首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Commensal bacteria comprise a large part of the microbial world, playing important roles in human development, health and disease. However, little is known about the genomic content of commensals or how related they are to their pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that they engage extensively in genetic exchange.  相似文献   

2.
We performed whole-genome sequencing (WGS) of 208 genomes from 53 families affected by simplex autism. For the majority of these families, no copy-number variant (CNV) or candidate de novo gene-disruptive single-nucleotide variant (SNV) had been detected by microarray or whole-exome sequencing (WES). We integrated multiple CNV and SNV analyses and extensive experimental validation to identify additional candidate mutations in eight families. We report that compared to control individuals, probands showed a significant (p = 0.03) enrichment of de novo and private disruptive mutations within fetal CNS DNase I hypersensitive sites (i.e., putative regulatory regions). This effect was only observed within 50 kb of genes that have been previously associated with autism risk, including genes where dosage sensitivity has already been established by recurrent disruptive de novo protein-coding mutations (ARID1B, SCN2A, NR3C2, PRKCA, and DSCAM). In addition, we provide evidence of gene-disruptive CNVs (in DISC1, WNT7A, RBFOX1, and MBD5), as well as smaller de novo CNVs and exon-specific SNVs missed by exome sequencing in neurodevelopmental genes (e.g., CANX, SAE1, and PIK3CA). Our results suggest that the detection of smaller, often multiple CNVs affecting putative regulatory elements might help explain additional risk of simplex autism.  相似文献   

3.
全基因组序列测定为揭示植物重要性状形成的分子和遗传机制提供了强大工具,基因组学研究正开始指引着农作物新品种培育向定向化和精确化转变.在新一代测序技术的带动下,植物全基因组测序的热潮已经到来.对迄今开展的高等植物基因组测序工作进行简要回顾,并对未来的研究热点进行展望.  相似文献   

4.
High-throughput sequencing has been dramatically accelerating the discovery of microsatellite markers (also known as Simple Sequence Repeats). Both 454 and Illumina reads have been used directly in microsatellite discovery and primer design (the “Seq-to-SSR” approach). However, constraints of this approach include: 1) many microsatellite-containing reads do not have sufficient flanking sequences to allow primer design, and 2) difficulties in removing microsatellite loci residing in longer, repetitive regions. In the current study, we applied the novel “Seq-Assembly-SSR” approach to overcome these constraints in Anisogramma anomala. In our approach, Illumina reads were first assembled into a draft genome, and the latter was then used in microsatellite discovery. A. anomala is an obligate biotrophic ascomycete that causes eastern filbert blight disease of commercial European hazelnut. Little is known about its population structure or diversity. Approximately 26 M 146 bp Illumina reads were generated from a paired-end library of a fungal strain from Oregon. The reads were assembled into a draft genome of 333 Mb (excluding gaps), with contig N50 of 10,384 bp and scaffold N50 of 32,987 bp. A bioinformatics pipeline identified 46,677 microsatellite motifs at 44,247 loci, including 2,430 compound loci. Primers were successfully designed for 42,923 loci (97%). After removing 2,886 loci close to assembly gaps and 676 loci in repetitive regions, a genome-wide microsatellite database of 39,361 loci was generated for the fungus. In experimental screening of 236 loci using four geographically representative strains, 228 (96.6%) were successfully amplified and 214 (90.7%) produced single PCR products. Twenty-three (9.7%) were found to be perfect polymorphic loci. A small-scale population study using 11 polymorphic loci revealed considerable gene diversity. Clustering analysis grouped isolates of this fungus into two clades in accordance with their geographic origins. Thus, the “Seq-Assembly-SSR” approach has proven to be a successful one for microsatellite discovery.  相似文献   

5.
Auxin regulates numerous aspects of plant growth and development. For many years, investigating roles for AUXIN BINDING PROTEIN1 (ABP1) in auxin response was impeded by the reported embryo lethality of mutants defective in ABP1. However, identification of a viable Arabidopsis thaliana TILLING mutant defective in the ABP1 auxin binding pocket (abp1-5) allowed inroads into understanding ABP1 function. During our own studies with abp1-5, we observed growth phenotypes segregating independently of the ABP1 lesion, leading us to sequence the genome of the abp1-5 line described previously. We found that the abp1-5 line we sequenced contains over 8000 single nucleotide polymorphisms in addition to the ABP1 mutation and that at least some of these mutations may originate from the Arabidopsis Wassilewskija accession. Furthermore, a phyB null allele in the abp1-5 background is likely causative for the long hypocotyl phenotype previously attributed to disrupted ABP1 function. Our findings complicate the interpretation of abp1-5 phenotypes for which no complementation test was conducted. Our findings on abp1-5 also provide a cautionary tale illustrating the need to use multiple alleles or complementation lines when attributing roles to a gene product.  相似文献   

6.
Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America.  相似文献   

7.
IntroductionClinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD). Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS) for the diagnostic approach to ASD.MethodsWe identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents.ResultsThree male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6).ConclusionsWe reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder.  相似文献   

8.
9.
A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F) viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4). Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures.  相似文献   

10.
Whole genome sequencing has allowed rapid progress in the application of forward genetics in model species. In this study, we demonstrated an application of next-generation sequencing for forward genetics in a complex crop genome. We sequenced an ethyl methanesulfonate-induced mutant of Sorghum bicolor defective in hydrogen cyanide release and identified the causal mutation. A workflow identified the causal polymorphism relative to the reference BTx623 genome by integrating data from single nucleotide polymorphism identification, prior information about candidate gene(s) implicated in cyanogenesis, mutation spectra, and polymorphisms likely to affect phenotypic changes. A point mutation resulting in a premature stop codon in the coding sequence of dhurrinase2, which encodes a protein involved in the dhurrin catabolic pathway, was responsible for the acyanogenic phenotype. Cyanogenic glucosides are not cyanogenic compounds but their cyanohydrins derivatives do release cyanide. The mutant accumulated the glucoside, dhurrin, but failed to efficiently release cyanide upon tissue disruption. Thus, we tested the effects of cyanide release on insect herbivory in a genetic background in which accumulation of cyanogenic glucoside is unchanged. Insect preference choice experiments and herbivory measurements demonstrate a deterrent effect of cyanide release capacity, even in the presence of wild-type levels of cyanogenic glucoside accumulation. Our gene cloning method substantiates the value of (1) a sequenced genome, (2) a strongly penetrant and easily measurable phenotype, and (3) a workflow to pinpoint a causal mutation in crop genomes and accelerate in the discovery of gene function in the postgenomic era.  相似文献   

11.
Whole genome sequencing (WGS) technology holds great promise as a tool for the forensic epidemiology of bacterial pathogens. It is likely to be particularly useful for studying the transmission dynamics of an observed epidemic involving a largely unsampled ‘reservoir’ host, as for bovine tuberculosis (bTB) in British and Irish cattle and badgers. BTB is caused by Mycobacterium bovis, a member of the M. tuberculosis complex that also includes the aetiological agent for human TB. In this study, we identified a spatio-temporally linked group of 26 cattle and 4 badgers infected with the same Variable Number Tandem Repeat (VNTR) type of M. bovis. Single-nucleotide polymorphisms (SNPs) between sequences identified differences that were consistent with bacterial lineages being persistent on or near farms for several years, despite multiple clear whole herd tests in the interim. Comparing WGS data to mathematical models showed good correlations between genetic divergence and spatial distance, but poor correspondence to the network of cattle movements or within-herd contacts. Badger isolates showed between zero and four SNP differences from the nearest cattle isolate, providing evidence for recent transmissions between the two hosts. This is the first direct genetic evidence of M. bovis persistence on farms over multiple outbreaks with a continued, ongoing interaction with local badgers. However, despite unprecedented resolution, directionality of transmission cannot be inferred at this stage. Despite the often notoriously long timescales between time of infection and time of sampling for TB, our results suggest that WGS data alone can provide insights into TB epidemiology even where detailed contact data are not available, and that more extensive sampling and analysis will allow for quantification of the extent and direction of transmission between cattle and badgers.  相似文献   

12.
Only a few genes remain in the mitochondrial genome retained by every eukaryotic organism that carry out essential functions and are implicated in severe diseases. Experimentally relocating these few genes to the nucleus therefore has both therapeutic and evolutionary implications. Numerous unproductive attempts have been made to do so, with a total of only 5 successes across all organisms. We have taken a novel approach to relocating mitochondrial genes that utilizes naturally nuclear versions from other organisms. We demonstrate this approach on subunit 9/c of ATP synthase, successfully relocating this gene for the first time in any organism by expressing the ATP9 genes from Podospora anserina in Saccharomyces cerevisiae. This study substantiates the role of protein structure in mitochondrial gene transfer: expression of chimeric constructs reveals that the P. anserina proteins can be correctly imported into mitochondria due to reduced hydrophobicity of the first transmembrane segment. Nuclear expression of ATP9, while permitting almost fully functional oxidative phosphorylation, perturbs many cellular properties, including cellular morphology, and activates the heat shock response. Altogether, our study establishes a novel strategy for allotopic expression of mitochondrial genes, demonstrates the complex adaptations required to relocate ATP9, and indicates a reason that this gene was only transferred to the nucleus during the evolution of multicellular organisms.  相似文献   

13.

Background

Here, we aimed to gain a comprehensive picture of the HIV-1 diversity in the northeast and southeast part of Brazil. To this end, a high-throughput sequencing-by-synthesis protocol and instrument were used to characterize the near full length (NFLG) and partial HIV-1 proviral genome in 259 HIV-1 infected blood donors at four major blood centers in Brazil: Pro-Sangue foundation (São Paulo state (SP), n 51), Hemominas foundation (Minas Gerais state (MG), n 41), Hemope foundation (Recife state (PE), n 96) and Hemorio blood bank (Rio de Janeiro (RJ), n 70).

Materials and Methods

A total of 259 blood samples were obtained from 195 donors with long-standing infections and 64 donors with a lack of stage information. DNA was extracted from the peripheral blood mononuclear cells (PBMCs) to amplify the HIV-1 NFLGs from five overlapping fragments. The amplicons were molecularly bar-coded, pooled, and sequenced by Illumina paired-end protocol.

Results

Of the 259 samples studied, 208 (80%) NFLGs and 49 (18.8%) partial fragments were de novo assembled into contiguous sequences and successfully subtyped. Of these 257 samples, 183 (71.2%) were pure subtypes consisting of clade B (n = 167, 65%), C (n = 10, 3.9%), F1 (n = 4, 1.5%), and D (n = 2, 0.7%). Recombinant viruses were detected in 74 (28.8%) samples and consist of unique BF1 (n = 41, 15.9%), BC (n = 7, 2.7%), BCF1 (n = 4, 1.5%), CF1 and CDK (n = 1, 0.4%, each), CRF70_BF1 (n = 4, 1.5%), CRF71_BF1 (n = 12, 4.7%), and CRF72_BF1 (n = 4, 1.5%). Evidence of dual infection was detected in four patients coinfected with the same subtype (n = 3) and distinct subtype (n = 1).

Conclusion

Based on this work, subtype B appears to be the prevalent subtype followed by a high proportion of intersubtype recombinants that appeared to be arising continually in this country. Our study represents the largest analysis of the viral NFLG ever undertaken worldwide and provides insights into the understanding the genesis of the HIV-1 epidemic in this particular area of South America and informs vaccine design and clinical trials.  相似文献   

14.
Next-Generation Sequencing and bioinformatics are powerful tools for analyzing the large number of DNA sequences present in an immune library. In this work, we constructed a cDNA library of single domain antibodies from a llama immunized with staphylococcal enterotoxin B. The resulting library was sequenced, resulting in approximately 8.5 million sequences with 5.4 million representing intact, useful sequences. The sequenced library was interrogated using sequences of known SEB-binding single domain antibodies from the library obtained through phage display panning methods in a previous study. New antibodies were identified, produced, and characterized, and were shown to have affinities and melting temperatures comparable to those obtained by traditional panning methods. This demonstrates the utility of using NGS as a complementary tool to phage-displayed biopanning as a means for rapidly obtaining additional antibodies from an immune library. It also shows that phage display, using a library of high diversity, is able to select high quality antibodies even when they are low in frequency.  相似文献   

15.
S. marcescens FS14 was isolated from an Atractylodes macrocephala Koidz plant that was infected by Fusarium oxysporum and showed symptoms of root rot. With the completion of the genome sequence of FS14, the first comprehensive comparative-genomic analysis of the Serratia genus was performed. Pan-genome and COG analyses showed that the majority of the conserved core genes are involved in basic cellular functions, while genomic factors such as prophages contribute considerably to genome diversity. Additionally, a Type I restriction-modification system, a Type III secretion system and tellurium resistance genes are found in only some Serratia species. Comparative analysis further identified that S. marcescens FS14 possesses multiple mechanisms for antagonism against other microorganisms, including the production of prodigiosin, bacteriocins, and multi-antibiotic resistant determinants as well as chitinases. The presence of two evolutionarily distinct Type VI secretion systems (T6SSs) in FS14 may provide further competitive advantages for FS14 against other microbes. To our knowledge, this is the first report of comparative analysis on T6SSs in the genus, which identifies four types of T6SSs in Serratia spp.. Competition bioassays of FS14 against the vital plant pathogenic bacterium Ralstonia solanacearum and fungi Fusarium oxysporum and Sclerotinia sclerotiorum were performed to support our genomic analyses, in which FS14 demonstrated high antagonistic activities against both bacterial and fungal phytopathogens.  相似文献   

16.
Here we report the complete sequence of the mitochondrial (mt) genome of the necrotrophic phytopathogenic fungus Sclerotinia borealis, a member of the order Helotiales of Ascomycetes. The 203,051 bp long mtDNA of S. borealis represents one of the largest sequenced fungal mt genomes. The large size is mostly determined by the presence of mobile genetic elements, which include 61 introns. Introns contain a total of 125,394 bp, are scattered throughout the genome, and are found in 12 protein-coding genes and in the ribosomal RNA genes. Most introns contain complete or truncated ORFs that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Integrations of mobile elements are also evidenced by the presence of two regions similar to fragments of inverton-like plasmids. Although duplications of some short genome regions, resulting in the appearance of truncated extra copies of genes, did occur, we found no evidences of extensive accumulation of repeat sequences accounting for mitochondrial genome size expansion in some other fungi. Comparisons of mtDNA of S. borealis with other members of the order Helotiales reveal considerable gene order conservation and a dynamic pattern of intron acquisition and loss during evolution. Our data are consistent with the hypothesis that horizontal DNA transfer has played a significant role in the evolution and size expansion of the S. borealis mt genome.  相似文献   

17.
水稻基因组测序的研究进展   总被引:3,自引:0,他引:3  
杨宇  陈瑞阳 《遗传》2001,23(6):580-582
水稻是最重要的粮食作物之一,世界上大约有一半的人口以水稻为主要粮食。作为基因组研究的模式植物,水稻基因组的测序工作已在世界范围内展开。此项研究工作不仅能破译水稻全基因组序列,还将有助于了解其他禾本科植物的基因组信息。本对水稻基因组测序工作进展作一综述。  相似文献   

18.
水稻是最重要的粮食作物之一,世界上大约有一半的人口以水稻为主要粮食.作为基因组研究的模式植物,水稻基因组的测序工作已在世界范围内展开.此项研究工作不仅能破译水稻全基因组序列,还将有助于了解其他禾本科植物的基因组信息.本文对水稻基因组测序工作进展作一综述。 Abstract:Because of the importamce of rice as the staple food source for over half of the world population and since rice is a leading model plant for genomic studies,an international effort has now begun to sequence the rice genome.This project eventually will reveal all of the genomic sequence information of rice and be an indispensable aid in understanding the genomics of other grass species.In this paper,the development and research progress in sequencing of rice genome are reviewed.  相似文献   

19.
本研究对眼镜蛇科广西华珊瑚蛇(Sinomicrurus peinani)线粒体基因组序列进行测定与分析,并探究其与近缘种的系统发育关系。结果表明,广西华珊瑚蛇线粒体基因组是一条全长19 477 bp的环状DNA,基因组碱基构成为A(33.4%)、T(28.1%)、C(26.6%)和G(11.9%)。共编码38个基因,包含2个核糖体RNA(rRNA)基因、22个转移RNA(tRNA)基因、13个蛋白质编码基因及1个线粒体基因控制区(D-loop)。13个蛋白质编码基因均采用AUG作为起始密码子,UAA和UGA作为终止密码子;蛋白质编码基因编码频率较高的氨基酸分别为亮氨酸(Leu)、异亮氨酸(Ile)、苏氨酸(Thr)和丝氨酸(Ser);相对密码子使用度(RSCU)频率最高的4个密码子依次是CGA、UGA、CUA和CCA。22个tRNA,除tRNASer(一臂两环)外其他均可形成典型三叶草结构。基于眼镜蛇科线粒体基因组系统发育分析结果表明,与广西华珊瑚蛇关系最密切的是中华珊瑚蛇(Sinomicrurus macclellandi),其次是孟加拉眼镜蛇(Naja kaouthia)与眼镜王蛇(Ophiophagus hannah)。  相似文献   

20.
Iconographic evidence from Egypt suggests that watermelon pulp was consumed there as a dessert by 4,360 BP. Earlier archaeobotanical evidence comes from seeds from Neolithic settlements in Libya, but whether these were watermelons with sweet pulp or other forms is unknown. We generated genome sequences from 6,000- and 3,300-year-old seeds from Libya and Sudan, and from worldwide herbarium collections made between 1824 and 2019, and analyzed these data together with resequenced genomes from important germplasm collections for a total of 131 accessions. Phylogenomic and population-genomic analyses reveal that (1) much of the nuclear genome of both ancient seeds is traceable to West African seed-use “egusi-type” watermelon (Citrullus mucosospermus) rather than domesticated pulp-use watermelon (Citrullus lanatus ssp. vulgaris); (2) the 6,000-year-old watermelon likely had bitter pulp and greenish-white flesh as today found in C. mucosospermus, given alleles in the bitterness regulators ClBT and in the red color marker LYCB; and (3) both ancient genomes showed admixture from C. mucosospermus, C. lanatus ssp. cordophanus, C. lanatus ssp. vulgaris, and even South African Citrullus amarus, and evident introgression between the Libyan seed (UMB-6) and populations of C. lanatus. An unexpected new insight is that Citrullus appears to have initially been collected or cultivated for its seeds, not its flesh, consistent with seed damage patterns induced by human teeth in the oldest Libyan material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号