首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Palatinose is a non-cariogenic disaccharide obtained from the enzymatic conversion of sucrose, used in food industries as a sugar substitute. Free and Ca-alginate immobilized cells of Erwinia sp. D12 were used to produce palatinose from sucrose. Palatinose production was studied in a repeated-batch process using different immobilized biocatalysts: whole cells, disrupted cells and glucosyltransferase. Successive batches were treated with the immobilized biocatalyst, but a decrease in palatinose production was observed. A continuous process using a packed-bed reactor was investigated, and found to produce 55–66% of palatinose during 17 days using immobilized cells treated with glutaraldehyde and a substrate flow speed of 0.56 ml min−1. However, immobilized cells in a packed-bed reactor failed to maintain the palatinose production for a prolonged period. The free cells showed a high conversion rate using batch fermentation, obtaining a palatinose yield of 77%. The cells remained viable for 16 cycles with high palatinose yields (65–77%). Free Erwinia sp. D12 cells supported high production levels in repeated-batch operations, and the results showed the potential for repeated reuse.  相似文献   

2.
Acyltransferase activity of amidase from Bacillus sp. APB-6 was enhanced (24 U) by multiple feedings of N-methylacetamide (70 mM) into the production medium. Hyperinduced whole resting cells of Bacillus sp. APB-6 corresponding to 4 g/L (dry cell weight), when treated with 10 mM DTT (dithiothreitol) resulted in 93% molar conversion of acetamide (300 mM) to acetohydroxamic acid in presence of hydroxylamine-HCl (800 mM) after 30 min at 45 °C in a 1 L reaction mixture. After lyophilization, a 62 g powder containing 34% (wt wt−1) acetohydroxamic acid was recovered. This is the first report where DTT has been used to enhance acyltransfer reaction and such high molar conversion (%) of amide to hydroxamates was recorded at 1 L scale.  相似文献   

3.
Whole cells of Bacillus sp., a bacitracin-producing bacteria, were immobilized in polyacrylamide gel. The continuous production of bacitracin by an immobilized whole-cell-containing air-bubbled reactor was examined with 0.5% peptone solution. The bacitracin productivity (28 units/ml/hr) obtained with this system was higher than that with a batch system. The effluent bacitracin concentration increased with increasing aeration rate and reached a steady-state maximum above the aeration rate of 3.0 liter/min. A high bacitracin productivity was retained for at least eight days when the gel was washed with sterilized saline at a flow rate of 250 ml/hr for 2 hr once a day. The half-life of the immobilized whole-cell system was about 10 days. Bacitracin productivity by the immobilized whole-cell reactor was higher than that by a conventional continuous fermentation process at high dilution rates.  相似文献   

4.
Thermostable amylase production by immobilized thermophilic Bacillus sp.   总被引:1,自引:0,他引:1  
Agar, agarose and alginate immobilized cells of thermophilic Bacillus sp. WN11 produced 7.0, 6.2, and 10.5 U/ml of thermostable amylase in shake flasks, respectively. Alginate entrapped cells released high level of amylase (10.5 U/ml) than freely suspended cells (8.0 U/ml). Amylase production was stable in five successive batches with productivity of 9-12 U/ml for alginate, 5.5-8.8 U/ml for agar, and 4.8-8.0 for agarose immobilized cells.  相似文献   

5.
A thermophilic Bacillus spp. capable of transforming aliphatic nitriles, cyclic nitriles and dinitriles was used as a free cell suspension and immobilized in alginate beads to study the utilization of acetonitrile and acrylonitrile in a buffered biotransformation medium. The cells grew optimally at 65 degrees C and contained a nitrile hydratase-amidase enzyme system that transformed nitrile compounds stoichiometrically to the corresponding carboxylic acids. In the presence of urea or chloroacetone, amidase activity was inhibited and the amide intermediate was accumulated. Mass transfer limitation of nitrile utilization rates was observed with immobilized cells, but the alginate afforded the cells some degree of additional thermal stability and potential advantage in re-use. In vitro inhibition of the partially purified amidase was confirmed and the use of whole cells of this organism in a continuous bioreactor to generate amide products from nitrile substrates was demonstrated.  相似文献   

6.
Summary In immobilized cell preparations growth of cells outside the immobilization matrix as free cells is normally undesirable due to the appearance of cells in the product stream and clogging of such systems. Antibiotics could be used to arrest such free cell growth while allowing the synthesis and excretion of the product into the medium. Chloramphenicol (200 /ml) and/or novobiocin (10 /ml), when added during the growth of Bacillus subtilis allowed the production and excretion of lysine into the medium. Chloramphenicol at 200 /ml effectively arrested free cell growth and hence the lysine being produced was almost entirely due to immobilized cells. Novobiocin on the other hand at concentrations of 100 /ml, stopped free cell growth, but also prevented the production of l-lysine. Productivities and yields of lysine were adversely affected by chloramphenicol or novobiocin, probably due to a great decrease in cell viability.Offprint requests to: C. J. Israilides  相似文献   

7.
The acyl transfer activity of the amidase of Alcaligenes sp. MTCC 10674 has been applied to the conversion of benzamide and hydroxylamine to benzohydroxamic acid. The unique features of the acyl transfer activity of this organism include its optimal activity at 50 °C and very high substrate (100 mM benzamide) and product (90 mM benzohydroxamic acid) tolerance among the hitherto reported enzymes. The bench scale production of benzohydroxamic acid was carried out in a fed-batch reaction (final volume 1 l) by adding 50 mM benzamide and 250 mM of hydroxylamine after every 20 min for 80 min in 0.1 M potassium phosphate buffer (pH 7.0) at 50 °C, using resting cells equal to 4.0 mg dcm/ml of reaction mixture. From 1 l of reaction mixture 33 g of benzohydroxamic acid was recovered with 24.6 g l?1 h?1 productivity. The acyl transfer activity of the amidase of Alcaligenes sp. MTCC 10674 and the process developed in the present study are of industrial significance for the enzyme-mediated production of benzohydroxamic acid.  相似文献   

8.
Lactic acid production from salt whey using free and agar immobilized cells   总被引:2,自引:0,他引:2  
Salt whey was examined as a substrate for lactic acid production by Lactobacillus casei in conventional and immobilized cell batch systems. In cell suspension systems this strain was not able to metabolize lactose in the presence of salt concentrations much above 4%. However, the entrapment of cells in 2% agar substantially improved their activity and allowed slow metabolism even in the presence of 8% salt. The agar matrix retained its structure and dimensional stability during 168 h in salt medium.  相似文献   

9.
Abstract

Biosorption is potentially an attractive technology for the treatment of wastewater by removing pesticide molecules from dilute solutions. This study investigated the feasibility of an isolated Bacillus sp. S14 immobilized in calcium alginate that was used as a biosorbent for Malathion removal from aqueous solutions in batch mode. The highest value of Malathion uptake by isolated Bacillus sp. S14 (1.33g L?1, dry basis) immobilized in 3% calcium alginate was 64.4% at 25°C and pH7.0 when the initial Malathion concentration was 50 mg L?1. Equilibrium was attained at 8h. The sorption data conformed well to the Fruendlich isotherm model.  相似文献   

10.
The production characteristics for Taxol (paclitaxel) using free and immobilized cells of Taxus cuspidata were investigated in a perfusion culture bioreactor. Although the cell growth was inhibited by higher dilution rates, the specific production rate of Taxol was increased by perfusion compared with that using batch operation. Perfusion cultures using a nylon-mesh cell separator for free suspension cells showed similar production profiles to those obtained using immobilized cells. Continuous Taxol production was successfully obtained at an approximate specific production rate of 0.3 mg/g DCW (dry cell weight) per day for up to 40 days. (c) 1997 John Wiley & Sons, Inc.  相似文献   

11.
Isomaltulose production using immobilized cells   总被引:4,自引:0,他引:4  
Three strains of Erwinia rhapontici especially suitable for use in the form of nongrowing immobilized cells were selected by screening strains of cells for high activity and operational stability in an immobilized form. Immobilization in calcium alginate gel pellets was easily the best method of immobilizing E. rhapontici. Much greater operational stabilities were obtained than when other immobilization methods were used. Conditions of operation which optimize the activity, stability, and yield and the ease of operation of the immobilized cell columns working in a steady state are described. These include the effects of substrate concentration, diffusional restrictions and water activity, the concentration of cells immobilized, and the type of reactor used. Thus, the immobilized cells produce about 1500 times their own weight of isomaltulose during one half-life of use (ca. 1 year). Loss of activity was most closely correlated with the volume of substrate processed and so presumably is due to the presence of low concentrations of a cummulative inhibitor in the substrate. Methods for regenerating the activity of the immobilized cells by the periodic administration of nutrients, of forming isomaltulose by continuously supplying nutrients to growing immobilized cells, and of crystallizing isomaltulose from the column eluate are also described.  相似文献   

12.
The Bacillus sp. strain PHN 1 capable of degrading p-cresol was immobilized in various matrices namely, polyurethane foam (PUF), polyacrylamide, alginate and agar. The degradation rates of 20 and 40 mM p-cresol by the freely suspended cells and immobilized cells in batches and semi-continuous with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation of 20 and 40 mM p-cresol than freely suspended cells and the cells immobilized in polyacrylamide, alginate and agar. The PUF- immobilized cells could be reused for more than 35 cycles, without losing any degradation capacity and showed more tolerance to pH and temperature changes than free cells. These results revealed that the immobilized cell systems are more efficient than freely suspended cells for degradation of p-cresol.  相似文献   

13.
A moderately thermophilic Gram-positive, sporulating, rod-shaped strain of Bacillus with nitrile-degrading activity was isolated from polluted industrial waters. Whole cells and cell-free extracts from the end of exponential growth phase expressed 7.6 nkat mg−1 and 2.0 nkat mg−1 benzonitrile-degrading activity, respectively, after cultivation in a fermentor with complex medium containing benzonitrile as an inducer. The benzonitrile degradation took place via the nitrilase pathway directly to benzoic acid without intermediate formation of benzamide. Samples with benzonitrilase activity of 7.6 nkat mg−1 converted 3 mg benzonitrile in 1 h at 45°C. The half-life of benzonitrilase activity for a whole cell suspension and for cells immobilized in 2% agar was 4.5 min and 6 min at 70°C without substrate and 3 min at 90°C with substrate, respectively. The nitrilase had a broad substrate spectrum. The active biocatalyst obtained by immobilization was used in a continuous process and total biodegradation of 14.1 mM benzonitrile and 37.2 mM 4-cyanopyridine in a column bioreactor at 50°C for 5 h was achieved.  相似文献   

14.
In vitro transformation of ampicillin to cephalexin was studied using calcium alginate-immobilized and freeStreptomyces sp. strain DRS-1 packed in glass columns. Tris-HCl buffer containing ampicillin was continuously circulated through the columns for four cycles, each cycle (with fresh ampicillin) being continued for 5 h. The pattern of product formation was identical in both cases,i.e. in each cycle, after reaching a certain concentration, its formation did not increase. Product formation was always higher with immobilized cells. Conversion of ampicillin to cephalexin by the strain was affected by cell and substrate concentration.  相似文献   

15.
Song W  Rashid N  Choi W  Lee K 《Bioresource technology》2011,102(18):8676-8681
Hydrogen production was studied using immobilized green alga Chlorella sp. through a two-stage cyclic process where immobilized cells were first incubated in oxygenic photosynthesis followed by anaerobic incubation for H2 production in the absence of sulfur. Chlorella sp. used in this study was capable of generating H2 under immobilized state in agar. The externally added glucose enhanced H2 production rates and total produced volume while shortened the lag time required for cell adaptation prior to H2 evolution. The rate of hydrogen evolution was increased as temperature increased, and the maximum evolution rate under 30 mM glucose was 183 mL/h/L and 238 mL/h/L at 37 °C and 40 °C, respectively. In order to continue repeated cycles of H2 production, at least two days of photosynthesis stage should be allowed for cells to recover H2 production potential and cell viability before returning to H2 production stage again.  相似文献   

16.
Summary Lysine production by immobilizedCorynebacterium sp cells in alginate gel beads was investigated in flasks. ImmobilizedCorynebacterium sp cells exhibited a slightly greater lysine production than free cells and accumulated 60 g/l of L-lysine at maximum, when cultured for 120h in a medium containing 200g/l glucose as carbon source. Several factors, such as inoculum size, incubation time and alginate gel concentration were examined in order to improve lysine production by immobilized growing cells.  相似文献   

17.
A Pseudomonas sp. strain NGK1 (NCIM 5120) capable of utilizing 2-methylnaphthalene (2-MN) was immobilized in various matrices namely, polyurethane foam (PUF), alginate, agar and polyvinyl alcohol (PVA) (1.5 × 1012 c.f.u. g–1 beads). The degradation rates of 25 and 50 mM 2-MN by freely suspended cells (2 × 1011 c.f.u. ml–1) and immobilized cells in batches, semi-continuous with shaken culture and continuous degradation in a packed-bed reactor were compared. The PUF-immobilized cells achieved higher degradation of 25 and 50 mM of 2-MN than freely suspended cells and the cells immobilized in alginate, agar or PVA. The PVA- and PUF-immobilized cells could be reused for more than 30 and 20 cycles respectively, without losing any degradation capacity. The effect of dilution rates on the rate of degradation of 25 and 50 mM 2-MN with freely suspended and immobilized cells were compared in the continuous system. Increase in dilution rate increased the degradation rate only up to 1 h–1 in free cells with 25 mM 2-MN and no significant increase was observed with 50 mM 2-MN. With immobilized cells, the degradation rate increased with increase in dilution rate up to 1.5 h–1 for 25 mM and 1 h–1 for 50 mM 2-MN. These results revealed that the immobilized cell systems are more efficient than freely suspended cells for biodegradation of 2-MN.  相似文献   

18.
Summary Ethanol was produced by a strain ofPichia stipitis adapted to an inhibitory acid wood hydrolysate ofPinus radiata. The best ethanol productivity for batch cultures was 0.21 g/l h at 0.7% ethanol. Varying culture conditions increased ethanol concentration to 0.76%, however the productivity decreased to 0.18 g/l h. A decrease in ethanol concentration in the culture fluid was noted late in the batch which suggested ethanol catabolism. Values of kinetic parameters (K m,K s, max, andV max) were evaluated for this system. The use of calcium alginate immobilized cells in a continuous-flow stirred tank reactor lead to enhanced fermentative performance, namely a maximum productivity of 0.27 g/l h and 1.13% ethanol yield. The immobilized cells in continuous flow reactors represent an attractive option for fermenting sugars released by sulphuric acid hydrolysis ofP. radiata wood.  相似文献   

19.
2,3-Butanediol (2,3-BD) is a valuable bulk chemical with particular use in industry. 2,3-BD has a potential as solvent and fuel additive, as carrier for pharmaceuticals, or as feedstock for the production of synthetic rubber. Until now, the highest 2,3-BD concentrations were obtained with risk group 2 microorganisms (e.g., Klebsiella oxytoca). In this study, the nonpathogenic bacterium Bacillus licheniformis DSM 8785 was used for 2,3-BD production from glucose. In batch experiments, a maximum 2,3-BD concentration of 72.6 g/L was reached from 180 g/L glucose after 86 h. The yield was 0.42 g/g glucose and the productivity was 0.86 g/(L h). During fed-batch cultivation, 2,3-BD production could be increased up to 144.7 g/L, with a productivity of 1.14 g/(L h). Additionally, repeated batch/fed-batch experiments were conducted using immobilized B. licheniformis in the form of LentiKats®. Results showed a high activity and stability of the immobilizates even after multiple medium replacements, as well as 2,3-BD concentrations, yields, and productivities similar to those obtained with free cells. To our knowledge, these results show the highest 2,3-BD concentration reported so far using a risk group 1 microorganism in general and B. licheniformis in particular. Furthermore, productivity lies in the same range with data reported from risk group 2 strains, which makes B. licheniformis DSM 8785 a suitable candidate for large-scale fermentation processes.  相似文献   

20.
Treatment of the paper factory effluent was done with free and immobilized cells of a phenol degrading Alcaligenes sp. d(2). The free cells could bring a maximum of 99% reduction in phenol and 40% reduction in chemical oxygen demand (COD) after 32 and 20 h of treatment, respectively. In the case of immobilized cells, a maximum of 99% phenol reduction and 70% COD reduction was attained after 20 h of treatment under batch process. In the continuous mode of operation using packed bed reactor, the strain was able to give 99% phenol removal and 92% COD reduction in 8h of residence time The optimum flow rate was 2.5 ml/h and the half life period was 76 h. Even after the complete removal of phenol, the strain could further enhance reduction in chemical oxygen demand, which clearly indicated that in the paper factory effluent, this strain could also oxidize organic matter other than phenol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号