首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

The genus Erodium is a common feature of Mediterranean-type climates throughout the world, but the Mediterranean Basin has significantly higher diversity than other areas. The aim here is to reveal the biogeographical history of the genus and the causes behind the evolution of the uneven distribution.

Methods

Seventy-eight new nrITS sequences were incorporated with existing plastid data to explore the phylogenetic relationships and biogeography of Erodium using several reconstruction methods. Divergence times for major clades were calculated and contrasted with other previously published information. Furthermore, topological and temporal diversification rate shift analyses were employed using these data.

Key Results

Phylogenetic relationships among species are widely congruent with previous plastid reconstructions, which refute the classical taxonomical classification. Biogeographical reconstructions point to Asia as the ancestral area of Erodium, arising approx. 18 MYA. Four incidences of intercontinental dispersal from the Mediterranean Basin to similar climates are demonstrated. Increases in diversification were present in two independent Erodium lineages concurrently. Two bursts of diversification (3 MYA and 0·69 MYA) were detected only in the Mediterranean flora.

Conclusions

Two lineages diverged early in the evolution of the genus Erodium: (1) subgenus Erodium plus subgenus Barbata subsection Absinthioidea and (2) the remainder of subgenus Barbata. Dispersal across major water bodies, although uncommon, has had a major influence on the distribution of this genus and is likely to have played as significant role as in other, more easily dispersed, genera. Establishment of Mediterranean climates has facilitated the spread of the genus and been crucial in its diversification. Two, independent, rapid radiations in response to the onset of drought and glacial climate change indicate putative adaptive radiations in the genus.  相似文献   

2.

Background and Aims

The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented.

Methods

Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated.

Key Results

The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas.

Conclusions

Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are protected.  相似文献   

3.
Chloroplast DNA (cpDNA) markers were developed that provided markers unique to a species or that delimited a large area within a species. These markers were then followed across two hybrid zones: Iris douglasiana/Iris∗∗∗ innominata, and Iris chrysophylla/Iris tenax. In each case the cline in haplotype frequency was compared to the cline for a morphologically based hybrid index. In all three transects across the I. douglasianall. innominata hybrid zone, the cpDNA cline was displaced 1-2 km relative to the morphologically defined hybrid zone; the displacement was not found in the other hybrid zone. The observed displacement represents introgression of cpDNA from ∗∗∗I. douglasiana into ∗∗∗I. innominata. It may be that the I. douglasiana/I.∗∗∗ innominata hybrid zone has shifted in recent time, leaving the slowly dispersing chloroplast DNA behind. The populations known as Iris thompsonii do not form a phylogenetic species and are best viewed as products of hybridization between ∗∗∗I. douglasiana and ∗∗∗I. innominata.  相似文献   

4.
Hybridization is increasingly seen as a trigger for rapid evolution and speciation. To quantify and qualify divergence associated with recent homoploid hybrid speciation, we compared quantitative trait (QT) and molecular genetic variation between the homoploid hybrid species Senecio squalidus and its parental species, S. aethnensis and S. chrysanthemifolius, and also their naturally occurring Sicilian hybrids. S. squalidus originated and became invasive in the United Kingdom following the introduction of hybrid plants from Mount Etna, Sicily, about 300 years ago. We recorded considerable molecular genetic differentiation between S. squalidus and its parents and their Sicilian hybrids in terms of both reduced genetic diversity and altered allele frequencies, potentially due to the genetic bottleneck associated with introduction to the United Kingdom. S. squalidus is also distinct from its parents and Sicilian hybrids for QTs, but less so than for molecular genetic markers. We suggest that this is due to resilience of polygenic QTs to changes in allele frequency or lack of selection for hybrid niche divergence in geographic isolation. While S. squalidus is intermediate or parental-like for most QTs, some trangressively distinct traits were observed, which might indicate emerging local adaptation in its invasive range. This study emphasizes the important contribution of founder events and geographic isolation to successful homoploid hybrid speciation.  相似文献   

5.
The long generation time and large effective size of widespread forest tree species can result in slow evolutionary rate and incomplete lineage sorting, complicating species delimitation. We addressed this issue with the African timber tree genus Milicia that comprises two morphologically similar and often confounded species: M. excelsa, widespread from West to East Africa, and M. regia, endemic to West Africa. We combined information from nuclear microsatellites (nSSRs), nuclear and plastid DNA sequences, and morphological systematics to identify significant evolutionary units and infer their evolutionary and biogeographical history. We detected five geographically coherent genetic clusters using nSSRs and three levels of genetic differentiation. First, one West African cluster matched perfectly with the morphospecies M. regia that formed a monophyletic clade at both DNA sequences. Second, a West African M. excelsa cluster formed a monophyletic group at plastid DNA and was more related to M. regia than to Central African M. excelsa, but shared many haplotypes with the latter at nuclear DNA. Third, three Central African clusters appeared little differentiated and shared most of their haplotypes. Although gene tree paraphyly could suggest a single species in Milicia following the phylogenetic species concept, the existence of mutual haplotypic exclusivity and nonadmixed genetic clusters in the contact area of the two taxa indicate strong reproductive isolation and, thus, two species following the biological species concept. Molecular dating of the first divergence events showed that speciation in Milicia is ancient (Tertiary), indicating that long-living tree taxa exhibiting genetic speciation may remain similar morphologically.  相似文献   

6.

Background and Aims

Studies examining patterns and processes of speciation in South America are fewer than in North America and Europe. One of the least well documented processes has been progenitor–derivative speciation. A particularly instructive example occurs in the southern Andes in the genus Pozoa (Apiaceae, Azorelloideae), which consists of only two diploid outcrossing species, the widespread P. coriacea and the geographically and ecologically restricted P. volcanica. This paper tests the hypothesis that the latter species originated from the former through local geographical and ecological isolation by progenitor–derivative speciation.

Methods

DNA sequences were analysed from Pozoa and the related South American genera Asteriscium, Eremocharis and Gymnophyton from non-coding regions of the plastid genome, ndhF-rpl32 and rpl32-trnL, plus incorporation of previously reported rpl16 intron and trnD-trnT intergenic spacer sequences. Amplified fragment length polymorphism (AFLP) data from 105 individuals in 21 populations throughout the entire range of distribution of the genus were used for estimation of genetic diversity, divergence and SplitsTree network analysis. Ecological factors, including habitat and associated species, were also examined.

Key Results

Pozoa coriacea is more similar genetically to the outgroup genera, Asteriscium and Eremocharis, than is P. volcanica. At the population level, only P. volcanica is monophyletic, whereas P. coriacea is paraphyletic. Analyses of genetic differentiation among populations and genetic divergence and diversity of the species show highest values in P. coriacea and clear reductions in P. volcanica. Pozoa coriacea occurs in several types of high elevation habitats, whereas P. volcanica is found only in newly formed open volcanic ash zones.

Conclusions

All facts support that Pozoa represents a good example of progenitor–derivative speciation in the Andes of southern South America.  相似文献   

7.

Background and Aims

Plant populations experiencing divergent pollination environments may be under selection to modify floral traits in ways that increase both attractiveness to and efficiency of novel pollinators. These changes may come at the cost of reducing overall effectiveness of other pollinators. The goal of this study was to examine differences in attractiveness and efficiency between Clarkia concinna and C. breweri, sister species of annual plants with parapatric distributions.

Methods

An assessment was made as to whether observed differences in visitors between natural populations are driven by differences in floral traits or differences in the local pollination environment. Differences in floral attractiveness were quantified by setting out arrays of both species in the geographical range of each species and exposing both species to nocturnal hawkmoths (Hyles lineata) in flight cages. Differences in visitor efficiency were estimated by measuring stigma–visitor contact frequency and pollen loads for diurnal visitors, and pollen deposition on stigmas for hawkmoths.

Key Results

The composition of visitors to arrayed plants was similar between plant species at any particular site, but highly divergent among sites, and reflected differences in visitors to natural populations. Diurnal insects visited both species, but were more common at C. concinna populations. Hummingbirds and hawkmoths were only observed visiting within the range of C. breweri. Despite attracting similar species when artificially presented together, C. concinna and C. breweri showed large differences in pollinator efficiency. All visitors except hawkmoths pollinated C. concinna more efficiently.

Conclusions

Differences in the available pollinator community may play a larger role than differences in floral traits in determining visitors to natural populations of C. concinna and C. breweri. However, floral traits mediate differences in pollinator efficiency. Increased effectiveness of the novel hawkmoth pollinator on C. breweri comes at relatively little cost in attractiveness to other visitors, but at large cost in their efficiency as pollinators.  相似文献   

8.
Morphological traits of Iris section Oncocyclus (Siems.) Baker in the southern Levant (Israel, Jordan, The Palestinian Authority and Sinai/Egypt) were analysed in order to clarify taxonomic relationships among taxa and the validity of diagnostic characters. Floral and vegetative characters were measured in 42 populations belonging to nine species during the peak of the flowering season in 1998–2000. Pearson's Coefficient of Racial Likelihood (CRL) was used to calculate morphological distances between populations. Twelve of the measured populations, distributed along the north-south aridity gradient in Israel, were further explored for morphological changes along the gradient. Cluster analysis revealed two major clusters: the first includes most of the dark-coloured Iris populations, with populations of I. petrana Dinsmore and I. mariae W. Barbey forming a subcluster; the second consists of all the light-coloured populations but also some dark-coloured populations. Pearson's CRL and geographical distance were significantly correlated among the dark-coloured populations. Along the geographical gradient, flower, stem and leaf size traits decrease towards the south, probably as an adaptation to aridity. This suggests that natural selection promoted the differences between populations. Almost no discrete phenotypic groups exist within the Oncocyclus species of the southern Levant except for variation in the floral colours. Most of the suggested diagnostic characters proved unreliable in that they varied continuously across populations. The taxonomical difficulties encountered in this study reflect the special evolutionary state of the Oncocyclus irises as a group in the course of speciation.  © 2002 The Linnean Society of London. Botanical Journal of the Linnean Society , 2002, 139 , 369–382.  相似文献   

9.

Background and Aims

Sisyrinchium (Iridaceae: Iridoideae: Sisyrinchieae) is one of the largest, most widespread and most taxonomically complex genera in Iridaceae, with all species except one native to the American continent. Phylogenetic relationships within the genus were investigated and the evolution of oil-producing structures related to specialized oil-bee pollination examined.

Methods

Phylogenetic analyses based on eight molecular markers obtained from 101 Sisyrinchium accessions representing 85 species were conducted in the first extensive phylogenetic analysis of the genus. Total evidence analyses confirmed the monophyly of the genus and retrieved nine major clades weakly connected to the subdivisions previously recognized. The resulting phylogenetic hypothesis was used to reconstruct biogeographical patterns, and to trace the evolutionary origin of glandular trichomes present in the flowers of several species.

Key Results and Conclusions

Glandular trichomes evolved three times independently in the genus. In two cases, these glandular trichomes are oil-secreting, suggesting that the corresponding flowers might be pollinated by oil-bees. Biogeographical patterns indicate expansions from Central America and the northern Andes to the subandean ranges between Chile and Argentina and to the extended area of the Paraná river basin. The distribution of oil-flower species across the phylogenetic trees suggests that oil-producing trichomes may have played a key role in the diversification of the genus, a hypothesis that requires future testing.  相似文献   

10.

Background and Aim

Anagenesis (also known as phyletic speciation) is an important process of speciation in endemic species of oceanic islands. We investigated genetic variation in Acer okamotoanum, an anagenetically derived species endemic to Ullung Island, South Korea, to infer genetic consequences of anagenesis in comparison with other groups that have undergone cladogenesis (and adaptive radiation).

Methods

We examined genetic variation based on eight polymorphic microsatellite markers from 145 individuals of A. okamotoanum and 134 individuals of its putative progenitor A. mono. We employed standard population genetic analyses, clustering analyses, Bayesian clustering analyses in STRUCTURE and bottleneck analyses.

Key Results

Based on both the Neighbor–Joining tree and Bayesian clustering analyses, clear genetic distinctions were found between the two species. Genetic diversity in terms of allelic richness and heterozygosity shows slightly lower levels in A. okamotoanum in comparison with A. mono. Bayesian clustering analyses showed a relatively high F-value in the cluster of A. okamotoanum, suggesting a strong episode of genetic drift during colonization and speciation. There was no clear evidence of a bottleneck based on allelic frequency distribution and excess of observed heterozygotes, but the M-ratio indicated a historical bottleneck in several populations of A. okamotoanum. No geographical genetic structure within the island was found, and the genetic variation among populations of A. okamotoanum was quite low.

Conclusions

We hypothesized that genetic consequences of oceanic-endemic plants derived via anagenesis would be quite different from those derived via cladogenesis. Populations of A. okamotoanum form a cluster and are clearly differentiated from A. mono, which suggests a single origin for the anagenetically derived island endemic. No pattern of geographical differentiation of populations occurs in A. okamotoanum, which supports the concept of initial founder populations diverging through time by accumulation of mutations in a relatively uniform environment without further specific differentiation.  相似文献   

11.
There has been much debate over the origin of species diversity in biodiversity hotspots, particularly the rate of speciation over extinction and the geographic mode of speciation. Here, we looked at speciation with varying degrees of sympatry in a biodiversity hotspot, focusing on a distinct morphological clade in the Cape Floristic Region in southern Africa, the Gladiolus carinatus species complex (Iridaceae). We investigate the mechanisms involved in population and species differentiation through a combination of ecological and genomic approaches. We estimated spatial and phenological overlap, differences in floral morphology, genetic isolation and genomic selection. A genetic coalescent analysis estimated that the time of divergence between lineages followed the establishment of available habitat in the Cape littoral plain where these species currently overlap geographically. Marked shifts in flowering time and morphology, which act as barriers to gene flow, have developed to varying degrees over the last 0.3–1.4 million years. An amplified fragment length polymorphism genome scan revealed signatures of divergent and balancing selection, although half of the loci consistently behaved neutrally. Divergent species outliers (1%) and floral morph outliers (3%) represent a small proportion of the genome, but these loci produced clear genetic clusters of species and significant associations with floral traits. These results indicate that the G. carinatus complex represents a continuum of recent speciation. We provide further evidence for ecological adaptation in the face of gene flow.  相似文献   

12.
Genome-scale scans have revealed highly heterogeneous levels of divergence between closely related taxa in many systems. Generally, a small number of regions show high differentiation, with the rest of the genome showing no or only low levels of divergence. These patterns have been interpreted as evidence for ongoing speciation-with-gene-flow, with introgression homogenizing the whole genome except loci involved in reproductive isolation. However, as the number of selected loci increases, the probability of introgression at unselected loci decreases unless there is a transmission ratio distortion causing an over-representation of specific combinations of alleles. Here we examine the transmission of three 'speciation islands' that contain fixed differences between the M and S forms of the mosquito, Anopheles gambiae. We made reciprocal crosses between M and S parents and genotyped over 2000 F(2) individuals, developing a hierarchical likelihood model to identify specific genotypes that are under- or over-represented among the recombinant offspring. Though our overall results did not match the expected number of F(2) genotypes, we found no biased co-transmission among M or S alleles in the three islands. Our likelihood model did identify transmission ratio distortion at two of the three islands, but this distortion was small (approx. 3%) and in opposite directions for the two islands. We discuss how our results impinge on hypotheses of current gene flow between M and S and ongoing speciation-with-gene-flow in this system.  相似文献   

13.
Syconia ("figs") from Ficus thonningii and adults of its pollinator wasp Elisabethiella stuckenbergi were dissected to elucidate their association with a new species of Schistonchus (Aphelenchoididae). Schistonchus africanus n. sp. is characterized by a short stylet (13-16 μm long); position of the excretory pore opening in both sexes at a level just behind the stylet knobs; and short post-uterine branch, one body-width long. Schistonchus africanus n. sp. parasitizes F. thonningii florets and is transported by the winged females of E. stuckenbergi. Juveniles, females, and males of the nematode were found in the female and male fig florets and in the abdomen of the vector. Nematode populations extracted from female wasps or fig floret tissues did not differ in their morphology. No association was observed with the wingless males of the pollinator wasp.  相似文献   

14.
The Hawaiian Archipelago is the most isolated island system on the planet and has been the subject of evolutionary research for over a century. The largest radiation of species in Hawaii is the Hawaiian Drosophilidae, a group of approximately 1000 species. Dispersal to isolated island systems like Hawaii is rare and the resultant flora and fauna shows high disharmony with mainland communities. The possibility that some lineages may have originated in Hawaii and subsequently 'escaped' to diversify on continental landmasses is expected to be rarer still. We present phylogenetic analysis of 134 partially sequenced mitochondrial genomes of Drosophilidae (approx. 1.3 Mb of sequence total) to address major aspects of adaptive radiation and dispersal in Hawaii. We show that the genus Scaptomyza, a group that accounts for approximately one-third of the species-level diversity of Drosophilidae in the Hawaiian Islands, originated in Hawaii, diversified there, and subsequently colonized a number of island and continental landmasses elsewhere on the globe. We propose that a combination of small body size, rapid generation time and unique ecological and physiological adaptations have allowed this genus to effectively disperse and diversify.  相似文献   

15.
Theory suggests that sympatric speciation is possible; however, its prevalence in nature remains unknown. Because Neodiprion sawflies are host specialists and mate on their hosts, sympatric speciation via host shifts may be common in this genus. Here, we test this hypothesis using near-complete taxonomic sampling of a species group, comprehensive geographical and ecological data, and multiple comparative methods. Host-use data suggest that host shifts contributed to the evolution of reproductive isolation in Neodiprion and previous work has shown that gene flow accompanied divergence. However, geographical data provide surprisingly little support for the hypothesis that host shifts occurred in sympatry. While these data do not rule out sympatric host race formation in Neodiprion, they suggest that this speciation mode is uncommon in the genus and possibly in nature.  相似文献   

16.

Background and Aims

Plant–pollinator interactions are thought to have shaped much of floral evolution. Yet the relative importance of pollinator shifts and coevolutionary interactions for among-population variation in floral traits in animal-pollinated species is poorly known. This study examined the adaptive significance of spur length in the moth-pollinated orchid Platanthera bifolia.

Methods

Geographical variation in the length of the floral spur of P. bifolia was documented in relation to variation in the pollinator fauna across Scandinavia, and a reciprocal translocation experiment was conducted in south-east Sweden between a long-spurred woodland population and a short-spurred grassland population.

Key Results

Spur length and pollinator fauna varied among regions and habitats, and spur length was positively correlated with the proboscis length of local pollinators. In the reciprocal translocation experiment, long-spurred woodland plants had higher pollination success than short-spurred grassland plants at the woodland site, while no significant difference was observed at the grassland site.

Conclusions

The results are consistent with the hypothesis that optimal floral phenotype varies with the morphology of the local pollinators, and that the evolution of spur length in P. bifolia has been largely driven by pollinator shifts.  相似文献   

17.
Continental shelf island systems, created by rising sea levels, provide a premier setting for studying the effects of geographical isolation on non-adaptive radiation and allopatric speciation brought about by genetic drift. The Aegean Archipelago forms a highly fragmented complex of mostly continental shelf islands that have become disconnected from each other and the mainland in relatively recent geological times (ca <5.2Ma). These ecologically fairly homogenous islands thus provide a suitable biogeographic context for assessing the relative influences of past range fragmentation, colonization, gene flow and drift on taxon diversification. Indeed, recent molecular biogeographic studies on the Aegean Nigella arvensis complex, combining phylogenetic, phylogeographic and population level approaches, exemplify the importance of allopatry and genetic drift coupled with restricted gene flow in driving plant speciation in this continental archipelago at different temporal and spatial scales. While the recent (Late Pleistocene) radiation of Aegean Nigella, as well as possible instances of incipient speciation (in the Cyclades), is shown to be strongly conditioned by (palaeo)geographic factors (including changes in sea level), shifts in breeding system (selfing) and associated isolating mechanisms have also contributed to this radiation. By contrast, founder event speciation has probably played only a minor role, perhaps reflecting a migratory situation typical for continental archipelagos characterized by niche pre-emption because of a long established resident flora. Overall, surveys of neutral molecular markers in Aegean Nigella have so far revealed population genetic processes that conform remarkably well to predictions raised by genetic drift theory. The challenge is now to gain more direct insights into the relative importance of the role of genetic drift, as opposed to natural selection, in the phenotypic and reproductive divergence among these Aegean plant species.  相似文献   

18.

Background and Aims

Tribe Arabideae are the most species-rich monophyletic lineage in Brassicaceae. More than 500 species are distributed in the majority of mountain and alpine regions worldwide. This study provides the first comprehensive phylogenetic analysis for the species assemblage and tests for association of trait and characters, providing the first explanations for the enormous species radiation since the mid Miocene.

Methods

Phylogenetic analyses of DNA sequence variation of nuclear encoded loci and plastid DNA are used to unravel a reliable phylogenetic tree. Trait and ancestral area reconstructions were performed and lineage-specific diversification rates were calculated to explain various radiations in the last 15 Myr in space and time.

Key Results

A well-resolved phylogenetic tree demonstrates the paraphyly of the genus Arabis and a new systematic concept is established. Initially, multiple radiations involved a split between lowland annuals and mountain/alpine perennial sister species. Subsequently, increased speciation rates occur in the perennial lineages. The centre of origin of tribe Arabideae is most likely the Irano-Turanian region from which the various clades colonized the temperate mountain and alpine regions of the world.

Conclusions

Mid Miocene early diversification started with increased speciation rates due to the emergence of various annual lineages. Subsequent radiations were mostly driven by diversification within perennial species during the Pliocene, but increased speciation rates also occurred during that epoch. Taxonomic concepts in Arabis are still in need of a major taxonomic revision to define monophyletic groups.  相似文献   

19.
The lycaenid butterfly genus Euphilotes , consisting of five species and several dozen subspecies, is confined to western North America. Each subspecies utilizes one or a few species of Eriogonum (Polygonaceae) as larval hosts; larvae feed entirely on pollen and developing seeds. Euphilotes populations are (with few exceptions) univoltine and fly in synchrony with the initial (c. 2 weeks) annual flowering periods of their hosts. Euphilotes evolution coincides with shifts to new hosts, frequently with different bloom periods. Often both inter- and intraspecific populations occur in sympatry. Although interspecific populations may fly in synchrony and utilize the same hosts, sympatric intraspecific populations use different hosts and generally fly allochronically. Analyses of Euphilotes populations using biochemical, morphological, and life history characters, do not support either coevolution or sequential evolution with Eriogonum but are more consistent with opportunistic adaptation to new hosts having different bloom periods.  相似文献   

20.

Background and Aims

Heterostylous plants have been characterized by the presence of two or three discrete morphs that differ in their sex organ position within populations. This polymorphism is widely distributed among the angiosperms, but detailed studies are limited to few taxonomic groups. Although a small representation, evolutionary meaningful variations of the heterostylous syndrome have been reported when precise measurements of the sexual whorls were taken. A thorough exploration of groups where heterostyly has been reported should offer new opportunities to further testing the evolutionary hypotheses explaining heterostyly. Here, the traits defining heterostyly were explored in half of the species in Nivenia, the only genus of Iridiaceae where heterostyly has been reported.

Methods

Detailed morphometric analysis of the flower sexual whorls and some traits considered as ancillary are supplied to determine for each population (a) the kind of stylar polymorphism, (b) the morph ratio and (c) the degree of reciprocity between sexual whorls. Also the rates of assortative (within morph) versus disassortative (between morphs) pollen transfer were estimated by analysing pollen loads on stigmas. The association between floral phenotypic integration and the reciprocity between sexual whorls was estimated; both characteristics have been quoted as dependent on the accuracy of the fit between pollinators and flowers and therefore related to the efficiency of pollen transfer.

Key Results

Different types of polymorphism, differing in their degree of reciprocity, were found in Nivenia. Effective disassortative mating appears to be common, since (a) all dimorphic populations show equal morph-ratios (isoplethy), and (b) the pollen placed on the stigmas of each morph is likely to be coming from the other (complementary) morph. The most reciprocal populations of the heterostylous species have also the highest values of phenotypical integration.

Conclusions

Stigma height dimorphism, as opposed to distyly, is proven for the first time in Nivenia. The presence of different types of polymorphism within the genus is consistent with hypotheses of the evolution of heterostyly. The role of the pollinators as the leading force of the transition seems to be apparent, since floral integration is related to reciprocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号