitivity and the loss of the coral's endosymbiotic partners.  相似文献   

13.
In adult cnidarians, symbiotic dinoflagellate Symbiodinium are usually located in the gastrodermis. However, the onset of this endosymbiotic association and its regulation during larval development are unclear. This study examined the distribution of the Symbiodinium population in tissue layers of planula larvae released from the stony coral Euphyllia glabrescens. Symbiodinium were redistributed from the epidermis to the gastrodermis, at a rate that was fastest during early planulation and then decreased prior to metamorphosis. This process indicates that the endosymbiotic activity of coral tissues is developmentally regulated. During the early larval stage, both the epidermis and gastrodermis contained Symbiodinium; then, as the larvae developed toward metamorphosis, the numbers in the epidermis gradually diminished until they were only found in the gastrodermis. The mechanism of redistribution remains unknown, but may be due to a direct translocation and/or change in the proliferation of symbionts in different tissue layers.  相似文献   

14.
Reef-building (or hermatypic) corals live in mutualistic symbiosis with the dinoflagellates Symbiodinium spp. (Alveolata, Dinophyceae, Gymnodiniales), and contribute to the accretion of coral reefs. Due to the difficulty in culturing them in laboratories, these ecologically important cnidarians have not been characterized extensively in physiological, biochemical, molecular and toxicological experiments. The present study was conducted to develop a model symbiosis system for long-term experimental analyses of a symbiotic coral. Aposymbiotic (symbiont-free) juveniles of the hermatypic coral Acropora tenuis were infected with three Symbiodinium strains, and the resulting symbiotic corals were examined for growth and maintenance of the symbiosis for approx. three months. Of the tested Symbiodinium cell lines, CCMP2467 (clade A1) inhabited the host the most densely, and the population in hospite did not decline over the period of three months in laboratory culture. The CCMP2467-inhabited juveniles outgrew the populations infected with the other two strains and aposymbiotic specimens. The A. tenuis juveniles in symbiosis with CCMP2467 cells were used in eco-toxicological tests to study long-term effects of two commonly used biocides (tributyltin-chloride and diuron). Delay in growth was observed after exposing the symbiotic juveniles to the two chemicals for approx. 50 days at the nominal concentrations of 0.4 and 1 μg/L, respectively.  相似文献   

15.
The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis.  相似文献   

16.
The sea anemone Bartholomea annulata is an ecologically important member of Caribbean coral reefs which host a variety of symbiotic crustacean associates. Crustacean exosymbionts typically gain protection from predation by dwelling with anemones. Concurrently, some symbionts may provide protection to their host by defending against anemone predators such as the predatory fireworm, Hermodice carunculata, which can severely damage or completely devour prey anemones. Herein we show through both field and laboratory studies that anemones hosting the symbiotic alpheid shrimp Alpheus armatus are significantly less likely to sustain damage by H. carunculata than anemones without this shrimp. Our results suggest that the association between A. armatus and B. annulata, although complex because of the numerous symbionts involved, may be closer to mutualism on the symbiotic continuum.  相似文献   

17.
18.
The symbiotic interaction between cnidarians (e.g., corals and sea anemones) and photosynthetic dinoflagellates of the genus Symbiodinium is triggered by both host–symbiont recognition processes and metabolic exchange between the 2 partners. The molecular communication is crucial for homeostatic regulation of the symbiosis, both under normal conditions and during stresses that further lead to symbiosis collapse. It is therefore important to identify and fully characterise the key players of this intimate interaction at the symbiotic interface. In this study, we determined the cellular and subcellular localization and expression of the sterol‐trafficking Niemann–Pick type C proteins (NPC1 and NPC2) in the symbiotic sea anemones Anemonia viridis and Aiptasia sp. We first established that NPC1 is localised within vesicles in host tissues and to the symbiosome membranes in several anthozoan species. We demonstrated that the canonical NPC2‐a protein is mainly expressed in the epidermis, whereas the NPC2‐d protein is closely associated with symbiosome membranes. Furthermore, we showed that the expression of the NPC2‐d protein is correlated with symbiont presence in healthy symbiotic specimens. As npc2‐d is a cnidarian‐specific duplicated gene, we hypothesised that it probably arose from a subfunctionalisation process that might result in a gain of function and symbiosis adaptation in anthozoans. Niemann–Pick type C proteins may be key players in a functional symbiosis and be useful tools to study host–symbiont interactions in the anthozoan–dinoflagellate association.  相似文献   

19.
Despite being one of the simplest metazoans, corals harbor some of the most highly diverse and abundant microbial communities. Differentiating core, symbiotic bacteria from this diverse host-associated consortium is essential for characterizing the functional contributions of bacteria but has not been possible yet. Here we characterize the coral core microbiome and demonstrate clear phylogenetic and functional divisions between the micro-scale, niche habitats within the coral host. In doing so, we discover seven distinct bacterial phylotypes that are universal to the core microbiome of coral species, separated by thousands of kilometres of oceans. The two most abundant phylotypes are co-localized specifically with the corals'' endosymbiotic algae and symbiont-containing host cells. These bacterial symbioses likely facilitate the success of the dinoflagellate endosymbiosis with corals in diverse environmental regimes.  相似文献   

20.
《Plant science》2001,161(3):379-389
There is broad evidence that an endosymbiotic uptake of a cyanobacterial-type organism was the point of origin for the evolution of chloroplasts. During organelle evolution extensive gene transfer from the symbiont to the host genome occurred, which raises the question of how these gene products, namely proteins, which are still functional in chloroplasts, find their way back ‘home’. Nuclear-encoded proteins enter plastids via a complex import machinery that requires the coordinate interplay of a variety of soluble and membrane-bound factors on the cytosolic site as well as on the stromal side of the chloroplast envelope membranes. We define that the process called ‘import of chloroplast precursor proteins’ begins with the release of the polypeptide from the ribosomes and binding to cytosolic factors, such as a guidance complex, which accompanies (chaperones) proteins to chloroplasts. The translocation across the envelope membranes engages distinct translocation machineries at the outer and the inner envelope membranes. Additionally subsequent sorting events to different subcompartments within the plastids are operated by a number of distinct pathways, all of which seem to involve multiple subunits, which are largely of bacterial (symbiotic) origin. The evolutionary history of proteins mediating the import of chloroplast constituents across the envelope membranes seems more diverse. Since cyanobacteria lack a protein import pathway, it is not surprising that only a few subunits of the chloroplast translocon seem to be of symbiotic origin while others seem to be eukaryotic additions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号