首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We investigated the role of tumor copy number (CN)–altered genome (CN-AG) in the carcinogenesis of cervical cancer (CC), especially its effect on gene expression, biological processes, and patient survival. Fifty-nine human papillomavirus 16 (HPV16)-positive CCs were investigated with microarrays–31 for mapping CN-AG and 55 for global gene expression, with 27 CCs in common. Five-year survival was investigated in 55 patients. Deletions and amplifications >2.5 Mb were defined as CN alterations. The %CN-AG varied from 0 to 32.2% (mean = 8.1±8.9). Tumors were classified as low (mean = 0.5±0.6, n = 11), medium (mean = 5.4±2.4, n = 10), or high (mean = 19.2±6.6, n = 10) CN. The highest %CN-AG was found in 3q, which contributed an average of 55% of all CN alterations. Genome-wide, only 5.3% of CN-altered genes were deregulated directly by gene dosage. In contrast, the rate in fully duplicated 3q was twice as high. Amplification of 3q explained 23.2% of deregulated genes in whole tumors (r2 = 0.232, p = 0.006; analysis of variance), including genes located in 3q and other chromosomes. A total of 862 genes were deregulated exclusively in high-CN tumors, but only 22.9% were CN altered. This suggests that the remaining genes are not deregulated directly by gene dosage, but by mechanisms induced in trans by CN-altered genes. Anaphase-promoting complex/cyclosome (APC/C)-dependent proteasome proteolysis, glycolysis, and apoptosis were upregulated, whereas cell adhesion and angiogenesis were downregulated exclusively in high-CN tumors. The high %CN-AG and upregulated gene expression profile of APC/C-dependent proteasome proteolysis were associated with poor patient survival (p<0.05, log-rank test). Along with glycolysis, they were linearly associated with FIGO stage (r>0.38, p<0.01, Spearman test). Therefore, inhibition of APC/C-dependent proteasome proteolysis and glycolysis could be useful for CC treatment. However, whether they are indispensable for tumor growth remains to be demonstrated.  相似文献   

3.
4.
A tumor can be viewed as a special “organ” that undergoes aberrant and poorly regulated organogenesis. Progress in cancer prognosis and therapy might be facilitated by re-examining distinctive processes that operate during normal development, to elucidate the intrinsic features of cancer that are significantly obscured by its heterogeneity. The global gene expression signatures of 44 human lung tissues at four development stages from Asian descent and 69 lung adenocarcinoma (ADC) tissue samples from ethnic Chinese patients were profiled using microarrays. All of the genes were classified into 27 distinct groups based on their expression patterns (named as PTN1 to PTN27) during the developmental process. In lung ADC, genes whose expression levels decreased steadily during lung development (genes in PTN1) generally had their expression reactivated, while those with uniformly increasing expression levels (genes in PTN27) had their expression suppressed. The genes in PTN1 contain many n-gene signatures that are of prognostic value for lung ADC. The prognostic relevance of a 12-gene demonstrator for patient survival was characterized in five cohorts of healthy and ADC patients [ADC_CICAMS (n = 69, p = 0.007), ADC_PNAS (n = 125, p = 0.0063), ADC_GSE13213 (n = 117, p = 0.0027), ADC_GSE8894 (n = 62, p = 0.01), and ADC_NCI (n = 282, p = 0.045)] and in four groups of stage I patients [ADC_CICAMS (n = 22, p = 0.017), ADC_PNAS (n = 76, p = 0.018), ADC_GSE13213 (n = 79, p = 0.02), and ADC_qPCR (n = 62, p = 0.006)]. In conclusion, by comparison of gene expression profiles during human lung developmental process and lung ADC progression, we revealed that the genes with a uniformly decreasing expression pattern during lung development are of enormous prognostic value for lung ADC.  相似文献   

5.

Background

Recent research on glioblastoma (GBM) has focused on deducing gene signatures predicting prognosis. The present study evaluated the mRNA expression of selected genes and correlated with outcome to arrive at a prognostic gene signature.

Methods

Patients with GBM (n = 123) were prospectively recruited, treated with a uniform protocol and followed up. Expression of 175 genes in GBM tissue was determined using qRT-PCR. A supervised principal component analysis followed by derivation of gene signature was performed. Independent validation of the signature was done using TCGA data. Gene Ontology and KEGG pathway analysis was carried out among patients from TCGA cohort.

Results

A 14 gene signature was identified that predicted outcome in GBM. A weighted gene (WG) score was found to be an independent predictor of survival in multivariate analysis in the present cohort (HR = 2.507; B = 0.919; p<0.001) and in TCGA cohort. Risk stratification by standardized WG score classified patients into low and high risk predicting survival both in our cohort (p = <0.001) and TCGA cohort (p = 0.001). Pathway analysis using the most differentially regulated genes (n = 76) between the low and high risk groups revealed association of activated inflammatory/immune response pathways and mesenchymal subtype in the high risk group.

Conclusion

We have identified a 14 gene expression signature that can predict survival in GBM patients. A network analysis revealed activation of inflammatory response pathway specifically in high risk group. These findings may have implications in understanding of gliomagenesis, development of targeted therapies and selection of high risk cancer patients for alternate adjuvant therapies.  相似文献   

6.

Background

Tamoxifen significantly improves outcome for estrogen receptor-positive (ER+) breast cancer, but the 15-year recurrence rate remains 30%. The aim of this study was to identify gene profiles that accurately predicted the outcome of ER+ breast cancer patients who received adjuvant Tamoxifen mono-therapy.

Methodology/Principal Findings

Post-menopausal breast cancer patients diagnosed no later than 2002, being ER+ as defined by >1% IHC staining and having a frozen tumor sample with >50% tumor content were included. Tumor samples from 108 patients treated with adjuvant Tamoxifen were analyzed for the expression of 59 genes using quantitative-PCR. End-point was clinically verified recurrence to distant organs or ipsilateral breast. Gene profiles were identified using a model building procedure based on conditional logistic regression and leave-one-out cross-validation, followed by a non-parametric bootstrap (1000x re-sampling). The optimal profiles were further examined in 5 previously-reported datasets containing similar patient populations that were either treated with Tamoxifen or left untreated (n = 623). Three gene signatures were identified, the strongest being a 2-gene combination of BCL2-CDKN1A, exhibiting an accuracy of 75% for prediction of outcome. Independent examination using 4 previously-reported microarray datasets of Tamoxifen-treated patient samples (n = 503) confirmed the potential of BCL2-CDKN1A. The predictive value was further determined by comparing the ability of the genes to predict recurrence in an additional, previously-published, cohort consisting of Tamoxifen-treated (n = 58, p = 0.015) and untreated patients (n = 62, p = 0.25).

Conclusions/Significance

A novel gene expression signature predictive of outcome of Tamoxifen-treated patients was identified. The validation suggests that BCL2-CDKN1A exhibit promising predictive potential.  相似文献   

7.

Background

Respiratory muscle contractile performance is impaired by diabetes, mechanisms of which included altered carbohydrate and lipid metabolism, oxidative stress and changes in membrane electrophysiology. The present study examined to what extent these cellular perturbations involve changes in gene expression.

Methodology/Principal Findings

Diaphragm muscle from streptozotocin-diabetic rats was analyzed with Affymetrix gene expression arrays. Diaphragm from diabetic rats had 105 genes with at least ±2-fold significantly changed expression (55 increased, 50 decreased), and these were assigned to gene ontology groups based on over-representation analysis using DAVID software. There was increased expression of genes involved in palmitoyl-CoA hydrolase activity (a component of lipid metabolism) (P = 0.037, n = 2 genes, fold change 4.2 to 27.5) and reduced expression of genes related to carbohydrate metabolism (P = 0.000061, n = 8 genes, fold change −2.0 to −8.5). Other gene ontology groups among upregulated genes were protein ubiquitination (P = 0.0053, n = 4, fold change 2.2 to 3.4), oxidoreductase activity (P = 0.024, n = 8, fold change 2.1 to 6.0), and morphogenesis (P = 0.012, n = 10, fold change 2.1 to 4.3). Other downregulated gene groups were extracellular region (including extracellular matrix and collagen) (P = 0.00032, n = 13, fold change −2.2 to −3.7) and organogenesis (P = 0.032, n = 7, fold change −2.1 to −3.7). Real-time PCR confirmed the directionality of changes in gene expression for 30 of 31 genes tested.

Conclusions/Significance

These data indicate that in diaphragm muscle type 1 diabetes increases expression of genes involved in lipid energetics, oxidative stress and protein ubiquitination, decreases expression of genes involved in carbohydrate metabolism, and has little effect on expression of ion channel genes. Reciprocal changes in expression of genes involved in carbohydrate and lipid metabolism may change the availability of energetic substrates and thereby directly modulate fatigue resistance, an important issue for a muscle like the diaphragm which needs to contract without rest for the entire lifetime of the organism.  相似文献   

8.
The pathophysiology of cystic fibrosis (CF) lung disease remains incompletely understood. New explanations for the pathogenesis of CF lung disease may be discovered by studying the patterns of protein expression in cultured human nasal epithelial cells (HNEC). To that aim, we compared the level of protein expressions in primary cultures of HNEC from nasal polyps secondary to CF (CFNP, n = 4), primary nasal polyps (NP, n = 8) and control mucosa (CTRL, n = 4) using isobaric tag for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography (LC)-MS-MS. The analysis of the data revealed 42 deregulated protein expressions in CFNP compared to NP and CTRL, suggesting that these alterations are related to CF. Overall, AmiGo analysis highlighted six major pathways important for cell functions that seem to be impaired: metabolism, G protein process, inflammation and oxidative stress response, protein folding, proteolysis and structural proteins. Among them, glucose and fatty acid metabolic pathways could be impaired in CF with nine deregulated proteins. Our proteomic study provides a reproducible set of differentially expressed proteins in airway epithelial cells from CF patients and reveals many novel deregulated proteins that could lead to further studies aiming to clarify the involvement of such proteins in CF pathophysiology.  相似文献   

9.
ABSTRACT: Splenomegaly is a common sign of primary myelofibrosis (PMF), post-polycythemia vera myelofibrosis (post-PV MF), and post-essential thrombocythemia myelofibrosis (post-ET MF) that is associated with bothersome symptoms, which have a significant negative impact on patients' quality of life. It may also be present in patients with advanced polycythemia vera (PV) or essential thrombocythemia (ET). Until recently, none of the therapies used to treat MF were particularly effective in reducing splenomegaly. The discovery of an activating Janus kinase 2 (JAK2) activating mutation (JAK2V617F) that is present in almost all patients with PV and in about 50-60?% of patients with ET and PMF led to the initiation of several trials investigating the clinical effectiveness of various JAK2 (or JAK1/JAK2) inhibitors for the treatment of patients with ET, PV, and MF. Some of these trials have documented significant clinical benefit of JAK inhibitors, particularly in terms of regression of splenomegaly. In November 2011, the US Food and Drug Administration approved the use of the JAK1- and JAK2-selective inhibitor ruxolitinib for the treatment of patients with intermediate or high-risk myelofibrosis, including PMF, post-PV MF, and post-ET MF. This review discusses current therapeutic options for splenomegaly associated with primary or secondary MF and the treatment potential of the JAK inhibitors in this setting.  相似文献   

10.

Background

Potential regulators of adipogenesis include microRNAs (miRNAs), small non-coding RNAs that have been recently shown related to adiposity and differentially expressed in fat depots. However, to date no study is available, to our knowledge, regarding miRNAs expression profile during human adipogenesis. Thereby, the aim of this study was to investigate whether miRNA pattern in human fat cells and subcutaneous adipose tissue is associated to obesity and co-morbidities and whether miRNA expression profile in adipocytes is linked to adipogenesis.

Methodology/Principal Findings

We performed a global miRNA expression microarray of 723 human and 76 viral mature miRNAs in human adipocytes during differentiation and in subcutaneous fat samples from non-obese (n = 6) and obese with (n = 9) and without (n = 13) Type-2 Diabetes Mellitus (DM-2) women. Changes in adipogenesis-related miRNAs were then validated by RT-PCR. Fifty of 799 miRNAs (6.2%) significantly differed between fat cells from lean and obese subjects. Seventy miRNAs (8.8%) were highly and significantly up or down-regulated in mature adipocytes as compared to pre-adipocytes. Otherwise, 17 of these 799 miRNAs (2.1%) were correlated with anthropometrical (BMI) and/or metabolic (fasting glucose and/or triglycerides) parameters. We identified 11 miRNAs (1.4%) significantly deregulated in subcutaneous fat from obese subjects with and without DM-2. Interestingly, most of these changes were associated with miRNAs also significantly deregulated during adipocyte differentiation.

Conclusions/Significance

The remarkable inverse miRNA profile revealed for human pre-adipocytes and mature adipocytes hints at a closely crosstalk between miRNAs and adipogenesis. Such candidates may represent biomarkers and therapeutic targets for obesity and obesity-related complications.  相似文献   

11.

Background

Morbidity and mortality rates of low birth weight (LBW) newborns at term are higher than rates in normal birth weight (NBW) newborns. LBW newborns are at greater risk to acquire recurrent bacterial and viral infections during their first few weeks of life possibly as an outcome of compromised innate immune functions. As adaptive immunity is in a naive state, increased risk of infection of LBW as compared to NBW newborns may reflect impairments in innate immunity.

Methodology

To characterize the increased susceptibility to infections in LBW newborns we used microarray technology to identify differences in gene expression in LBW newborns (n = 8) compared to NBW newborns (n = 4) using cord blood. The results obtained from the microarray study were validated on a larger number of samples using real time RT-PCR (LBW = 22, NBW = 18) and western blotting (LBW = 12, NBW = 12). The Interferome database was used to identify interferon (IFN) signature genes and ingenuity pathway analysis identified canonical pathways and biological functions associated with the differentially expressed genes in LBW newborns. ELISAs for IFNs and bactericidal/permeability-increasing protein were performed in both LBW and NBW newborns and in adults (LBW = 18, NBW = 18, Adults  = 8).

Principal Findings

Upon microarray analysis, we identified 1,391 differentially expressed genes, of which, 1,065 genes were down-regulated and 326 genes were up-regulated in the LBW compared to NBW newborns. Of note, 70 IFN-signature genes were found to be significantly down-regulated in LBW compared to NBW newborns. Ingenuity pathway analysis revealed pattern recognition receptors signaling including Toll-Like Receptors (TLRs) -1, -5, and -8 genes and IFN signaling as the most significantly impacted pathways. Respiratory infectious diseases were the most significantly affected bio-functions in LBW newborns.

Conclusion and Significance

Diminished PRRs, IFN-signature, and BPI gene expression raises the possibility that impairments in these pathways contribute to the susceptibility of LBW term infants to infection.  相似文献   

12.
Lion populations have undergone a severe decline in West Africa. As baseline for conservation management, we assessed the group structure of lions in the Pendjari Biosphere Reserve in Benin. This reserve, composed of one National Park and two Hunting Zones, is part of the WAP transboundary complex of protected areas. Overall mean group size was 2.6±1.7 individuals (n = 296), it was significantly higher in the National Park (2.7±1.7, n = 168) than in the Hunting Zones (2.2±1.5, n = 128). Overall adult sex ratio was even, but significantly biased towards females (0.67) in the National Park and towards males (1.67) in the Hunting Zones. Our results suggest that the Pendjari lion population is affected by perturbations, such as trophy hunting.  相似文献   

13.
14.

Background

Inflammatory bowel disease (IBD) is associated with a defective intestinal barrier and enhanced adaptive immune responses against commensal microbiota. Immune responses against food antigens in IBD patients remain poorly defined.

Methods

IgG and IgA specific for food and microfloral antigens (wheat and milk extracts; purified ovalbumin; Escherichia coli and Bacteroides fragilis lysates; mannan from Saccharomyces cerevisiae) were analyzed by ELISA in the serum and feces of patients with Crohn''s disease (CD; n = 52 for serum and n = 20 for feces), ulcerative colitis (UC; n = 29; n = 17), acute gastroenteritis/colitis (AGE; n = 12; n = 9) as well as non-inflammatory controls (n = 61; n = 39).

Results

Serum anti-Saccharomyces cerevisiae antibodies (ASCA) and anti-B. fragilis IgG and IgA levels were increased in CD patients whereas antibody (Ab) levels against E. coli and food antigens were not significantly different within the patient groups and controls. Subgroup analysis revealed that CD patients with severe diseases defined by stricturing and penetrating lesions have slightly higher anti-food and anti-microbial IgA levels whereas CD and UC patients with arthropathy have decreased anti-food IgG levels. Treatment with anti-TNF-α Abs in CD patients was associated with significantly decreased ASCA IgG and IgA and anti-E. coli IgG. In the feces specific IgG levels against all antigens were higher in CD and AGE patients while specific IgA levels were higher in non-IBD patients. Anti-food IgG and IgA levels did not correlate with food intolerance.

Summary

In contrast to anti-microbial Abs, we found only minor changes in serum anti-food Ab levels in specific subgroups of IBD patients. Fecal Ab levels towards microbial and food antigens show distinct patterns in controls, CD and UC patients.  相似文献   

15.
Improving clinical outcomes among high risk Class III β thalassemia major patients (Class IIIHR) receiving an allogeneic SCT remains a challenge. From October, 2009 a treosulfan based regimen (TreoFluT) was used for all consecutive Class III patients (n = 50). The clinical outcomes were compared with the historical conventional busulfan (BuCy) based regimen (n = 139). Use of TreoFluT was associated with a significantly reduced incidence of sinusoidal obstruction syndrome (SOS) among Class IIIHR cases (78% to 30%; P = 0.000) and early TRM (46% to 13%; p = 0.005). There was also a trend towards better engraftment in the Class IIIHR subset (P = 0.055). However, the use of bone marrow (BM) as source of stem cells along with the TreoFluT regimen was associated with 50% early mixed chimerism which reduced to 8.5% with the use of a peripheral blood stem cell graft (PBSC). Use of a PBSC graft was not associated with a significant increase in the incidence of acute or chronic graft versus host disease (GVHD). The overall and event free survival was significantly better among the Class IIIHR subset with the use of TreoFluT Vs. BuCy (86.6±7.3 Vs. 39.4±6.8%; P = 0.002 and 77.8±8.8 Vs. 32.4±6.5%; P = 0.003 respectively). A TreoFluT conditioning regimen with a PBSC graft can significantly improve clinical outcomes of Class IIIHR patients.  相似文献   

16.
Differences in the relative abundance of dinucleotides, if any may provide important clues on host-driven evolution of viruses. We studied dinucleotide frequencies of large DNA viruses infecting vertebrates (n = 105; viruses infecting mammals = 99; viruses infecting aves = 6; viruses infecting reptiles = 1) and invertebrates (n = 88; viruses infecting insects = 84; viruses infecting crustaceans = 4). We have identified systematic depletion of CpT(ApG) dinucleotides and over-representation of CpG dinucleotides as the unique genomic signature of large DNA viruses infecting invertebrates. Detailed investigation of this unique genomic signature suggests the existence of invertebrate host-induced pressures specifically targeting CpT(ApG) and CpG dinucleotides. The depletion of CpT dinucleotides among large DNA viruses infecting invertebrates is at least in part, explained by non-canonical DNA methylation by the infected host. Our findings highlight the role of invertebrate host-related factors in shaping virus evolution and they also provide the necessary framework for future studies on evolution, epigenetics and molecular biology of viruses infecting this group of hosts.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号