共查询到20条相似文献,搜索用时 15 毫秒
1.
Rókus Kriszt Csilla Krifaton Sándor Szoboszlay Mátyás Cserháti Balázs Kriszt József Kukolya árpád Czéh Szilvia Fehér-Tóth Lívia T?r?k Zsuzsanna Sz?ke Krisztina J. Kovács Teréz Barna Szilamér Ferenczi 《PloS one》2012,7(9)
Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES), which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil), 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight) and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K408 prior to the feeding did not display any estrogenic effect neither on uterine weight nor on the expression of estrogen-regulated genes. Consequently, the identification of Rhodococcus pyridinivorans K408 strain in ZEA biodegradation proved to be a very efficient biological tool that is able to eliminate the complete estrogenic effects of ZEA. It is also remarkable that this biotransformation pathway of ZEA did not result in any residual estrogenic effects. 相似文献
2.
Peng Peng Haiyan Yang Ruibao Jia Li Li 《Applied microbiology and biotechnology》2013,97(12):5585-5595
A newly isolated Rhodococcus sp. strain p52 could aerobically utilize dibenzofuran as the sole source of carbon and energy, and completely remove dibenzofuran at 500 mg?l?1 within 48 h. The strain metabolizes dibenzofuran by initial angular dioxygenation to yield 2,2′,3-trihydroxybiphenyl. Strain p52 could also remove 70 % of 100 mg?l?1 2-chlorodibenzofuran within 96 h and could metabolize a variety of aromatic compounds, namely dibenzo-p-dioxin, 2,8-dichlorodibenzofuran, dibenzothiophene, biphenyl, naphthalene, fluorene, phenanthrene, anthracene, carbazole, indole, xanthene, phenoxathiin, xanthone, and 9-fluorenone. Two distinct gene clusters encoding angular dioxygenases (DbfA and DfdA) were amplified and sequenced. The dbfA and dfdA gene clusters are located on two circular plasmids, pDF01 and pDF02, respectively. Both plasmids are self-transmissible; that is, they can transfer to the Gram-positive bacterium Bacillus cereus by conjugation. 相似文献
3.
Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain 总被引:2,自引:0,他引:2
Tanaka Y Matsui T Konishi J Maruhashi K Kurane R 《Applied microbiology and biotechnology》2002,59(2-3):325-328
Rhodococcus sp. KT462, which can grow on either benzothiophene (BT) or dibenzothiophene (DBT) as the sole source of sulfur, was newly isolated and characterized. GC and GC-MS analyses revealed that strain KT462 has the same BT desulfurization pathway as that reported for Paenibacillus sp. A11-2 and Sinorhizobium sp. KT55. The desulfurized product of DBT produced by this strain, as well as other DBT-desulfurizing bacteria such as R. erythropolis KA2-5-1 and R. erythropolis IGTS8, was 2-hydroxybiphenyl. A resting cells study indicated that this strain was also able to degrade various alkyl derivatives of BT and DBT. 相似文献
4.
Tabatabaei Yazdi M. Malekzadeh F. Zarrini Gh. Faramarzi M.A. Kamranpour N. Khaleghparast Sh. 《World journal of microbiology & biotechnology》2001,17(7):731-737
Fifteen strains of microorganisms with ability to degrade cholesterol were isolated. Among them a Gram-positive, non-motile, non-sporing bacterium with meso-DAP in the cell wall and with a rod-coccus cycle showed the highest ability for cholesterol degradation. It was identified as Rhodococcus sp. strain 2C and was deposited by code 1633 in Persian type culture collection (PTCC). This strain was able to produce high levels of both extracellular and cell-bound cholesterol oxidases in media containing cholesterol as a sole carbon source. The effects of medium composition and physical parameters on cholesterol oxidase production were studied. The optimized medium was found to contain cholesterol 0.15% (w/v), yeast extract 0.3% (w/v), diammonium hydrogen phosphate 0.1% (w/v), Tween 80 (0.05%). The optimum pH and temperature for cholesterol oxidase production in optimized medium were found to be 8–30 °C respectively. Triton X-100 showed the greatest effect in releasing the cell-bound enzyme. The first and most probably the main metabolite of cholesterol degradation was purified and identified as 4-cholestene-3-one. 相似文献
5.
6.
A bacterial strain PNS-1, isolated from activated sludge derived from a domestic wastewater treatment unit, could utilize 4-aminobenzenesulphonate (4-ABS) as a sole organic carbon and energy source under aerobic conditions. Degradation rate varied with the initial concentration of 4-ABS and maximum specific substrate removal rate was observed at 400mg 4-ABS l–1 (2.3mM). Average biomass yield was 0.31mg/mg 4-ABS degraded. Biokinetic parameters for the degradation, determined using the Haldane relationship, were 0.26h–1 (max), 6mg\,l–1 (KS) and 4020mg\,l–1 (Ki). Strain PNS-1 could not utilize other isomers of benzenesulphonate and 5-sulphosalicylate as growth substrates whereas protocatechuate, pyrocatechuate and p-hydroxybenzoate could be degraded. In mixed substrate batch cultivations, where 4-ABS was one of the component, protocatechuate and 4-ABS were simultaneously utilized. Presence of 2- or 3-ABS decreased the growth and substrate degradation rates of 4-ABS. With 4-ABS and pyrocatechuate, although a lag phase was observed prior to pyrocatechuate degradation, a diauxic growth pattern was not seen. 相似文献
7.
Biodegradation of benzo(a)pyrene by a newly isolated Fusarium sp 总被引:1,自引:0,他引:1
Chulalaksananukul S Gadd GM Sangvanich P Sihanonth P Piapukiew J Vangnai AS 《FEMS microbiology letters》2006,262(1):99-106
Benzo(a)pyrene (BaP) is a five-ring polycyclic aromatic hydrocarbon produced by the incomplete combustion of organic materials. It is one of the priority pollutants listed by the US Environmental Protection Agency. This study describes a fungal isolate that is able to biodegrade benzo(a)pyrene. The filamentous fungus, isolated from leaves of Pterocarpus macrocarpus Kurz., was identified as a Fusarium sp. (strain E033). Fusarium sp. E033 was able to survive in the presence of benzo(a)pyrene concentrations up to 1.2 mM (300 mg L(-1)). Biodegradation experiments using 0.4 mM (100 mg L(-1)) benzo(a)pyrene demonstrated that Fusarium sp. E033 was able to degrade 65-70% of the initial benzo(a)pyrene provided, and two transformation products, a dihydroxy dihydro-benzo(a)pyrene and a benzo(a)pyrene-quinone, were detected within 30 days of incubation at 32 degrees C. The factors affecting biodegradation efficiency were also investigated. While increasing aeration promoted better fungal growth and benzo(a)pyrene biodegradation, increasing the glucose concentration from 5 to 50 mM had an adverse effect on biodegradation. Ethanol and methanol, provided at 5 mM to increase benzo(a)pyrene water solubility, increased the fungal biomass yield but did not promote degradation. The Fusarium sp. E033 isolated in this study can tolerate and degrade relatively high concentrations of benzo(a)pyrene, suggesting its potential application in benzo(a)pyrene bioremediation. 相似文献
8.
Rhodococcus rhodochrous was grown in the presence of oneof three plasticizers: bis 2-ethylhexyl adipate (BEHA), dioctyl phthalate (DOP) ordioctyl terephthalate (DOTP). None of the plasticizers were degraded unless anothercarbon source, such as hexadecane, was also present. When R. rhodochrous was grownwith hexadecane as a co-substrate, BEHA was completely degraded and the DOP was degraded slightly. About half of the DOTP was degraded, if hexadecane were present.In all of these growth studies, the toxicity of the media, which was assessed usingthe Microtox assay, increased as the organism degraded the plasticizer. In each case, therewas an accumulation of one or two intermediates in the growth medium as the toxicityincreased. One of these was identified as 2-ethylhexanoic acid and it was observed forall three plasticizers. Its concentration increased until degradation of the plasticizershad stopped and it was always present at the end of the fermentation. The other intermediatewas identified as 2-ethylhexanol and this was only observed forgrowth in the presence of BEHA. The alcohol was observed early in the growth studies with BEHA and haddisappeared by the end of the experiment. Both the 2-ethylhexanol and 2-ethylhexanoicacid were shown to be toxic and their presence explained the increase of toxicity asthe fermentations proceeded. The appearance of these intermediates was consistent with similar degradation mechanisms for all three plasticizers involving hydrolysisof the ester bonds followed by oxidation of the released alcohol. 相似文献
9.
A novel 4-nitrotoluene-degrading bacterial strain was isolated from pesticides contaminated effluent-sediment and identified as Rhodococcus pyridinivorans NT2 based on morphological and biochemical properties and 16S rDNA sequencing. The strain NT2 degraded 4-NT (400 mg l?1) with rapid growth at the end of 120 h, reduced surface tension of the media from 71 to 29 mN m?1 and produced glycolipidic biosurfactants (45 mg l?1). The biosurfactant was purified and characterized as trehalose lipids. The biosurfactant was stable in high salinity (10 % w/v NaCl), elevated temperatures (120 °C for 15 min) and a wide pH range (2.0–10.0). The noticeable changes during biodegradation were decreased hydrophobicity; an increase in degree of fatty acid saturation, saturated/unsaturated ratio and cyclopropane fatty acid. Biodegradation of 4-NT was accompanied by the accumulation of ammonium (NH4 +) and negligible amount of nitrite ion (NO2 ?). Product stoichiometry showed a carbon (C) and nitrogen (N) mass balance of 37 and 35 %, respectively. Biodegradation of 4-NT proceeded by oxidation at the methyl group to form 4-nitrobenzoate, followed by reduction and hydrolytic deamination yielding protocatechuate, which was metabolized through β-ketoadipate pathway. In vitro and in vivo acute toxicity assays in adult rat (Rattus norvegicus) showed sequential detoxification and the order of toxicity was 4-NT >4-nitrobenzyl alcohol >4-nitrobenzaldehyde >4-nitrobenzoate >> protocatechuate. Taken together, the strain NT2 could be used as a potential bioaugmentation candidate for the bioremediation of contaminated sites. 相似文献
10.
Aims: To isolate and characterize bacteria capable of degrading nicotine from the rhizospheric soil of a tobacco plant and to use them to degrade the nicotine in tobacco solid waste. Methods and Results: A bacterium, strain S33, was newly isolated from the rhizospheric soil of a tobacco plant, and identified as Agrobacterium sp. based on morphology, physiological tests, Biolog MicroLog3 4·20 system and 16S rRNA gene sequence. Using nicotine as the sole source of carbon and nitrogen in the medium, it grew optimally with 1·0 g l?1 of nicotine at 30°C and pH 7·0, and nicotine was completely degraded within 6 h. The resting cells prepared from the glucose‐ammonium medium or LB medium could not degrade nicotine within 10 h, while those prepared from the nicotine medium could completely degrade 3 g l?1 of nicotine in 1·5 h at a maximal rate of 1·23 g nicotine h?1 g?1 dry cell. Using the medium containing nicotine, glucose and ammonium simultaneously to cultivate strain S33, the resting cells could degrade 98·87% of nicotine in tobacco solid waste with the concentration as 30 mg nicotine g?1 dry weight tobacco solid waste within 7 h at a maximal rate of 0·46 g nicotine h?1 g?1 dry cell. Conclusions: This is the first report that Agrobacterium sp. has the ability to degrade nicotine. Agrobacterium sp. S33 could use nicotine as the sole source of carbon and nitrogen. The use of resting cells of the strain S33 prepared from the nicotine–glucose–ammonium medium was an effective method to degrade nicotine and detoxify tobacco solid waste. Significance and Impact of the Study: Nicotine in tobacco wastes is both toxic and harmful to human health and the environment. This study showed that Agrobacterium sp. S33 may be suitable for the disposal of tobacco wastes and reducing the nicotine content in tobacco leaves. 相似文献
11.
Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain 总被引:1,自引:0,他引:1
The soil-isolated strain XP was identified as Rhodococcus erythropolis. R. erythropolis XP could efficiently desulfurize benzonaphthothiophene, a complicated model sulfur compound that exists in crude oil. The desulfurization product of benzonaphthothiophene was identified as alpha-hydroxy-beta-phenyl-naphthalene. Resting cells could desulfurize diesel oil (total organic sulfur, 259 ppm) after hydrodesulfurization. The sulfur content of diesel oil was reduced by 94.5% by using the resting cell biocatalyst for 24 h at 30 degrees C. Biodesulfurization of crude oils was also investigated. After 72 h of treatment at 30 degrees C, 62.3% of the total sulfur content in Fushun crude oil (initial total sulfur content, 3,210 ppm) and 47.2% of that in Sudanese crude oil (initial total sulfur, 1,237 ppm) were removed. Gas chromatography with pulsed-flame photometric detector analysis was used to evaluate the effect of R. erythropolis XP treatment on the sulfur content in Fushun crude oil, and it was shown that most organic sulfur compounds were eliminated after biodesulfurization. 相似文献
12.
Spectroscopic characterization of a newly isolated cytochrome P450 from Rhodococcus rhodochrous.
下载免费PDF全文

Cytochrome P450 (P450) from Rhodococcus rhodochrous have been characterized through circular dichroism and nuclear magnetic resonance (NMR) spectroscopy, both in the substrate-free and substrate-bound forms. The data are compared with those of P450cam and indicate a close similarity of the structure of the active site in the two proteins. The substrate-free species contains low-spin iron(III), while the 2-ethoxyphenol bound species contains high-spin iron(III). The substrate is in slow exchange on the NMR time scale. The binding of CN- has been investigated and the final adduct characterized through NMR spectra. Nuclear relaxation times of the isotropically shifted signals turn out to be shorter than in other heme proteins, both in the high- and in the low-spin species. This is the result of longer electron relaxation times in P450s than in peroxidases and metmyoglobin. This property, as well as the electron paramagnetic resonance (EPR) spectrum of the substrate-free form, are discussed in terms of the presence of the cysteine as the fifth ligand of the iron ion instead of a histidine as it occurs in peroxidases and myoglobin. 相似文献
13.
Nasrin Akhtar Muhammad A. Ghauri Munir A. Anwar & Kalsoom Akhtar 《FEMS microbiology letters》2009,301(1):95-102
We previously described the construction and characterization of Escherichia coli–Francisella tularensis shuttle vectors, derived from the cryptic Francisella plasmid pFNL10, for the genetic manipulation of F. tularensis ssp. tularensis . We now report further characterization of the biology of these shuttle vectors and the development of a new generation of Francisella plasmids. We show that the addition of ORF3 from pFNL10 can convert an unstable shuttle vector into a stable one, and that this is likely due to increased plasmid copy number. We also describe various improvements to the earlier generations of shuttle vectors, such as the addition of a multiple cloning site containing a novel RsrII restriction endonuclease site for directional insertion of Francisella genes, and the inclusion of the F. tularensis blaB promoter for heterologous gene expression. 相似文献
14.
Maegala Nallapan Maniyam Fridelina Sjahrir Abdul Latif Ibrahim Anthony E. G. Cass 《Biologia》2013,68(2):177-185
A new bacterial strain, Rhodococcus UKMP-5M isolated from petroleum-contaminated soils demonstrated promising potential to biodegrade cyanide to non-toxic end-products. Ammonia and formate were found as final products during growth of the isolate with KCN as the sole nitrogen source. Formamide was not detected as one of the end-products suggesting that the biodegradation of cyanide by Rhodococcus UKMP-5M may have proceeded via a hydrolytic pathway involving the bacterial enzyme cyanidase. No growth of the bacterium was observed when KCN was supplied as the sole source of carbon and nitrogen even though marginal reduction in the concentration of cyanide was recorded, indicating the toxic effect of cyanide even in cyanide-degrading microorganisms. The cyanide biodegradation ability of Rhodococcus UKMP-5M was greatly affected by the presence of organic nutrients in the medium. Medium containing glucose and yeast extract promoted the highest growth rate of the bacterium which simultaneously assisted complete biodegradation of 0.1 mM KCN within 24 hours of incubation. It was found that growth and cyanide biodegradation occurred optimally at 30°C and pH 6.3 with glucose as the preferred carbon source. Acetonitrile was used as an inducer to enhance cyanide biodegradation since the enzymes nitrile hydratase and/or nitrilase have similarity at both the amino acid and structural levels to that of cyanidase. The findings from this study should be of great interest from an environmental and health point of views since the optimum conditions discovered in the present study bear a close resemblance to the actual scenario of cyanide wastewater treatment facilities. 相似文献
15.
Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. strains 总被引:6,自引:0,他引:6
Castorena G Suárez C Valdez I Amador G Fernández L Le Borgne S 《FEMS microbiology letters》2002,215(1):157-161
New desulfurizing bacteria able to convert dibenzothiophene into 2-hydroxybiphenyl and sulfate were isolated from contaminated soils collected in Mexican refineries. Random amplified polymorphic DNA analysis showed they were different from previously reported Rhodococcus erythropolis desulfurizing strains. According to 16S rRNA gene sequencing and fatty acid analyses, these new isolates belonged to the genus Rhodococcus. These strains could desulfurize 4,6-dimethyldibenzothiophene which is one of the most difficult dibenzothiophene derivatives to remove by hydrodesulfurization. A deeply hydrodesulfurized diesel oil containing significant amounts of 4,6-dimethyldibenzothiophene was treated with Rhodococcus sp. IMP-S02 cells. Up to 60% of the total sulfur was removed and all the 4,6-dimethyldibenzothiophene disappeared as a result of this treatment. 相似文献
16.
Biodegradation of methyl parathion and p-nitrophenol by a newly isolated Agrobacterium sp. strain Yw12 总被引:1,自引:0,他引:1
Strain Yw12, isolated from activated sludge, could completely degrade and utilize methyl parathion as the sole carbon, phosphorus
and energy sources for growth in the basic salt media. It could also completely degrade and utilize p-nitrophenol as the sole carbon and energy sources for growth in the minimal salt media. Phenotypic features, physiological
and biochemical characteristics, and phylogenetic analysis of 16S rRNA sequence showed that this strain belongs to the genus
of Agrobacterium sp. Response surface methodology was used to optimize degradation conditions. Under its optimal degradation conditions, 50 mg l−1 MP was completely degraded within 2 h by strain Yw12 and the degradation product PNP was also completely degraded within
6 h. Furthermore, strain Yw12 could also degrade phoxim, methamidophos, chlorpyrifos, carbofuran, deltamethrin and atrazine
when provided as the sole carbon and energy sources. Enzymatic analysis revealed that the MP degrading enzyme of strain Yw12
is an intracellular enzyme and is expressed constitutively. These results indicated that strain Yw12 might be used as a potential
and effective organophosphate pesticides degrader for bioremediation of contaminated sites. 相似文献
17.
Aims: The aim was to obtain evidences for lignin degradation by unicellular bacterium Comamonas sp. B‐9. Methods and Results: Comamonas sp. B‐9 was inoculated into kraft lignin‐mineral salt medium (KL‐MSM) at pH 7·0 and 30°C for 7 days of incubation. The bacterial growth, chemical oxygen demand (COD) reduction, secretion of ligninolytic enzymes and productions of low‐molecular‐weight compounds revealed that Comamonas sp. B‐9 was able to degrade kraft lignin (KL). COD in KL‐MSM reduced by 32% after 7 days of incubation. The maximum activities of manganese peroxidase (MnP) of 2903·2 U l?1 and laccase (Lac) of 1250 U l?1 were observed at 4th and 6th day, respectively. The low‐molecular‐weight compounds such as ethanediol, 3, 5‐dimethyl‐benzaldehyde and phenethyl alcohol were formed in the degradation of KL by Comamonas sp. B‐9 based on GC‐MS analysis. Conclusions: This study confirmed that Comamonas sp. B‐9 could utilize KL as a sole carbon source and degrade KL to low‐molecular‐weight compounds. Significance and Impact of the Study: Comamonas sp. B‐9 may be useful in the utilization and bioconversion of lignin and lignin‐derived aromatic compounds in biotechnological applications. Meanwhile, using Comamonas sp. B‐9 in treatment of wastewater in pulp and paper industry is a meaningful work. 相似文献
18.
Two Rhodococcus strains, R. opacus strain AS2 and R. erythropolis strain AS3, that were able to use 4-nitroanisole as the sole source of carbon and energy, were isolated from environmental samples. The first step of the degradation involved the O-demethylation of 4-nitroanisole to 4-nitrophenol which accumulated transiently in the medium during growth. Oxygen uptake experiments indicated the transformation of 4-nitrophenol to 4-nitrocatechol and 1,2,4-trihydroxybenzene prior to ring cleavage and then subsequent mineralization. The nitro group was removed as nitrite, which accumulated in the medium in stoichiometric amounts. In R. opacus strain AS2 small amounts of hydroquinone were produced by a side reaction, but were not further degraded. 相似文献
19.
A hydrocarbon degrader isolated from a chronically oil-polluted marine site was identified as Rhodococcus sp. on the basis of morphology, fatty acid methyl ester pattern, cell wall analysis, biochemical tests and G + C content of DNA. It degraded upto 50% of the aliphatic fraction of Assam crude oil, in seawater supplemented with 35 mM nitrogen as urea and 0.1 mM phosphorus as dipotassium hydrogen orthophosphate, after 72 h at 30 ° and 150 revolutions per minute. The relative percentage of intracellular fatty acid was higher in hydrocarbon-grown cells compared to fructose-grown cells. The fatty acids C16 , C1616 :1 C18 and C18 : 1 were constitutively present regardless of the growth substrate. In addition to these constitutive acids, other intracellular fatty acids varied in correlation to the hydrocarbon chain length supplied as a substrate. When grown on odd carbon number alkanes, the isolate released only monocarboxylic acids into the growth medium. On even carbon number alkanes only dicarboxylic acids were produced. 相似文献
20.
Azza M. Abdel-Fattah Mamdouh S. El-Gamal Siham A. Ismail Mohamed A. Emran Amal M. Hashem 《Journal of Genetic Engineering and Biotechnology》2018,16(2):311-318
Keratinase are proteolytic enzymes which have gained much attention to convert keratinous wastes that cause huge environmental pollution problems. Ten microbial isolates were screened for their keratinase production. The most potent isolate produce 25.2?U/ml under static condition and was primarily identified by partial 16s rRNA gene sequence as Bacillus licheniformis ALW1. Optimization studies for the fermentation conditions increased the keratinase biosynthesis to 72.2?U/ml (2.9-fold). The crude extracellular keratinase was optimally active at pH 8.0 and temperature 65?°C with 0.7% soluble keratin as substrate. The produced B. licheniformis ALW1 keratinase exhibited a good stability over pH range from 7 to 9 and over a temperature range 50–60?°C for almost 90?min. The crude enzyme solution was able to degrade native feather up to 63% in redox free system. 相似文献