首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition.

Methods and Principal Findings

Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity.

Conclusions

We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of oxidative stress. These results support the idea that siderophores can have physiological roles aside from those in iron acquisition.  相似文献   

2.
Vibrio cholerae, the causative agent of cholera, has an absolute requirement for iron. It transports the catechol siderophores vibriobactin, which it synthesizes and secretes, and enterobactin. These siderophores are transported across the inner membrane by one of two periplasmic binding protein-dependent ABC transporters, VctPDGC or ViuPDGC. We show here that one of these inner membrane transport systems, VctPDGC, also promotes iron acquisition in the absence of siderophores. Plasmids carrying the vctPDGC genes stimulated growth in both rich and minimal media of a Shigella flexneri mutant that produces no siderophores. vctPDGC also stimulated the growth of an Escherichia coli enterobactin biosynthetic mutant in low iron medium, and this effect did not require feoB, tonB or aroB. A tyrosine to phenylalanine substitution in the periplasmic binding protein VctP did not alter enterobactin transport, but eliminated growth stimulation in the absence of a siderophore. These data suggest that the VctPDGC system has the capacity to transport both catechol siderophores and a siderophore-free iron ligand. We also show that VctPDGC is the previously unidentified siderophore-independent iron transporter in V. cholerae, and this appears to complete the list of iron transport systems in V. cholerae.  相似文献   

3.
A variety of natural and synthetic siderophores capable of supporting the growth of Escherichia coli K-12 on iron-limited media also protect strain RW193+ (tonA+ ent-) from the killing action of colicins B, V, and Ia. Protective activity falls into two categories. The first, characteristic of enterobactin protection against colicin B and ferrichrome protection against colicin M, has properties of a specific receptor competition between the siderophore and the colicin. Thus, enterobactin specifically protects against colicin B in fes- mutants (able to accumulate but unable to utilize enterobactin) as predicted by our proposal that the colicin B receptor functions in the specific binding for uptake of enterobactin (Wayne and Neilands, 1975). Similarly ferrichrome specifically protects against colicin M in SidA mutants (defective in hydroxamate siderophore utilization). The second category of protective response, characteristic of the more general siderophore inhibition of colicins B, V, and Ia, requires the availability or metabolism of siderophore iron. Thus, enterobactin protects against colicins V and Ia, but only when the colicin indicator strain is fes+, and hydroxamate siderophores inhibit colicins B, V, and Ia, but only when the colicin indicator strain is SidA+. Moreover, ferrichrome inhibits colicins B, V, and Ia, yet chromium (III) deferriferrichrome is inactive, and ferrichrome itself does not prevent adsorption of colicin Ia receptor material in vitro. Although the nonspecific protection against colicins B, V, and Ia requires iron, the availability of siderophore iron for cell growth is not sufficient to bring about protection. None of the siderophores tested protect cells against the killing action of colicin E1 or K, or against the energy poisons azide, 2, 4-dinitrophenol, and carbonylcyanide m-chlorophenylhydrazone. We suggest that nonspecific siderophore protection against colicins B, V, and Ia may be due either to an induction of membrane alterations in response to siderophore iron metabolism or to a direct interference by siderophore iron with some unknown step in colicin action subsequent to adsorption.  相似文献   

4.
The plant pathogenic fungus Magnaporthe grisea excretes siderophores of the coprogen-type for iron acquisition and uses ferricrocin for intracellular iron storage. In the present report we characterize mutants with defects in extracellular siderophore biosynthesis. Deletion of the M. grisea SSM2 gene, which encodes a non-ribosomal peptide synthetase, resulted in a loss of the production of all coprogens. The mutant strains had a reduced growth rate, produced fewer conidia and were more sensitive to oxidative stress. Ferricrocin production was not affected. Upon deletion of M. grisea OMO1, a gene predicted to encode an l-ornithine-N5-monooxygenase, no siderophores of any type were detected, the strain was aconidial, growth rate was reduced and sensitivity to oxidative stress was increased. Abundance of several proteins was affected in the mutants. The Δssm2 and Δomo1 mutant phenotypes were complemented by supplementation of the medium with siderophores or reintroduction of the respective genes.  相似文献   

5.
Universal chemical assay for the detection and determination of siderophores   总被引:145,自引:0,他引:145  
A universal method to detect and determine siderophores was developed by using their high affinity for iron(III). The ternary complex chrome azurol S/iron(III)/hexadecyltrimethylammonium bromide, with an extinction coefficient of approximately 100,000 M-1 cm-1 at 630 nm, serves as an indicator. When a strong chelator removes the iron from the dye, its color turns from blue to orange. Because of the high sensitivity, determination of siderophores in solution and their characterization by paper electrophoresis chromatography can be performed directly on supernatants of culture fluids. The method is also applicable to agar plates. Orange halos around the colonies on blue agar are indicative of siderophore excretion. It was demonstrated with Escherichia coli strains that biosynthetic, transport, and regulatory mutations in the enterobactin system are clearly distinguishable. The method was successfully used to screen mutants in the iron uptake system of two Rhizobium meliloti strains, DM5 and 1021.  相似文献   

6.
A rapid and sensitive assay for the detection of microbial siderophores (iron-binding compounds) is described. Nine representative fungal and bacterial cultures including Ustilago sphaerogena, Penicillium sp., Fusarium roseum, Rhodotorula pilimanae, Bacillus subtilis W 23, Bacillus subtilis W 168, Bacillus megaterium, Azotobacter vinelandii OP, and Escherichia coli B, were nutritionally stressed for iron by sequential transfers on iron-deficient solid-plating media. In response to Fe-stress conditions, the microorganisms excreted siderophore compounds into the extracellular solid culture medium. The solid agar matrix effectively concentrated and restricted the migration of the siderophore compounds to the region immediately adjacent to colonial growth. Agar-block samples from this region were removed and placed at the origin of an electrophoresis paper strip. The resultant absorbed material from the agar-block sample was subjected to high-voltage paper electrophoresis which separated the siderophore compounds by size and molecular net charge. Phenolic acid (“catechol”)-type siderophores were detected by fluorescence under uv light. Hydroxamic acid-type siderophores were visualized by spraying the electrophoretogram with ferric iron solution.  相似文献   

7.
Bacterial pathogens are frequently distinguished by the presence of acquired genes associated with iron acquisition. The presence of specific siderophore receptor genes, however, does not reliably predict activity of the complex protein assemblies involved in synthesis and transport of these secondary metabolites. Here, we have developed a novel quantitative metabolomic approach based on stable isotope dilution to compare the complement of siderophores produced by Escherichia coli strains associated with intestinal colonization or urinary tract disease. Because uropathogenic E. coli are believed to reside in the gut microbiome prior to infection, we compared siderophore production between urinary and rectal isolates within individual patients with recurrent UTI. While all strains produced enterobactin, strong preferential expression of the siderophores yersiniabactin and salmochelin was observed among urinary strains. Conventional PCR genotyping of siderophore receptors was often insensitive to these differences. A linearized enterobactin siderophore was also identified as a product of strains with an active salmochelin gene cluster. These findings argue that qualitative and quantitative epi-genetic optimization occurs in the E. coli secondary metabolome among human uropathogens. Because the virulence-associated biosynthetic pathways are distinct from those associated with rectal colonization, these results suggest strategies for virulence-targeted therapies.  相似文献   

8.
假单胞菌荧光与非荧光铁载体对铁离子的应答差异   总被引:2,自引:0,他引:2  
假单胞菌既能产荧光铁载体也能产非荧光铁载体.通过对假单胞菌在不同铁离子浓度下,在通用CAS(Chrome azroul S)检测平板、改进的蔗糖-天冬氨酸(SA)平板(MSA)上以及通用液体CAS培养基和MSA培养基内的铁载体产生情况的比较,发现在通用CAS的液体培养基上产生的主要为非荧光铁载体(pyochelin),而在改进的MSA培养基上产生的主要为荧光铁载体(pyoverdine);在铁离子的应答方面,pyoverdine较pyochelin灵敏,较低的铁离子浓度即可抑制荧光铁载体的产生,但是不能抑制非荧光铁载体.  相似文献   

9.
Actively secreted iron chelating agents termed siderophores play an important role in the virulence and rhizosphere competence of fluorescent pseudomonads, including Pseudomonas aeruginosa which secretes a high affinity siderophore, pyoverdine, and the low affinity siderophore, pyochelin. Uptake of the iron-siderophore complexes is an active process that requires specific outer membrane located receptors, which are dependent of the inner membrane-associated protein TonB and two other inner membrane proteins, ExbB and ExbC. P. aeruginosa is also capable of using a remarkable variety of heterologous siderophores as sources of iron, apparently by expressing their cognate receptors. Illustrative of this feature are the 32 (of which 28 putative) siderophore receptor genes observed in the P. aeruginosa PAO1 genome. However, except for a few (pyoverdine, pyochelin, enterobactin), the vast majority of P. aeruginosa siderophore receptor genes still remain to be characterized. Ten synthetic iron chelators of catecholate type stimulated growth of a pyoverdine/pyochelin deficient P. aeruginosa PAO1 mutant under condition of severe iron limitation. Null mutants of the 32 putative TonB-dependent siderophore receptor encoding genes engineered in the same genetic background were screened for obvious deficiencies in uptake of the synthetic siderophores, but none showed decreased growth stimulation in the presence of the different siderophores. However, a double knock-out mutant of ferrienterobactin receptor encoding gene pfeA (PA 2688) and pirA (PA0931) failed to be stimulated by 4 of the tested synthetic catecholate siderophores whose chemical structures resemble enterobactin. Ferric-enterobactin also failed to stimulate growth of the double pfeA-pirA mutant although, like its synthetic analogues, it stimulated growth of the corresponding single mutants. Hence, we confirmed that pirA represents a second P. aeruginosa ferric-enterobactin receptor. The example of these two enterobactin receptors probably illustrates a more general phenomenon of siderophore receptor redundancy in P. aeruginosa.  相似文献   

10.
The ability of iron utilizing by means of staphylococcal siderophores by bacteria belonging to genera: Acinetobacter, Corynebacterium, Curtobacterium, Clavibacter, Bacillus and Mycobacterium was investigated. The staphylococcal donor strains (18 species) used in these experiments were characterized by the ability to utilize siderophores produced by various strains belonging to aforenamed genera. The utilization of staphylococcal siderophores was studied on agar media in which minimally effective concentrations of ethylenediaminedi-ortho-hydroxyphenylacetic acid (EDDA) were used to inhibit indicator strains. Test colonies (staphylococcal) were applied to the surface of the media to determine whether the indicator organisms could obtain the required iron for growth by utilizing chelators from the test colony. The growth inhibition by EDDA of most strains from the Acinetobacter rods and from the coryneform-organisms (plant pathogen) genera, and strains from the species: B. subtilis, M. phlei, M. smegmatis, M. fortuitum was reversed by staphylococcal siderophores. None of the staphylococcal strains investigated, had the ability to exchange siderophores with strains from the species: C. pseudodiphtheriticum, Corynebacterium ANF group, B. megaterium, M. vaccae, M. chitae and M. parafortuitum.  相似文献   

11.
Siderocalins are atypical lipocalins able to capture siderophores with high affinity. They contribute to the innate immune response by interfering with bacterial siderophore-mediated iron uptake but are also involved in numerous physiological processes such as inflammation, iron delivery, tissue differentiation, and cancer progression. The Q83 lipocalin was originally identified based on its overexpression in quail embryo fibroblasts transformed by the v-myc oncogene. We show here that Q83 is a siderocalin, binding the siderophore enterobactin with an affinity and mode of binding nearly identical to that of neutrophil gelatinase-associated lipocalin (NGAL), the prototypical siderocalin. This strengthens the role of siderocalins in cancer progression and inflammation. In addition, we also present the solution structure of Q83 in complex with intact enterobactin and a detailed analysis of the Q83 binding mode, including mutagenesis of the critical residues involved in enterobactin binding. These data provide a first insight into the molecular details of siderophore binding and delineate the common molecular properties defining the siderocalin protein family.  相似文献   

12.
CAS平板覆盖法检测氢氧化细菌铁载体   总被引:3,自引:1,他引:2  
【目的】用CAS平板覆盖法检测氢氧化细菌铁载体,解决通用CAS琼脂平板法中十六烷基三甲基溴化铵对真菌和某些细菌的生长抑制问题。【方法】将改良的CAS检测培养基覆盖在长满菌落的无铁培养基上,生长抑制问题因微生物未与十六烷基三甲基溴化铵直接接触而解决。【结果】3株氢氧化细菌SDW-5、SDW-9和AaP-13均能产生单菌落,加入CAS检测培养基1 h后,菌落周围产生明显的铁载体晕圈。【结论】本方法成功解决了生长抑制问题,可以作为检测微生物铁载体的通用方法。  相似文献   

13.
We screened a collection of 4847 haploid knockout strains (EUROSCARF collection) of Saccharomyces cerevisiae for iron uptake from the siderophore ferrioxamine B (FOB). A large number of mutants showed altered uptake activities, and a few turned yellow when grown on agar plates with added FOB, indicating increased intracellular accumulation of undissociated siderophores. A subset consisting of 197 knockouts with altered uptake was examined further for regulated activities that mediate cellular uptake of iron from other siderophores or from iron salts. Hierarchical clustering analysis grouped the data according to iron sources and according to mutant categories. In the first analysis, siderophores grouped together with the exception of enterobactin, which grouped with iron salts, suggesting a reductive pathway of iron uptake for this siderophore. Mutant groupings included three categories: (i) high-FOB uptake, high reductase, low-ferrous transport; (ii) isolated high- or low-FOB transport; and (iii) induction of all activities. Mutants with statistically altered uptake activities included genes encoding proteins with predominant localization in the secretory pathway, nucleus, and mitochondria. Measurements of different iron-uptake activities in the yeast knockout collection make possible distinctions between genes with general effects on iron metabolism and those with pathway-specific effects.  相似文献   

14.
Iron is essential for Escherichia coli growth and survival in the host and the external environment, but its availability is generally low due to the poor solubility of its ferric form in aqueous environments and the presence of iron-withholding proteins in the host. Most E. coli can increase access to iron by excreting siderophores such as enterobactin, which have a very strong affinity for Fe3+. A smaller proportion of isolates can generate up to 3 additional siderophores linked with pathogenesis; aerobactin, salmochelin, and yersiniabactin. However, non-pathogenic E. coli are also able to synthesise these virulence-associated siderophores. This raises questions about their role in the ecology of E. coli, beyond virulence, and whether specific siderophores might be linked with persistence in the external environment. Under the assumption that selection favours phenotypes that confer a fitness advantage, we compared siderophore production and gene distribution in E. coli isolated either from agricultural plants or the faeces of healthy mammals. This population-level comparison has revealed that under iron limiting growth conditions plant-associated isolates produced lower amounts of siderophores than faecal isolates. Additionally, multiplex PCR showed that environmental isolates were less likely to contain loci associated with aerobactin and yersiniabactin synthesis. Although aerobactin was linked with strong siderophore excretion, a significant difference in production was still observed between plant and faecal isolates when the analysis was restricted to strains only able to synthesise enterobactin. This finding suggests that the regulatory response to iron limitation may be an important trait associated with adaptation to the non-host environment. Our findings are consistent with the hypothesis that the ability to produce multiple siderophores facilitates E. coli gut colonisation and plays an important role in E. coli commensalism.  相似文献   

15.
Nitrosomonas europaea has a single three-gene operon (nitABC) encoding an iron ABC transporter system (NitABC). Phylogenetic analysis clustered the subunit NitB with Fe3+-ABC transporter permease components from other organisms. The N. europaea strain deficient in nitB (nitB::kan) grew well in either Fe-replete or Fe-limited media and in Fe-limited medium containing the catecholate-type siderophore, enterobactin or the citrate-based dihydroxamate-type siderophore, aerobactin. However, the nitB::kan mutant strain was unable to grow in Fe-limited media containing either the hydroxamate-type siderophores, ferrioxamine and ferrichrome or the mixed-chelating type siderophore, pyoverdine. Exposure of N. europaea cells to a ferrichrome analog coupled to the fluorescent moiety naphthalic diimide (Fhu-NI) led to increase in fluorescence in the wild type but not in nitB::kan mutant cells. Spheroplasts prepared from N. europaea wild type exposed to Fhu-NI analog retained the fluorescence, while spheroplasts of the nitB::kan mutant were not fluorescent. NitABC transports intact Fe3+-ferrichrome complex into the cytoplasm and is an atypical ABC type iron transporter for Fe3+ bound to ferrioxamine, ferrichrome or pyoverdine siderophores into the cytoplasm. The mechanisms to transport iron in either the Fe3+ or Fe2+ forms or Fe3+ associated with enterobactin or aerobactin siderophores into the cell across the cytoplasmic membrane are as yet undetermined.  相似文献   

16.
Using biological iron chelators to control specifically iron availability to Escherichia coli K-12 in conjunction with radioactive pulse-labels, we examined the biosynthesis of six iron-regulated membrane proteins. Iron deprivation induced the synthesis of five proteins, which had molecular weights of 83,000 (83K), 81K (Fep), 78K (TonA), 74K (Cir), and 25K. The kinetics of induction were the same in entA and entA+ strains, but were affected by the initial iron availability in the media. Iron-poor cells induced rapidly (half-time, 10 min), whereas iron-rich cells began induction after a lag and showed a slower induction half-time (30 min). Within this general pattern of induction after iron deprivation, several different kinetic patterns were apparent. The 83K, 81K, and 74K proteins were coordinately controlled under all of the conditions examined. The 78K and 25K proteins were regulated differently. The synthesis of a previously unrecognized 90K inner membrane protein was inhibited by iron deprivation and stimulated by iron repletion. Both ferrichrome and ferric enterobactin completely repressed 81K and 74K synthesis when the siderophores were supplied at concentrations of 5 μM in vivo (half-time, 2.5 min). At concentrations less than 5 μM, however, both siderophores repressed synthesis only temporarily; the duration of repression was proportional to the amount of ferric siderophore added. The half-lives of the 81K and 74K mRNAs, as measured by rifampin treatment, were 1.2 and 1.6 min, respectively. The results of this study suggest that enteric bacteria are capable of instantaneously detecting and reacting to fluctuations in the extracellular iron concentration and that they store iron during periods of iron repletion for utilization during periods of iron stress. Neither iron storage nor iron regulation of envelope protein synthesis is dependent on the ability of the bacteria to form heme.  相似文献   

17.
TolC is the outer membrane component of tripartite efflux pumps, which expel proteins, toxins and antimicrobial agents from Gram‐negative bacteria. Escherichia coli tolC mutants grow well and are slightly elongated in rich media but grow less well than wild‐type cells in minimal media. These phenotypes have no physiological explanation as yet. Here, we find that tolC mutants have highly aberrant shapes when grown in M9‐glucose medium but that adding iron restores wild‐type morphology. When starved for iron, E. coli tolC mutants synthesize but cannot secrete the siderophore enterobactin, which collects in the periplasm. tolC mutants unable to synthesize enterobactin display no growth or morphological defects, and adding exogenous enterobactin recreates these aberrations, implicating this compound as the causative agent. Cells unable to import enterobactin across the outer membrane grow normally, whereas cells that import enterobactin only to the periplasm become morphologically aberrant. Thus, tolC mutants grown in low iron conditions accumulate periplasmic enterobactin, which impairs bacterial morphology, possibly by sequestering iron and inhibiting an iron‐dependent reaction involved in cell division or peptidoglycan synthesis. The results also highlight the need to supply sufficient iron when studying TolC‐directed export or efflux, to eliminate extraneous physiological effects.  相似文献   

18.
Seventeen isolates of Klebsiella aerogenes, K. pneumoniae, K. oxytocum and K. edwardsii were examined for their ability to express iron-regulated outer membrane proteins (IROMPs) and high affinity iron-chelating agents (siderophores). In response to iron deprivation, all strains induced at least 4 IROMPs in the approximate Mr range 70 000–85 000 and the phenolate siderophore enterobactin. Six strains also produced the hydroxamate siderophore aerobactin. The Klebsiella enterobactin receptor was identified as an 81 000 Mr iron-repressible outer membrane (OM) protein which appears to be highly conserved and shows considerable antigenic homology with that of Escherichia coli.  相似文献   

19.
Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.  相似文献   

20.
Siderophores bind ferric ions and are involved in receptor-specific iron transport into bacteria. Six types of siderophores were tested against strains representing the 12 different serotypes of Actinobacillus pleuropneumoniae. Ferrichrome and bis-catechol-based siderophores showed strong growth-promoting activities for A. pleuropneumoniae in a disk diffusion assay. Most strains of A. pleuropneumoniae tested were able to use ferrichrome (21 of 22 or 95%), ferrichrome A (20 of 22 or 90%), and lysine-based bis-catechol (20 of 22 or 90%), while growth of 36% (8 of 22) was promoted by a synthetic hydroxamate, N5-acetyl-N5-hydroxy-L-ornithine tripeptide. A. pleuropneumoniae serotype 1 (strain FMV 87-682) and serotype 5 (strain 2245) exhibited a distinct yellow halo around colonies on Chrome Azurol S agar plates, suggesting that both strains can produce an iron chelator (siderophore) in response to iron stress. The siderophore was found to be neither a phenolate nor a hydroxamate by the chemical tests of Arnow and Csaky, respectively. This is the first report demonstrating the production of an iron chelator and the use of exogenous siderophores by A. pleuropneumoniae. A spermidine-based bis-catechol siderophore conjugated to a carbacephalosporin was shown to inhibit growth of A. pleuropneumoniae. A siderophore-antibiotic-resistant strain was isolated and shown to have lost the ability to use ferrichrome, synthetic hydroxamate, or catechol-based siderophores when grown under conditions of iron restriction. This observation indicated that a common iron uptake pathway, or a common intermediate, for hydroxamate- and catechol-based siderophores may exist in A. pleuropneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号