首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 2582 non-duplicate clinical Acinetobacter spp. isolates were collected to evaluate the performance of four identification methods because it is important to identify Acinetobacter spp. accurately and survey the species distribution to determine the appropriate antimicrobial treatment. Phenotyping (VITEK 2 and VITEK MS) and genotyping (16S rRNA and rpoB gene sequencing) methods were applied for species identification, and antimicrobial susceptibility test of imipenem and meropenem was performed with a disk diffusion assay. Generally, the phenotypic identification results were quite different from the genotyping results, and their discrimination ability was unsatisfactory, whereas 16S rRNA and rpoB gene sequencing showed consistent typing results, with different resolution. Additionally, A. pittii, A. calcoaceticus and A. nosocomialis, which were phylogenetically close to A. baumannii, accounted for 85.5% of the non-A. baumannii isolates. One group, which could not be clustered with any reference strains, consisted of 11 isolates and constituted a novel Acinetobacter species that was entitled genomic species 33YU. None of the non-A. baumannii isolates harbored a bla OXA-51-like gene, and this gene was disrupted by ISAba19 in only one isolate; it continues to be appropriate as a genetic marker for A. baumannii identification. The resistance rate of non-A. baumannii isolates to imipenem and/or meropenem was only 2.6%, which was significantly lower than that of A. baumannii. Overall, rpoB gene sequencing was the most accurate identification method for Acinetobacter species. Except for A. baumannii, the most frequently isolated species from the nosocomial setting were A. pittii, A. calcoaceticus and A. nosocomialis.  相似文献   

2.

Background

The prevalence of carbapenem-resistant Acinetobacter baumannii in hospitals has been increasing worldwide. This study aims to investigate the carbapenemase genes and the clonal relatedness among A. baumannii clinical isolates in a Chinese hospital.

Methods

Carbapenemase genes and the upstream locations of insertion sequences were detected by polymerase chain reaction (PCR), and the clonal relatedness of isolates was determined by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing.

Results

A total of 231 nonduplicate carbapenemase gene-harboring A. baumannii clinical isolates recovered from Shenzhen People’s Hospital, were investigated between 2002 and 2009. bla OXA-23-like, bla OXA-58-like, bla OXA-40-like, and ISAba1-bla OXA-51-like were identified in 119, 107, 1, and 4 isolates, respectively. IS1008-ΔISAba3, ISAba3, and ISAba1 were detected upstream of the bla OXA-58-like gene in 69, 35, and 3 isolates, respectively. All bla OXA-23-like genes but one had an upstream insertion of ISAba1. bla OXA-58-like was the most common carbapenemase gene in A.baumannii before 2008, thereafter bla OXA-23-like became rapidly prevalent and replaced bla OXA-58-like in 2009. The majority of bla OXA-58-like-carrying isolates showed lower level of resistance to imipenem and meropenem (minimum inhibitory concentrations (MICs), 1 μg/ml to 16 μg/ml), compared with the majority of bla OXA-23-like-carrying isolates (MICs, 16 μg/ml to 64 μg/ml for both imipenem and meropenem). All 231 bla OXA carbapenemase gene-harboring isolates belonged to 14 PFGE types (A–N), and three dominant clones A, J, and H accounted for 43.3%, 42.0%, and 8.2% of the tested isolates, respectively. Clone A (sequence type ST92/ST208) with bla OXA-58-like was the most prevalent before 2008. Clone H (ST229) with bla OXA-23-like became striking between 2007 and 2008. Clone J (ST381) with bla OXA-23-like rapidly spread and replaced clones A and H in 2009.

Conclusion

This study is the first to reveal that the distinct bla OXA-23-like-carrying A. baumannii ST381 displaced the previously prevalent bla OXA-58-like-carrying A. baumannii ST92/ST208, resulting in the rapidly increasing resistance to carbapenems in A. baumannii in Shenzhen People’s Hospital in 2009.  相似文献   

3.
Acinetobacter baumannii has been prevalent in nosocomial infections, often causing outbreaks in intensive care units. ISAba1 is an insertion sequence that has been identified only in A. baumannii and its copy number varies among strains. It has been reported that ISAba1 provides a promoter for blaOXA-51-like, blaOXA-23-like, and blaampC, which are associated with the resistance of A. baumannii to carbapenems and cephalosporins. The main purpose of this study was to develop a novel inverse PCR method capable of typing A. baumannii strains. The method involves three major steps: cutting of genomic DNA with a restriction enzyme, ligation, and PCR. In the first step, bacterial genomic DNA was digested with DpnI. In the second step, the digested genomic DNAs were ligated to form intramolecular circular DNAs. In the last step, the ligated circular DNAs were amplified by PCR with primers specific for ISAba1 and the amplified PCR products were electrophoresed. Twenty-two clinical isolates of A. baumannii were used for the evaluation of the inverse PCR (iPCR) typing method. Dendrogram analysis revealed two major clusters, similar to pulsed-field gel electrophoresis (PFGE) results. Three ISAba1-associated genes — blaampC, blaOXA-66-like, and csuD — were amplified and detected in the clinical isolates. This novel iPCR typing method is comparable to PFGE in its ability to discriminate A. baumannii strains, and is a promising molecular epidemiological tool for investigating A. baumannii carrying ISAba1.  相似文献   

4.
Multidrug-resistant Acinetobacter baumannii (MDRAB) is an increasing problem worldwide. Prevalence of carbapenem resistance in Acinetobacter spp. due to acquired carbapenemase genes is not known in Finland. The purpose of this study was to examine prevalence and clonal spread of multiresistant A. baumannii group species, and their carbapenemase genes. A total of 55 Acinetobacter isolates were evaluated with repetitive PCR (DiversiLab) to analyse clonality of isolates, in conjunction with antimicrobial susceptibility profile for ampicillin/sulbactam, colistin, imipenem, meropenem, rifampicin and tigecycline. In addition, a new real-time PCR assay, detecting most clinically important carbapenemase genes just in two multiplex reactions, was developed. The assay detects genes for KPC, VIM, IMP, GES-1/-10, OXA-48, NDM, GIM-1, SPM-1, IMI/NMC-A, SME, CMY-10, SFC-1, SIM-1, OXA-23-like, OXA-24/40-like, OXA-58 and ISAbaI-OXA-51-like junction, and allows confident detection of isolates harbouring acquired carbapenemase genes. There was a time-dependent, clonal spread of multiresistant A. baumannii strongly correlating with carbapenamase gene profile, at least in this geographically restricted study material. The new carbapenemase screening assay was able to detect all the genes correctly suggesting it might be suitable for epidemiologic screening purposes in clinical laboratories.  相似文献   

5.

Background

The emergence and rapid spreading of multidrug-resistant Acinetobacter baumannii strains has become a major health threat worldwide. To better understand the genetic recombination related with the acquisition of drug-resistant elements during bacterial infection, we performed complete genome analysis on three newly isolated multidrug-resistant A. baumannii strains from Beijing using next-generation sequencing technology.

Methodologies/Principal Findings

Whole genome comparison revealed that all 3 strains share some common drug resistant elements including carbapenem-resistant bla OXA-23 and tetracycline (tet) resistance islands, but the genome structures are diversified among strains. Various genomic islands intersperse on the genome with transposons and insertions, reflecting the recombination flexibility during the acquisition of the resistant elements. The blood-isolated BJAB07104 and ascites-isolated BJAB0868 exhibit high similarity on their genome structure with most of the global clone II strains, suggesting these two strains belong to the dominant outbreak strains prevalent worldwide. A large resistance island (RI) of about 121-kb, carrying a cluster of resistance-related genes, was inserted into the ATPase gene on BJAB07104 and BJAB0868 genomes. A 78-kb insertion element carrying tra-locus and bla OXA-23 island, can be either inserted into one of the tniB gene in the 121-kb RI on the chromosome, or transformed to conjugative plasmid in the two BJAB strains. The third strains of this study, BJAB0715, which was isolated from spinal fluid, exhibit much more divergence compared with above two strains. It harbors multiple drug-resistance elements including a truncated AbaR-22-like RI on its genome. One of the unique features of this strain is that it carries both bla OXA-23 and bla OXA-58 genes on its genome. Besides, an Acinetobacter lwoffii adeABC efflux element was found inserted into the ATPase position in BJAB0715.

Conclusions

Our comparative analysis on currently completed Acinetobacter baumannii genomes revealed extensive and dynamic genome organizations, which may facilitate the bacteria to acquire drug-resistance elements into their genomes.  相似文献   

6.
Carbapenem-resistant Acinetobacter baumannii have emerged globally. The objective of this study was to investigate the epidemiology, clonal diversity and resistance mechanisms of imipenem non-susceptible A. baumannii isolates in France. Between December 2010 and August 2011, 132 notifications were collected, including 37 outbreaks corresponding to 242 cases (2 to 55 per cluster). Multilocus sequence typing, pulsed-field gel electrophoresis (PFGE) and characterisation of carbapenemase-encoding genes were performed on 110 non-repetitive isolates. Gene bla OXA-23 was the most frequently detected (82%), followed by bla OXA-24 (11%) and bla OXA-58 (7%). Eleven sequence types (ST) were distinguished, among which sequence types ST1, ST2 (64%), ST20, ST25, ST85 and ST107. Isolates from epidemiological clusters had the same ST and resistance genes, indicating probable transmission within centres. In contrast, PFGE types of isolates differed among centres, arguing against transmission among centers. This study provides the first epidemiological snapshot of the population of A. baumannii with reduced susceptibility to carbapenems from France, and further underlines the predominance of international clones.  相似文献   

7.
The genus Acinetobacter encompasses multiple nosocomial opportunistic pathogens that are of increasing worldwide relevance because of their ability to survive exposure to various antimicrobial and sterilization agents. Among these, Acinetobacter baumannii, Acinetobacter nosocomialis, and Acinetobacter pittii are the most frequently isolated in hospitals around the world. Despite the growing incidence of multidrug-resistant Acinetobacter spp., little is known about the factors that contribute to pathogenesis. New strategies for treating and managing infections caused by multidrug-resistant Acinetobacter strains are urgently needed, and this requires a detailed understanding of the pathobiology of these organisms. In recent years, some virulence factors important for Acinetobacter colonization have started to emerge. In this review, we focus on several recently described virulence factors that act at the bacterial surface level, such as the capsule, O-linked protein glycosylation, and adhesins. Furthermore, we describe the current knowledge regarding the type II and type VI secretion systems present in these strains.  相似文献   

8.
Aims: This study was performed to describe the epidemiological traits of ceftazidime‐resistant Acinetobacter baumannii clinical isolates from Korea. Methods and Results: Antimicrobial susceptibilities were determined by disk diffusion assay. PCR experiments were performed to detect genes encoding extended‐spectrum β‐lactamases and metallo‐β‐lactamases. Detection of ISAba1 upstream of the blaADC gene was also performed by PCR amplification. The genetic organization of the blaPER‐1 gene was investigated by PCR mapping and sequencing of the regions surrounding the gene. Multilocus sequence typing was performed using seven housekeeping genes. A. baumannii isolates of clonal complex (CC) 92 exhibited a higher resistance rate (286/289, 99%) against ceftazidime compared to A. baumannii isolates of non‐CC92 (7/87, 8%). Amongst 286 ceftazidime‐resistant isolates of CC92, 100 (35%) isolates carried the blaPER‐1 gene, while none of the 87 isolates of non‐CC92 carried the gene. The blaADC gene associated with an ISAba1 element was detected in 98% (281/286) of ceftazidime‐resistant isolates of CC92 and in all seven ceftazidime‐resistant isolates of non‐CC92. The blaPER‐1 gene was located on a transposon, Tn1213 (ISPa12blaPER‐1‐Δgst‐ISPa13), in 95 isolates and on a complex class 1 integron (orf513blaPER‐1‐putative ABC transporter gene) in five isolates. Southern blot experiments confirmed the chromosomal location of the blaPER‐1 gene. Conclusions: Acinetobacter baumannii CC92 which has acquired ceftazidime resistance by the production of PER‐1 extended‐spectrum β‐lactamases and/or the overproduction of Acinetobacter‐derived cephalosporinase is widely disseminated in Korea. Significance and Impact of the Study: This study shows the mechanisms of acquiring ceftazidime resistance in A. baumannii and the epidemiological traits of ceftazidime‐resistant A. baumannii isolates from Korea.  相似文献   

9.
The presence of Acinetobacter baumannii outside hospitals is still a controversial issue. The objective of our study was to explore the extrahospital epidemiology of A. baumannii in Lebanon. From February 2012 to October 2013, a total of 73 water samples, 51 soil samples, 37 raw cow milk samples, 50 cow meat samples, 7 raw cheese samples, and 379 animal samples were analyzed by cultural methods for the presence of A. baumannii. Species identification was performed by rpoB gene sequencing. Antibiotic susceptibility was investigated, and the A. baumannii population was studied by two genotyping approaches: multilocus sequence typing (MLST) and blaOXA-51 sequence-based typing (SBT). A. baumannii was detected in 6.9% of water samples, 2.7% of milk samples, 8.0% of meat samples, 14.3% of cheese samples, and 7.7% of animal samples. All isolates showed a susceptible phenotype against most of the antibiotics tested and lacked carbapenemase-encoding genes, except one that harbored a blaOXA-143 gene. MLST analysis revealed the presence of 36 sequence types (STs), among which 24 were novel STs reported for the first time in this study. blaOXA-51 SBT showed the presence of 34 variants, among which 21 were novel and all were isolated from animal origins. Finally, 30 isolates had new partial rpoB sequences and were considered putative new Acinetobacter species. In conclusion, animals can be a potential reservoir for A. baumannii and the dissemination of new emerging carbapenemases. The roles of the novel animal clones identified in community-acquired infections should be investigated.  相似文献   

10.
Carbapenem‐resistant Acinetobacter baumannii has rapidly spread worldwide. This study investigated antibiotic susceptibility and genotypic resistance of 123 consecutive blood culture isolates of Acinetobacter species collected between 2003 and 2011 in two Japanese hospitals. The isolates were assigned to 13 species. Carbapenem resistance was detected in four isolates. Only one A. baumannii isolate had blaOXA‐23 together with ISAba1; the remaining three isolates had IMP‐1 metallo‐β‐lactamase. Quinolone resistance was detected in five isolates that had point mutations in the quinolone resistance‐determining region. The predominance of various non‐A. baumannii species and low prevalence of carbapenem resistance among blood culture isolates of Acinetobacter species in two Japanese hospitals were confirmed.  相似文献   

11.

Background

Few clinical data are available on the relationship between genospecies and outcome of Acinetobacter bacteremia, and the results are inconsistent. We performed this study to evaluate the relationship between genospecies and the outcome of Acinetobacter bacteremia.

Methods

Clinical data from 180 patients who had Acinetobacter bacteremia from 2003 to 2010 were reviewed retrospectively. The genospecies were identified by rpoB gene sequence analysis. The clinical features and outcomes of 90 patients with A. baumannii bacteremia were compared to those of 90 patients with non-baumannii Acinetobacter bacteremia (60 with A. nosocomialis, 17 with Acinetobacter species “close to 13 TU”, 11 with A. pittii, and two with A. calcoaceticus).

Results

A. baumannii bacteremia was associated with intensive care unit-onset, mechanical ventilation, pneumonia, carbapenem resistance, and higher APACHE II scores, compared to non-baumannii Acinetobacter bacteremia (P<0.05). In univariate analyses, age, pneumonia, multidrug resistance, carbapenem resistance, inappropriate empirical antibiotics, higher APACHE II scores, and A. baumannii genospecies were risk factors for mortality (P<0.05). Multivariate analysis revealed A. baumannii genospecies (OR, 3.60; 95% CI, 1.56–8.33), age, pneumonia, and higher APACHE II scores to be independent risk factors for mortality (P<0.05).

Conclusion

A. baumannii genospecies was an independent risk factor for mortality in patients with Acinetobacter bacteremia. Our results emphasize the importance of correct species identification of Acinetobacter blood isolates.  相似文献   

12.
Acinetobacter baumannii is an important opportunistic pathogen that causes severe nosocomial infections, especially in intensive care units (ICUs). Over the past decades, an everincreasing number of hospital outbreaks caused by A. baumannii have been reported worldwide. However, little attention has been directed toward the relationship between A. baumannii isolates from the ward environment and patients in the burn ICU. In this study, 88 A. baumannii isolates (26 from the ward environment and 62 from patients) were collected from the burn ICU of the Southwest Hospital in Chongqing, China, from July through December 2013. Antimicrobial susceptibility testing results showed that drug resistance was more severe in isolates from patients than from the ward environment, with all of the patient isolates being fully resistant to 10 out of 19 antimicrobials tested. Isolations from both the ward environment and patients possessed the β-lactamase genes blaOXA-51, blaOXA-23, blaAmpC, blaVIM, and blaPER. Using pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST), these isolates could be clustered into 4 major PFGE types and 4 main sequence types (ST368, ST369, ST195, and ST191) among which, ST368 was the dominant genotype. Epidemiologic and molecular typing data also revealed that a small-scale outbreak of A. baumannii infection was underway in the burn ICU of our hospital during the sampling period. These results suggest that dissemination of β-lactamase genes in the burn ICU might be closely associated with the high-level resistance of A. baumannii, and the ICU environment places these patients at a high risk for nosocomial infection. Cross-contamination should be an important concern in clinical activities to reduce hospitalacquired infections caused by A. baumannii.  相似文献   

13.

Background

CTX-M-producing Escherichia coli strains are regarded as major global pathogens.

Methodology/Principal Findings

The nucleotide sequence of three plasmids (pEC_B24: 73801-bp; pEC_L8: 118525-bp and pEC_L46: 144871-bp) from Escherichia coli isolates obtained from patients with urinary tract infections and one plasmid (pEC_Bactec: 92970-bp) from an Escherichia coli strain isolated from the joint of a horse with arthritis were determined. Plasmid pEC_Bactec belongs to the IncI1 group and carries two resistance genes: bla TEM-1 and bla CTX-M-15. It shares more than 90% homology with a previously published bla CTX-M-plasmid from E. coli of human origin. Plasmid pEC_B24 belongs to the IncFII group whereas plasmids pEC_L8 and pEC_L46 represent a fusion of two replicons of type FII and FIA. On the pEC_B24 backbone, two resistance genes, bla TEM-1 and bla CTX-M-15, were found. Six resistance genes, bla TEM-1, bla CTX-M-15, bla OXA-1, aac6''-lb-cr, tetA and catB4, were detected on the pEC_L8 backbone. The same antimicrobial drug resistance genes, with the exception of tetA, were also identified on the pEC_L46 backbone. Genome analysis of all 4 plasmids studied provides evidence of a seemingly frequent transposition event of the bla CTX-M-15-ISEcp1 element. This element seems to have a preferred insertion site at the tnpA gene of a bla TEM-carrying Tn3-like transposon, the latter itself being inserted by a transposition event. The IS26-composite transposon, which contains the bla OXA-1, aac6''-lb-cr and catB4 genes, was inserted into plasmids pEC_L8 and pEC_L46 by homologous recombination rather than a transposition event. Results obtained for pEC_L46 indicated that IS26 also plays an important role in structural rearrangements of the plasmid backbone and seems to facilitate the mobilisation of fragments from other plasmids.

Conclusions

Collectively, these data suggests that IS26 together with ISEcp1 could play a critical role in the evolution of diverse multiresistant plasmids found in clinical Enterobacteriaceae.  相似文献   

14.

Objective

A study was conducted to recover carbapenem-resistant bacteria from the faeces of dairy cattle and identify the underlying genetic mechanisms associated with reduced phenotypic susceptibility to carbapenems.

Methods

One hundred and fifty-nine faecal samples from dairy cattle were screened for carbapenem-resistant bacteria. Phenotypic screening was conducted on two media containing ertapenem. The isolates from the screening step were characterised via disk diffusion, Modified Hodge, and Carba NP assays. Carbapenem-resistant bacteria and carbapenemase-producing isolates were subjected to Gram staining and biochemical testing to include Gram-negative bacilli. Whole genome sequencing was performed on bacteria that exhibited either a carbapenemase-producing phenotype or were not susceptible to ertapenem and were presumptively Enterobacteriaceae.

Results

Of 323 isolates collected from the screening media, 28 were selected for WGS; 21 of which were based on a carbapenemase-producing phenotype and 7 were presumptively Enterobacteriaceae and not susceptible to ertapenem. Based on analysis of WGS data, isolates included: 3 Escherichia coli harbouring blaCMY-2 and truncated ompF genes; 8 Aeromonas harbouring blacphA-like genes; 1 Acinetobacter baumannii harbouring a novel blaOXA gene (blaOXA-497); and 6 Pseudomonas with conserved domains of various carbapenemase-producing genes.

Conclusions

Carbapenem resistant bacteria appear to be rare in cattle. Nonetheless, carbapenem-resistant bacteria were detected across various genera and were found to harbour a variety of mechanisms conferring reduced susceptibility. The development and dissemination of carbapenem-resistant bacteria in livestock would have grave implications for therapeutic treatment options in human medicine; thus, continued monitoring of carbapenem susceptibility among enteric bacteria of livestock is warranted.  相似文献   

15.
Rapid molecular identification of carbapenemase genes in Gram-negative bacteria is crucial for infection control and prevention, surveillance and for epidemiological purposes. Furthermore, it may have a significant impact upon determining the appropriate initial treatment and greatly benefit for critically ill patients. A novel oligonucleotide microarray-based assay was developed to simultaneously detect genes encoding clinically important carbapenemases as well as selected extended (ESBL) and narrow spectrum (NSBL) beta-lactamases directly from clonal culture material within few hours. Additionally, a panel of species specific markers was included to identify Escherichia coli, Pseudomonas aeruginosa, Citrobacter freundii/braakii, Klebsiella pneumoniae and Acinetobacter baumannii. The assay was tested using a panel of 117 isolates collected from urinary, blood and stool samples. For these isolates, phenotypic identifications and susceptibility tests were available. An independent detection of carbapenemase, ESBL and NSBL genes was carried out by various external reference laboratories using PCR methods. In direct comparison, the microarray correctly identified 98.2% of the covered carbapenemase genes. This included blaVIM (13 out of 13), blaGIM (2/2), blaKPC (27/27), blaNDM (5/5), blaIMP-2/4/7/8/13/14/15/16/31 (10/10), blaOXA-23 (12/13), blaOXA-40-group (7/7), blaOXA-48-group (32/33), blaOXA-51 (1/1) and blaOXA-58 (1/1). Furthermore, the test correctly identified additional beta-lactamases [blaOXA-1 (16/16), blaOXA-2 (4/4), blaOXA-9 (33/33), OXA-10 (3/3), blaOXA-51 (25/25), blaOXA-58 (2/2), CTX-M1/M15 (17/17) and blaVIM (1/1)]. In direct comparison to phenotypical identification obtained by VITEK or MALDI-TOF systems, 114 of 117 (97.4%) isolates, including Acinetobacter baumannii (28/28), Enterobacter spec. (5/5), Escherichia coli (4/4), Klebsiella pneumoniae (62/63), Klebsiella oxytoca (0/2), Pseudomonas aeruginosa (12/12), Citrobacter freundii (1/1) and Citrobacter braakii (2/2), were correctly identified by a panel of species specific probes. This assay might be easily extended, adapted and transferred to point of care platforms enabling fast surveillance, rapid detection and appropriate early treatment of infections caused by multiresistant Gram-negative bacteria.  相似文献   

16.

Background

Infections by A. calcoaceticus-A. baumannii (ACB) complex isolates represent a serious threat for wounded and burn patients. Three international multidrug-resistant (MDR) clones (EU clone I-III) are responsible for a large proportion of nosocomial infections with A. baumannii but other emerging strains with high epidemic potential also occur.

Methodology/Principal Findings

We automatized a Multiple locus variable number of tandem repeats (VNTR) analysis (MLVA) protocol and used it to investigate the genetic diversity of 136 ACB isolates from four military hospitals and one childrens hospital. Acinetobacter sp other than baumannii isolates represented 22.6% (31/137) with a majority being A. pittii. The genotyping protocol designed for A.baumannii was also efficient to cluster A. pittii isolates. Fifty-five percent of A. baumannii isolates belonged to the two international clones I and II, and we identified new clones which members were found in the different hospitals. Analysis of two CRISPR-cas systems helped define two clonal complexes and provided phylogenetic information to help trace back their emergence.

Conclusions/Significance

The increasing occurrence of A. baumannii infections in the hospital calls for measures to rapidly characterize the isolates and identify emerging clones. The automatized MLVA protocol can be the instrument for such surveys. In addition, the investigation of CRISPR/cas systems may give important keys to understand the evolution of some highly successful clonal complexes.  相似文献   

17.
18.
19.
In this work we assessed the discriminatory ability of Fourier‐transform Infrared Spectroscopy (FTIR) in 22 representative isolates from a collection of 318 carbapenem‐hydrolyzing class D β ‐lactamases (CHDL)‐producing Acinetobacter spp. (5 hospitals; 2001–2008) previously characterized by DNA‐based typing methods. FTIR spectra were acquired with a Bruker spectrometer and analyzed with support of several chemometric tools. The results showed that FTIR spectroscopy was able to distinguish the main CHDL‐producing Acinetobacter baumannii lineages causing infection in Portugal, the ST103 carrying blaOXA‐58, ST98 carrying blaOXA‐24/40and ST92 carrying blaOXA‐23. Moreover, this study revealed distinctive phenotypic features of A. baumannii lineages causing infections that might justify different epidemic potential. Spectroscopy may arise as a low cost and easily to perform alternative for typing A. baumannii isolates. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Carbapenem-resistant A. baumannii present a significant therapeutic challenge for the treatment of nosocomial infections in many European countries. Although it is known that the gradient of A. baumannii prevalence increases from northern to southern Europe, this study provides the first data from Serbia. Twenty-eight carbapenem-resistant A. baumannii clinical isolates were collected at a Serbian pediatric hospital during a 2-year period. The majority of isolates (67.68%) belonged to the sequence type Group 1, European clonal complex II. All isolates harbored intrinsic OXA-51 and AmpC cephalosporinase. OXA-23 was detected in 16 isolates (57.14%), OXA-24 in 23 isolates (82.14%) and OXA-58 in 11 isolates (39.29%). Six of the isolates (21.43%) harbored all of the analyzed oxacillinases, except OXA-143 and OXA-235 that were not detected in this study. Production of oxacillinases was detected in different pulsotypes indicating the presence of horizontal gene transfer. NDM-1, VIM and IMP were not detected in analyzed clinical A. baumannii isolates. ISAba1 insertion sequence was present upstream of OXA-51 in one isolate, upstream of AmpC in 13 isolates and upstream of OXA-23 in 10 isolates. In silico analysis of carO sequences from analyzed A. baumannii isolates revealed the existence of two out of six highly polymorphic CarO variants. The phylogenetic analysis of CarO protein among Acinetobacter species revised the previous classification CarO variants into three groups based on strong bootstraps scores in the tree analysis. Group I comprises four variants (I-IV) while Groups II and III contain only one variant each. One half of the Serbian clinical isolates belong to Group I variant I, while the other half belongs to Group I variant III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号