首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller “leaf-like” structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics’ analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu2+ stress. After 5 days of Cu2+ stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu2+-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu2+-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.  相似文献   

2.
Nutrient and heavy metal pollutions are major concern worldwide. This study aimed at comparing the effect of Ni2+ on nutrient removal efficiency of four indigenous wastewater protozoan species (Aspidisca sp., Paramecium sp., Peranema sp., Trachelophyllum sp.). Specific physicochemical parameters and microbial growth/die-off were measured using standard methods. The results revealed that protozoan species were able to simultaneously remove phosphate, nitrate and Ni2+ at concentrations ranging between 66.4–99.36%, 56.19–99.88% and 45.98–85.69%, respectively. Peranema sp. appeared to be the isolates with the highest removal of nutrients (Phosphate-99.36% and Nitrate-99.88%) while Paramecium sp. showed higher removal of Ni2+ at 85.69% and low removal of nutrients. Aspidisca sp. was the most sensitive isolate to Ni2+ but with significant nutrient removal (Phosphate-66.4% and Nitrate-56.19%) at 10 mg-N2+/L followed by an inhibition of nutrient removal at Ni2+ concentration greater than 10 mg/L. Significant correlation between the growth rate and nutrient removal (= 0.806/0.799, < 0.05 for phosphate and nitrate, respectively) was noted. Except for Peranema sp. which revealed better nutrient removal ability at 10 mg-Ni2+/L, an increase in Ni2+ concentration had a significant effect on nutrient removal efficiency of these indigenous protozoan species. This study suggests that although Ni2+ appeared to be toxic to microbial isolates, its effect at a low concentration (10 mg-Ni2+/L) towards these isolates can be used to enhance the wastewater treatment process for the removal of nutrients. Peranema sp., which was able to remove both Ni2+ and nutrients from wastewater mixed-liquor, can also be used for bioremediation of wastewater systems.  相似文献   

3.
Rat cultured cerebellar granule neurons (CGNs) were not sensitive to CuCl2 (1-10 µM, 24 h), whereas paraquat (150 µM) decreased neuronal survival to 79 ± 3% of control level. Simultaneous treatment of CGNs with paraquat and CuCl2 (2, 5, or 10 µM Cu2+/paraquat) caused significant copper dose-dependent death, lowering their survival to 56 ± 4, 37 ± 3, or 16 ± 2%, respectively, and stimulating elevated production of free radicals in CGNs. Introduction of vitamin E, a non-competitive antagonist of NMDA subtype of glutamate receptors (MK-801), and also removal of glutamine from the incubation medium decreased toxicity of Cu2+/paraquat mixture. However, addition of Cu2+ into the incubation medium did not affect CGNs death caused by glutamate. These data emphasize that excessive copper in the brain may trigger oxidative stress, which in turn results in release of glutamate, overstimulation of glutamate receptors, and neuronal death.  相似文献   

4.
Two sets of experiments were done to quantify the effects of chronic copper exposure on natural peri‐ phyton in a nonpolluted calcareous river. The results of short‐term (up to 6 h exposure) experiments corroborated the significance of pH on copper toxicity. Copper toxicity increased when pH was reduced from 8.6 to 7.7, and this was related to the effect of pH on copper speciation (free copper concentration increased from 0.2% to 2.3% of total copper). Longer term experiments demonstrated that periphyton communities exposed to copper under pH variation (8.2–8.6) were already affected at 10 μg·L ? 1 (20–80 ng·L ? 1 Cu2 + ) after 12 days of exposure. Copper exposure caused stronger effects on structural (algal biomass and community structure) than on functional (photosynthetic efficiency) parameters of peri‐ phyton. Changes in community composition included the enhancement of some taxa (Gomphonema gracile), the inhibition of others (Fragilaria capucina and Phormidium sp.), and the appearance of filament malformations (Mougeotia sp.). The results of our study demonstrated that several weeks of exposure to copper (10–20 μg·L ? 1) were sufficient to cause chronic changes in the periphyton of oligotrophic calcareous rivers. This degree of copper pollution can be commonly found in the Mediterranean region as a result of agricultural practices and farming activities.  相似文献   

5.
A root nodule bacterium, Sinorhizobium meliloti CCNWSX0020, resistant to 1.4 mM Cu2+ was isolated from Medicago lupulina growing in mine tailings. In medium supplied with copper, this bacterium showed cell deformation and aggregation due to precipitation of copper on the cell surface. Genes similar to the copper-resistant genes, pcoR and pcoA from Escherichia coli, were amplified by PCR from a 1.4-Mb megaplasmid. Inoculation with S. meliloti CCNWSX0020 increased the biomass of M. lupulina grown in medium added 0 and 100 mg Cu2+ kg−1 by 45.8% and 78.2%, respectively, and increased the copper concentration inside the plant tissues grown in medium supplied with 100 μM Cu2+ by 39.3%, demonstrating that it is a prospective symbiotic system for bioremediation purposes.  相似文献   

6.
A continuous-upflow biofilter packed with sponge iron was constructed for nitrate removal under an anaerobic atmosphere. Microbacterium sp. W5, a nitrate reducing and Fe(II) oxidizing strain, was added to the biofilter as an inoculum. The best results were achieved when NO3 ?-N concentration was 30 mg/L and Fe2+ was 800 mg/L. Nitrite in influent would inhibit nitrate removal and aqueous Fe2+ resulted in encrustation. Fe(II)EDTA would prevent cells from encrustation and the maximum nitrogen removal efficiency was about 90 % with Fe(II)EDTA level of 1100 mg/L. Nitrate reduction followed first-order reaction kinetics. Characteristics of biofilms were analyzed by X-ray fluorescence spectroscopy.  相似文献   

7.
In this study, nitrous oxide (N2O) production during biological nutrient removal (BNR) from municipal wastewater was reported to be remarkably reduced by controlling copper ion (Cu2+) concentration. Firstly, it was observed that the addition of Cu2+ (10–100 μg/L) reduced N2O generation by 54.5–73.2 % and improved total nitrogen removal when synthetic wastewater was treated in an anaerobic–aerobic (with low dissolved oxygen) BNR process. Then, the roles of Cu2+ were investigated. The activities of nitrite and nitrous oxide reductases were increased by Cu2+ addition, which accelerated the bio-reductions of both nitrite to nitric oxide (NO 2 ? ?→?NO) and nitrous oxide to nitrogen gas (N2O?→?N2). The quantitative real-time polymerase chain reaction assay indicated that Cu2+ addition increased the number of N2O reducing denitrifiers. Further investigation showed that more polyhydoxyalkanoates were utilized in the Cu2+-added system for denitrification. Finally, the feasibility of reducing N2O generation by controlling Cu2+ was examined in two other BNR processes treating real municipal wastewater. As the Cu2+ in municipal wastewater is usually below 10 μg/L, according to this study, the supplement of influent Cu2+ to a concentration of 10–100 μg/L is beneficial to reduce N2O emission and improve nitrogen removal when sludge concentration in the BNR system is around 3,200 mg/L.  相似文献   

8.
The effect of heavy metals on community structure of a heavy metal tolerant sulfidogenic consortium was evaluated by using a combination of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene and dissimilatory sulfite reductase (dsrB) gene fragments, 16S rRNA gene cloning analysis and fluorescence in situ hybridization (FISH). For this purpose, four anaerobic semi-continuous stirred tank reactors (referred as R1–R4) were run in parallel for 12 weeks at heavy metal loading rates of 1.5, 3, 4.5 and 7.5 mg l?1 d?1 each of Cu2+, Ni2+, Zn2+, and Cr6+, respectively. The abundance ratio of Desulfovibrio vulgaris detected by FISH to total cell counts was consistent with the obtained results of cloning and DGGE. This indicated that D. vulgaris was dominant in all analyzed samples and played a key role in heavy metal removal in R1, R2, and R3. In contrast, after 4 weeks of operation of R4, a distinct biomass loss was observed and no positive hybridized cells were detected by specific probes for the domain Bacteria, sulfate-reducing bacteria and D. vulgris. High removal efficiencies of heavy metals were achieved in R1, R2 and R3 after 12 weeks, whereas the precipitation of heavy metals in R4 was significantly decreased after 4 weeks and almost not observed after 6 weeks of operation. In addition, the anaerobic bacteria, such as Pertrimonas sulfuriphila, Clostridium sp., Citrobacter amalonaticus, and Klebsiella sp., identified from DGGE bands and clone library were hypothesized as heavy metal resistant bacteria at a loading rate of 1.5 mg l?1 d?1 of Cu2+, Ni2+, Zn2+, and Cr6+.  相似文献   

9.
Macroalgae have received much attention for heavy metal removal in treatment of domestic wastewater. In this report, the uptake capacity of a common freshwater green alga, Cladophora fracta, for heavy metal ions (copper, zinc, cadmium, and mercury) was evaluated. The equilibrium adsorption capacities were 2.388?mg Cu2+, 1.623?mg Zn2+, 0.240?mg Cd2+, and 0.228?mg Hg2+ per gram of living algae at 18°C and pH?5.0. The removal efficiency for Cu2+, Zn2+, Cd2+, and Hg2+ were 99, 85, 97, and 98%, respectively. Greater removal efficiency was achieved when the concentrations of metal ions were at very low level. The results indicated that living algae are suitable for removal and recovery of heavy metal ions from aqueous solutions and can be a potential tool to treat industrial wastewater.  相似文献   

10.
【背景】道路重金属污染问题日益严峻,寻找高效的微生物资源用于环境修复已迫在眉睫。【目的】从乌鲁木齐市道路林带土壤中筛选抗重金属菌株,并对其重金属去除能力进行探究。【方法】使用含5种重金属离子(铅、镉、锌、铜、镍)的4种培养基进行抗性菌株筛选,通过形态学特征和16S rRNA基因序列进行鉴定,采用电感耦合等离子体发射光谱仪(inductively coupled plasma optical emission spectrometer,ICP-OES)检测分离株对重金属离子的去除情况。【结果】4种分离培养基中,TSA是抗重金属菌株筛选的最适培养基,共筛选出16株抗重金属菌,其中4株抗Pb菌、4株抗Cd菌、4株抗Zn菌、3株抗Cu菌和1株抗Ni菌,其抗性分别高达3 000、800、600、300和400mg/L,16株菌中以芽孢杆菌属(Bacillus)数量最多。在初始浓度为700mg/L Pb2+下,菌株Pb6的去除率高达92.48%,菌株Pb11、Pb3和Pb9的去除率分别为27.70%、40.37%和58.88%;在200mg/L Cd2+...  相似文献   

11.
The influence of increasing copper concentrations on seed germination, seedling survival and radicle length ofMinuartia hirsuta, Silene compacta, Alyssum montanum andThlaspi ochroleucum was studied. Seed germination was highly affected by the higher Cu2+ concentrations (80 and 160 μM), while lower Cu2+ concentrations seemed to be necessary for seed germination, even for the plants originated from non-Cu2+-rich soils (i.e. A. montanum). Nevertheless, plants originated from Cu2+-rich soils (M. hirsuta, S. compacta) showed a higher demand of Cu2+ for rapid seed germination. Cu2+ at higher concentrations severely reduced growth rate of radicle, especially inA. montanum andT. ochroleucum. These data clearly indicate the reduced suitability of the above mentioned plant species for reclamation on Cu2+ soils. Lower Cu2+-concentrations had no influence on seedling survival inM. hirsuta andS. compacta, but a progressive reduction of a number of survived seedlings with increasing Cu2+ concentration was found, that was more pronounced inA. montanum andT. ochroleucum.  相似文献   

12.
Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer’s disease. However, its physiological function remains elusive. Cu2+ binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu2+ reduction and 64Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu2+ reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu2+ ions. Moreover, wild-type cells exposed to both Cu2+ ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu2+ reductase activity and increased 64Cu uptake. We conclude that Cu2+ reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.  相似文献   

13.
14.
Acinetobacter junii BB1A cells, grown in different media, were differentially inhibited in the presence of the copper. The minimum inhibitory concentration of Cu2+ was influenced by the nutrient status of the media. The production of extracellular polymeric substances (EPS) was stimulated by the copper present in the growth medium. The nature of the EPS was anionic showing non-Newtonian pseudoplastic behaviour. The thermal behaviour of the EPS was studied by differential scanning calorimetry. The EPS was amorphous in nature with a crystalline index of 0.16. Scanning electron micrographs revealed its porous structure. Cells grown in the presence of quorum sensing inhibitor (QSI: 4-Nitropyridine-N-oxide) did not produce EPS and were found to be more sensitive to Cu2+ than cells which produced EPS in the absence of QSI. EPS production in different media in the presence and absence of Cu2+ was determined. The production of EPS was the highest in brain heart Infusion medium and the lowest in AB minimal medium. The sorption of Cu2+ by EPS extracted from cells grown in non-copper-complexing AB medium was demonstrated by energy dispersive X-ray spectroscopy. A pertinent functional aspect of EPS in providing protection to A. junii in copper stress condition has been revealed.  相似文献   

15.
Taxonomic relationships for pollutant tolerance in marine invertebrates are surprisingly poorly known, despite being potentially useful for pollution biomonitoring. A popular view is that cellular and molecular adaptations for natural stress may be important in tolerating pollution. We compared the physiological and mortality responses to copper (Cu2+) of limpets from two different lineages: the Prosobranchia (Patellogastropoda: Helcion concolor and Cellana capensis) and the Pulmonata (Siphonaria serrata and Siphonaria capensis). Copper tolerance was apparently more closely related to phylogenetically-based physiology, than to tolerance of desiccation and or heat. The Siphonaria limpets were nearly an order of magnitude more tolerant of copper than the patellogastropod limpets, even though S. serrata has the lowest intertidal distribution. Initial copper exposure (0.25 ppm Cu2+ for 2 h) induced heart rate depression in Siphonaria (to around 50% of the baseline rate), while their tissue copper concentrations remained at the relatively high control levels. Copper exposure (0.25 ppm Cu2+ for 2 h) had no effect on heart rate of the patellogastropod limpets, but led to a significant increase in tissue copper. These results suggest that enhanced copper tolerance by Siphonaria relates to cardiac depression and a concomitant metabolic depression. Such physiological attributes are implicated in prolonged behavioural isolation, involving pneumostome closure and shell clamping, which is likely to reduce the uptake of copper. Furthermore, better regulation of internal copper levels by Siphonaria, is suggested by their exclusive possession of blood haemocyanin. Dependence on relatively high aerobic metabolism by the patellogastropod limpets, would limit their capacity for isolation and pollutant avoidance.  相似文献   

16.
A series of bis-salicylidene based N2S2 copper macrocycles were prepared, structurally characterised and subjected to electrochemical analysis. The aim was to investigate the effects of length of polymethylene chains between either the imine donors or the sulfur donors on redox state and potential of the metal. The complexes structurally characterised had either distorted square planar or tetrahedral geometries depending on their oxidation state (Cu2+ or Cu+, respectively), and the N–(CH2)n–N bridge was found to be most critical moiety in determining the redox potential and oxidation state of the copper macrocycles, with relatively little change in these properties caused by lengthening the S–(CH2)n–S bridge from two to three carbons. In fact, a weakness was observed in the complexes at the sulfur donor, as further lengthening of the S–(CH2)n–S methylene bridge to four carbons caused fission of the carbon–sulfur bond to give dimeric rings and supramolecular assemblies. Cu+ complexes could be oxidised to Cu2+ by tert-butylhydroperoxide, with a corresponding change in the spectrophotometric properties, and likewise Cu2+ complexes could be reduced to Cu+ by treatment with β-mercaptoethylamine. However, repeated redox cycles appeared to compromise the stability of the macrocycles, most probably by a competing oxidation of the ligand. Thus the copper N2S2 macrocycles show potential as redox sensors, but further development is required to improve their performance in a biochemical environment.  相似文献   

17.
An industrial strain of Saccharomyces cerevisiae collected from the waste of a brewing industry was used to remove lead, cadmium and copper from aqueous solutions (1?mm). Metal removal efficiency by using either biomass suspension directly diluted into the metal solutions or biomass previously incubated and washed in distilled water was compared. In all experiments with unwashed biomass a shift in the medium pH from 4.5 to a final value in the 7.0–8.0 range occurred. This pH increase was responsible for a metal precipitation effect associated to the metal biosorption. A very different pH profile was observed when washed biomass was used leading to different removal profiles for Cd2+ and Pb2+ and a similar one for Cu2+. In the absence of biomass, medium components and/or the excreted intracellular products proved to interfere in the metal removal and to be responsible for 80% Pb2+ precipitation, in the pH 4.5–5.0 range. To initial metal solution pH, leading to the lowest residual ion concentrations, after 96?h of contact with unwashed biomass and in the absence of pH adjustment, was 4.5–5.0. Continuous or stepwise adjustment of medium pH to this range during the process was unfavourable for metal removal, being the continuous adjustment the worst procedure. In this case, Cd2+ was not biosorbed and Cu2+ removal decreased from 76 to 33%. However, Pb2+ was always extensively removed (89%) and only slightly affected by pH control. The global results suggest different removal mechanisms for each cation. Cu2+ was removed by both metal sorption and precipitation, due to the pH shift that occurred during the process, while Cd2+ removal showed to be completely dependent of this pH shift. Pb2+ was totally and quickly removed, by precipitation, in the presence of the biomass suspension and at pH 4.5. Moreover, the biosorbent changes occurring during the process played an important role in the metal removal when non-viable microbial biomass is used.  相似文献   

18.
A simple and sensitive method for quantification of nanomolar copper with a detection limit of 1.2 × 10−10 M and a linear range from 10−9 to 10−8 M is reported. For the most useful analytical concentration of quantum dots, 1160 μg/ml, a 1/Ksv value of 11 μM Cu2+ was determined. The method is based on the interaction of Cu2+ with glutathione-capped CdTe quantum dots (CdTe–GSH QDs) synthesized by a simple and economic biomimetic method. Green CdTe–GSH QDs displayed the best performance in copper quantification when QDs of different sizes/colors were tested. Cu2+ quantification is highly selective given that no significant interference of QDs with 19 ions was observed. No significant effects on Cu2+ quantification were determined when different reaction matrices such as distilled water, tap water, and different bacterial growth media were tested. The method was used to determine copper uptake kinetics on Escherichia coli cultures. QD-based quantification of copper on bacterial supernatants was compared with atomic absorption spectroscopy as a means of confirming the accuracy of the reported method. The mechanism of Cu2+-mediated QD fluorescence quenching was associated with nanoparticle decomposition.  相似文献   

19.
The aim of this study was to determine the plant growth-promoting potential of the nodule endophytic Pseudomonas brassicacearum strain Zy-2-1 when used as a co-inoculant of Medicago lupulina with Sinorhizobium meliloti under copper (Cu) stress conditions. Strain Zy-2-1 was capable of producing ACC deaminase activity, IAA and siderophores, and was able to grow in the presence of Cu2+ up to 2.0 mmol/L. Co-inoculation of S. meliloti with Zy-2-1 enhanced M. lupulina root fresh weight, total plant dry weight, number of nodules, nodule fresh weight and nitrogen content in the presence of 100 or 300 mg/kg Cu2+. In the presence of 500 mg/kg Cu2+, co-inoculation with S. meliloti and strain Zy-2-1 increased plant height, number of nodules, nodule fresh weight and nitrogen content in comparison to S. meliloti inoculation alone. Furthermore, a higher amount of Cu accumulation in both shoots and roots and a higher level of Cu translocation to shoots were observed in co-inoculated plants. These results demonstrate that co-inoculation of M. lupulina with S. meliloti and P. brassicacearum Zy-2-1 improves plant growth, nitrogen nutrition and metal extraction potential. This can be of practical importance in the remediation of heavy metal-contaminated soils.  相似文献   

20.
At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号