首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male house mice (Mus musculus) emit ultrasonic vocalizations (USVs) during courtship, which attract females, and we aimed to test whether females use these vocalizations for species or subspecies recognition of potential mates. We recorded courtship USVs of males from different Mus species, Mus musculus subspecies, and populations (F1 offspring of wild-caught Mus musculus musculus, Mus musculus domesticus (and F1 hybrid crosses), and Mus spicilegus), and we conducted playback experiments to measure female preferences for male USVs. Male vocalizations contained at least seven distinct syllable types, whose frequency of occurrence varied among species, subspecies, and populations. Detailed analyses of multiple common syllable types indicated that Mus musculus and Mus spicilegus could be discriminated based on spectral and temporal characteristics of their vocalizations, and populations of Mus musculus were also distinctive regardless of the classification model used. Females were able to discriminate USVs from different species, and showed assortative preferences for conspecific males. We found no evidence that females discriminate USVs of males from a different subspecies or separate populations of the same species, even though our spectral analyses identified acoustic features that differ between species, subspecies, and populations of the same species. Our results provide the first comparison of USVs between Mus species or between Mus musculus subspecies, and the first evidence that male USVs potentially facilitate species recognition.  相似文献   

2.
Fragile X syndrome (FXS) is a well-recognized form of inherited mental retardation, caused by a mutation in the fragile X mental retardation 1 (Fmr1) gene. The gene is located on the long arm of the X chromosome and encodes fragile X mental retardation protein (FMRP). Absence of FMRP in fragile X patients as well as in Fmr1 knockout (KO) mice results, among other changes, in abnormal dendritic spine formation and altered synaptic plasticity in the neocortex and hippocampus. Clinical features of FXS include cognitive impairment, anxiety, abnormal social interaction, mental retardation, motor coordination and speech articulation deficits. Mouse pups generate ultrasonic vocalizations (USVs) when isolated from their mothers. Whether those social ultrasonic vocalizations are deficient in mouse models of FXS is unknown. Here we compared isolation-induced USVs generated by pups of Fmr1-KO mice with those of their wild type (WT) littermates. Though the total number of calls was not significantly different between genotypes, a detailed analysis of 10 different categories of calls revealed that loss of Fmr1 expression in mice causes limited and call-type specific deficits in ultrasonic vocalization: the carrier frequency of flat calls was higher, the percentage of downward calls was lower and that the frequency range of complex calls was wider in Fmr1-KO mice compared to their WT littermates.  相似文献   

3.
The effects of rapid eye movement sleep restriction (REMSR) in rats during late pregnancy were studied on the ultrasonic vocalizations (USVs) made by the pups. USVs are distress calls inaudible to human ears. Rapid eye movement (REM) sleep was restricted in one group of pregnant rats for 22 hours, starting from gestational day 14 to 20, using standard single platform method. The USVs of male pups were recorded after a brief isolation from their mother for two minutes on alternate post-natal days, from day one till weaning. The USVs were recorded using microphones and were analysed qualitatively and quantitatively using SASPro software. Control pups produced maximum vocalization on post-natal days 9 to 11. In comparison, the pups born to REMSR mothers showed not only a reduction in vocalization but also a delay in peak call making days. The experimental group showed variations in the types and characteristics of call types, and alteration in temporal profile. The blunting of distress call making response in these pups indicates that maternal sleep plays a role in regulating the neural development involved in vocalizations and possibly in shaping the emotional behaviour in neonates. It is suggested that the reduced ultrasonic vocalizations can be utilized as a reliable early marker for affective state in rat pups. Such impaired vocalization responses could provide an important lead in understanding mother-child bonding for an optimal cognitive development during post-partum life. This is the first report showing a potential link between maternal REM sleep deprivation and the vocalization in neonates and infants.  相似文献   

4.
House mice (Mus musculus) live in social groups where they frequently interact with conspecifics, thus communication (e.g. chemical and/or auditory) is essential. It is commonly known that male and female mice produce complex vocalizations in the ultrasonic range (USV) that remind of high-pitched birdsong (so called mouse song) which is mainly used in social interactions. Earlier studies suggest that mice use their USVs for mate attraction and mate choice, but they could also be used as signal during hierarchy establishment and familiarization, or other communication purposes. In this study we elucidated the vocalization behaviour of interacting female mice over an extended period of time under semi-natural conditions. We asked, if the rate or structure of female vocalization differs between different social and non-social contexts. We found that female USV is mainly used in social contexts, driven by direct communication to an unknown individual, the rate of which is decreased over time by a familiarization process. In addition we could show that female mice use two distinct types of USVs, differing in their frequency, which they use differently depending on whether they directly or indirectly communicate with another female. This supports the notion that vocalization in mice is context dependent, driven by a reasonable and yet underestimated amount of complexity that also involves the interplay between different sensory signals, like chemical and auditory cues.  相似文献   

5.
6.
JL Hanson  LM Hurley 《PloS one》2012,7(7):e40782
The laboratory mouse is an emerging model for context-dependent vocal signaling and reception. Mouse ultrasonic vocalizations are robustly produced in social contexts. In adults, male vocalization during courtship has become a model of interest for signal-receiver interactions. These vocalizations can be grouped into syllable types that are consistently produced by different subspecies and strains of mice. Vocalizations are unique to individuals, vary across development, and depend on social housing conditions. The behavioral significance of different syllable types, including the contexts in which different vocalizations are made and the responses listeners have to different types of vocalizations, is not well understood. We examined the effect of female presence and estrous state on male vocalizations by exploring the use of syllable types and the parameters of syllables during courtship. We also explored correlations between vocalizations and other behaviors. These experimental manipulations produced four main findings: 1) vocalizations varied among males, 2) the production of USVs and an increase in the use of a specific syllable type were temporally related to mounting behavior, 3) the frequency (kHz), bandwidth, and duration of syllables produced by males were influenced by the estrous phase of female partners, and 4) syllable types changed when females were removed. These findings show that mouse ultrasonic courtship vocalizations are sensitive to changes in female phase and presence, further demonstrating the context-sensitivity of these calls.  相似文献   

7.
Mice emit ultrasonic vocalizations (USVs) during a variety of conditions, such as pup isolation and adult social interactions. These USVs differ with age, sex, condition, and genetic background of the emitting animal. Although many studies have characterized these differences, whether receiver mice can discriminate among objectively different USVs and show preferences for particular sound traits remains to be elucidated. To determine whether mice can discriminate between different characteristics of USVs, a playback experiment was developed recently, in which preference responses of mice to two different USVs could be evaluated in the form of a place preference.First, USVs from mice were recorded. Then, the recorded USVs were edited, trimmed accordingly, and exported as stereophonic sound files. Next, the USV amplitudes generated by the two ultrasound emitters used in the experiment were adjusted to the same sound pressure level. Nanocrystalline silicon thermo-acoustic emitters were used to play the USVs back. Finally, to investigate the preference of subject mice to selected USVs, pairs of two differing USV signals were played back simultaneously in a two-choice test box. By repeatedly entering a defined zone near an ultrasound emitter and searching the wire mesh in front of the emitter, the mouse reveals its preference for one sound over another. This model allows comparing the attractiveness of the various features of mouse USVs, in various contexts.  相似文献   

8.
Mice produce ultrasonic vocalizations featuring a variety of syllables. Vocalizations are observed during social interactions. In particular, males produce numerous syllables during courtship. Previous studies have shown that vocalizations change according to sexual behavior, suggesting that males vary their vocalizations depending on the phase of the courtship sequence. To examine this process, we recorded large sets of mouse vocalizations during male–female interactions and acoustically categorized these sounds into 12 vocal types. We found that males emitted predominantly short syllables during the first minute of interaction, more long syllables in the later phases, and mainly harmonic sounds during mounting. These context- and time-dependent changes in vocalization indicate that vocal communication during courtship in mice consists of at least three stages and imply that each vocalization type has a specific role in a phase of the courtship sequence. Our findings suggest that recording for a sufficiently long time and taking the phase of courtship into consideration could provide more insights into the role of vocalization in mouse courtship behavior in future study.  相似文献   

9.
Adaptive behavior requires that animals integrate current and past information with their decision-making. One important type of information is auditory-communication signals (i.e., species-specific vocalizations). Here, we tested how rhesus monkeys incorporate the opportunity to listen to different species-specific vocalizations into their decision-making processes. In particular, we tested how monkeys value these vocalizations relative to the opportunity to get a juice reward. To test this hypothesis, monkeys chose one of two targets to get a varying juice reward; at one of those targets, in addition to the juice reward, a vocalization was presented. By titrating the juice amounts at the two targets, we quantified the relationship between the monkeys'' juice choices relative to the opportunity to listen to a vocalization. We found that, rhesus were not willing to give up a large juice reward to listen to vocalizations indicating that, relative to a juice reward, listening to vocalizations has a low value.  相似文献   

10.
11.
Adult mouse ultrasonic vocalizations (USVs) occur in multiple behavioral and stimulus contexts associated with various levels of arousal, emotion and social interaction. Here, in three experiments of increasing stimulus intensity (water; female urine; male interacting with adult female), we tested the hypothesis that USVs of adult males express the strength of arousal and emotion via different USV parameters (18 parameters analyzed). Furthermore, we analyzed two mouse lines with heterozygous Foxp2 mutations (R552H missense, S321X nonsense), known to produce severe speech and language disorders in humans. These experiments allowed us to test whether intact Foxp2 function is necessary for developing full adult USV repertoires, and whether mutations of this gene influence instinctive vocal expressions based on arousal and emotion. The results suggest that USV calling rate characterizes the arousal level, while sound pressure and spectrotemporal call complexity (overtones/harmonics, type of frequency jumps) may provide indices of levels of positive emotion. The presence of Foxp2 mutations did not qualitatively affect the USVs; all USV types that were found in wild‐type animals also occurred in heterozygous mutants. However, mice with Foxp2 mutations displayed quantitative differences in USVs as compared to wild‐types, and these changes were context dependent. Compared to wild‐type animals, heterozygous mutants emitted mainly longer and louder USVs at higher minimum frequencies with a higher occurrence rate of overtones/harmonics and complex frequency jump types. We discuss possible hypotheses about Foxp2 influence on emotional vocal expressions, which can be investigated in future experiments using selective knockdown of Foxp2 in specific brain circuits.  相似文献   

12.
For songbirds, experience with conspecific vocalizations during development is important for the ontogeny of both production of vocalizations and perceptual abilities in young oscines. We examined the effects of reduced experience with conspecific vocalizations during development on two auditory perceptual tasks: discrimination of distance cues and discrimination between individual vocalizations in black-capped chickadees, Poecile atricapillus. Discrimination of distance cues was nearly identical in field- and isolate-reared chickadees, but the capacity for memorization of numbers of individual vocalizations was lower in isolate-reared chickadees. We conclude that discrimination of distance cues, and thus distance perception, is probably not learned through experience but is an innate skill. We also conclude that discrimination between many individual vocalizations, a task demanding memorization, is aided by early experience with conspecific vocalizations.Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

13.
Shrews have rich vocal repertoires that include vocalizations within the human audible frequency range and ultrasonic vocalizations. Here, we recorded and analyzed in detail the acoustic structure of a vocalization with unclear functional significance that was spontaneously produced by 15 adult, captive Asian house shrews (Suncus murinus) while they were lying motionless and resting in their nests. This vocalization was usually emitted repeatedly in a long series with regular intervals. It showed some structural variability; however, the shrews most frequently emitted a tonal, low-frequency vocalization with minimal frequency modulation and a low, non-vocal click that was clearly noticeable at its beginning. There was no effect of sex, but the acoustic structure of the analyzed vocalizations differed significantly between individual shrews. The encoded individuality was low, but it cannot be excluded that this individuality would allow discrimination of family members, i.e., a male and female with their young, collectively resting in a common nest. The question remains whether the Asian house shrews indeed perceive the presence of their mates, parents or young resting in a common nest via the resting-associated vocalization and whether they use it to discriminate among their family members. Additional studies are needed to explain the possible functional significance of resting-associated vocalizations emitted by captive Asian house shrews. Our study highlights that the acoustic communication of shrews is a relatively understudied topic, particularly considering that they are highly vocal mammals.  相似文献   

14.

Background

Although some molecules have been identified as responsible for human language disorders, there is still little information about what molecular mechanisms establish the faculty of human language. Since mice, like songbirds, produce complex ultrasonic vocalizations for intraspecific communication in several social contexts, they can be good mammalian models for studying the molecular basis of human language. Having found that cadherins are involved in the vocal development of the Bengalese finch, a songbird, we expected cadherins to also be involved in mouse vocalizations.

Methodology/Principal Findings

To examine whether similar molecular mechanisms underlie the vocalizations of songbirds and mammals, we categorized behavioral deficits including vocalization in cadherin-6 knockout mice. Comparing the ultrasonic vocalizations of cadherin-6 knockout mice with those of wild-type controls, we found that the peak frequency and variations of syllables were differed between the mutant and wild–type mice in both pup-isolation and adult-courtship contexts. Vocalizations during male-male aggression behavior, in contrast, did not differ between mutant and wild–type mice. Open-field tests revealed differences in locomotors activity in both heterozygote and homozygote animals and no difference in anxiety behavior.

Conclusions/Significance

Our results suggest that cadherin-6 plays essential roles in locomotor activity and ultrasonic vocalization. These findings also support the idea that different species share some of the molecular mechanisms underlying vocal behavior.  相似文献   

15.
Primate vocalizations convey a variety of information to conspecifics. The acoustic traits of these vocalizations are an effective vocal fingerprint to discriminate between sibling species for taxonomic diagnosis. However, the vocal behavior of nocturnal primates has been poorly studied and there are few studies of their vocal repertoires. We compiled a vocal repertoire for the Endangered Sambirano mouse lemur, Microcebus sambiranensis, an unstudied nocturnal primate of northwestern Madagascar, and compared the acoustic properties of one of their call types to those of M. murinus and M. rufus. We recorded vocalizations from radio-collared individuals using handheld recorders over 3 months. We also conducted an acoustic survey to measure the vocal activity of M. sambiranensis in four forest habitat types at the study site. We identified and classified five vocalization types in M. sambiranensis. The vocal repertoires of the three Microcebus species contain very similar call types but have different acoustic properties, with one loud call type, the whistle, having significantly different acoustic properties between species. Our acoustic survey detected more calls of M. sambiranensis in secondary forest, riparian forest, and forest edge habitats, suggesting that individuals may prefer these habitat types over primary forest. Our results suggest interspecific differences in the vocal repertoire of mouse lemurs, and that these differences can be used to investigate habitat preference via acoustic surveys.  相似文献   

16.
Vocal communication in animals is important for ensuring reproductive success. Male mice emit song-like “ultrasonic vocalizations (USVs)” when they encounter female mice, and females show approach to the USVs. However, it is unclear whether USVs of male mice trigger female behavioral and endocrine responses in reproduction. In this study, we first investigated the relationship between the number of deliveries in breeding pairs for 4 months and USVs syllables emitted from those paired males during 3 min of sexual encounter with unfamiliar female mice. There was a positive correlation between these two indices, which suggests that breeding pairs in which males could emit USVs more frequently had more offspring. Further, we examined the effect of USVs of male mice on female sexual behavior. Female mice showed more approach behavior towards vocalizing males than devocalized males. Finally, to determine whether USVs of male mice could activate the neural system governing reproductive function in female mice, the activation of kisspeptin neurons, key neurons to drive gonadotropin-releasing hormone neurons in the hypothalamus, was examined using dual-label immunocytochemistry with cAMP response element-binding protein phosphorylation (pCREB). In the arcuate nucleus (Arc), the number of kisspeptin neurons expressing pCREB significantly increased after exposure to USVs of male as compared with noise exposure group. In conclusion, our results suggest that USVs of male mice promote fertility in female mice by activating both their approaching behavior and central kisspeptin neurons.  相似文献   

17.
Spectral and temporal features of human infant crying may detect neurobehavioral effects of prenatal cocaine exposure (PCE). Finding comparable measures of rodent ultrasonic vocalizations (USVs) would promote translational analyses by controlling the effects of correlated variables that confound human studies. To this end, two studies examined the sensitivity of similar acoustic structures in human infant and rat pup vocalizations to effects of PCE. In Study 1, cry sounds of 107 one month-old infants were spectrum analyzed to create a novel set of measures and to detect the presence of hyperphonation - a qualitative shift to an atypically high fundamental frequency (basic pitch) associated with neurobehavioral insult. Infants with PCE were compared to infants with prenatal polydrug-exposure (PPE) without cocaine and with infants in a standard comparison (SC) group with no prenatal drug exposure. In Study 2, USVs of 118 five day-old rat pups with either PCE, prenatal saline exposure or no prenatal exposures were spectrum analyzed to detect the presence of frequency shifts – acoustic features that have a frequency waveform similar to that of hyperphonation. Results of study 1 showed PCE had two sets of sex-dependent effects on human infants: PCE males had higher pitched cries with more dysphonation (turbulence); PCE females had longer pauses between fewer cry sounds that were of lower amplitude than comparison groups. PCE and PPE infants had more cries with hyperphonation than SC infants. In study 2, PCE pups had a greater percentage of USVs with shift in the acoustic structure than pups in the two control groups. As such, the novel measures of human infant crying and rat pup USVs were sensitive to effects of PCE. These studies provide the first known translational analysis of similar acoustic structures of vocalizations in two species to detect adverse effects of prenatal drug exposure.  相似文献   

18.
Low‐frequency traffic noise that leads to acoustic masking of vocalizations may cause birds to alter the frequencies or other components of their vocalizations in order to be heard by conspecifics and others. Altering parts of a vocalization may result in poorer vocal performance or the message contained in the vocalization being received incorrectly. During the winters of 2011–2012 and 2012–2013, we recorded and measured the ‘chick‐a‐dee’ call of Black‐capped Chickadees (Poecile atricapillus) and the ‘po‐ta‐to‐chip’ call of American Goldfinches (Spinus tristis) to determine whether components of the calls produced in areas of high traffic noise and low traffic noise differed in any way. We found that both chickadee and goldfinch calls had higher minimum frequencies in areas with high traffic‐noise than in low traffic‐noise areas. The maximum frequencies showed no differences in either species' calls. This suggests that chickadees and goldfinches alter the part of their calls that are acoustically masked by traffic noise in effort to better transmit the vocalization. These differences suggest that increasing anthropogenic noise may influence avian communication and that noise management should be included in conservation planning.  相似文献   

19.
Very little is known about the acoustic repertoire of the Pacific humpback dolphin Sousa chinensis . This study, off eastern Australia, used concurrent observations of surface behaviour and acoustic recordings to gain an insight into the behavioural significance of humpback dolphin vocalizations. Humpback dolphins exhibit five different vocalization categories: broad band clicks; barks; quacks; grunts; and whistles. Broad band clicks were high in frequency (8 kHz to > 22 kHz), were directly related to foraging behaviour and may play a role in social behaviour. Barks and quacks were burst pulse sounds (frequency: 0.6 kHz to > 22 kHz, duration: 0.1–8 s) and were associated with both foraging and social behaviour. The grunt vocalization is a low frequency narrow band sound (frequency 0.5–2.6 kHz, duration 0.06–2 s) and was only heard during socializing. There were 17 different types of whistles, ranging widely in frequency (0.9–22 kHz) and vocal structure (n=329). The predominant whistle types used by the groups were type 1 (46%) and type 2 (17%). Most whistles were heard during both socializing and foraging. The number of whistles recorded in a group increased significantly as the number of mother–calf pairs increased, suggesting that whistles may be used as contact calls. Few vocalizations were heard during either travelling or milling behaviours. Broad band clicks, barks and whistle type 1 were the only vocalizations recorded during either travelling or milling.  相似文献   

20.
Voice deficits are a common complication of both Parkinson disease (PD) and aging; they can significantly diminish quality of life by impacting communication abilities. 1, 2 Targeted training (speech/voice therapy) can improve specific voice deficits,3, 4 although the underlying mechanisms of behavioral interventions are not well understood. Systematic investigation of voice deficits and therapy should consider many factors that are difficult to control in humans, such as age, home environment, age post-onset of disease, severity of disease, and medications. The method presented here uses an animal model of vocalization that allows for systematic study of how underlying sensorimotor mechanisms change with targeted voice training. The ultrasonic recording and analysis procedures outlined in this protocol are applicable to any investigation of rodent ultrasonic vocalizations.The ultrasonic vocalizations of rodents are emerging as a valuable model to investigate the neural substrates of behavior.5-8 Both rodent and human vocalizations carry semiotic value and are produced by modifying an egressive airflow with a laryngeal constriction.9, 10 Thus, rodent vocalizations may be a useful model to study voice deficits in a sensorimotor context. Further, rat models allow us to study the neurobiological underpinnings of recovery from deficits with targeted training.To model PD we use Long-Evans rats (Charles River Laboratories International, Inc.) and induce parkinsonism by a unilateral infusion of 7 μg of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle which causes moderate to severe degeneration of presynaptic striatal neurons (for details see Ciucci, 2010).11, 12 For our aging model we use the Fischer 344/Brown Norway F1 (National Institute on Aging).Our primary method for eliciting vocalizations is to expose sexually-experienced male rats to sexually receptive female rats. When the male becomes interested in the female, the female is removed and the male continues to vocalize. By rewarding complex vocalizations with food or water, both the number of complex vocalizations and the rate of vocalizations can be increased (Figure 1).An ultrasonic microphone mounted above the male''s home cage records the vocalizations. Recording begins after the female rat is removed to isolate the male calls. Vocalizations can be viewed in real time for training or recorded and analyzed offline. By recording and acoustically analyzing vocalizations before and after vocal training, the effects of disease and restoration of normal function with training can be assessed. This model also allows us to relate the observed behavioral (vocal) improvements to changes in the brain and neuromuscular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号