首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimated number of shovelnose sturgeon Scaphirhynchus platorynchus impacted annually by towboat entrainment in navigation pools of the Upper Mississippi River were compared against estimates of fishery harvest and ambient population densities to evaluate the relevance of entrainment at the population level. Mean number of sturgeon entrained per kilometer of navigation was estimated at 0.02, and mean number entrained annually considering towboat traffic was estimated at 0.38 sturgeon/ha. Losses associated with entrainment were mostly lower than fishery harvest, although differences were not large. The two sources of mortality combined could potentially reduce the mature adult population to a level where it no longer has the reproductive capacity to replenish itself. Thus, through a combination of entrainment and fishing mortality shovelnose sturgeon may be looming near unsustainable population levels. These estimates are preliminary considering the many uncertainties associated with quantifying entrainment and its effects. Additional research is needed not only to derive better estimates, but also to develop options for managing entrainment.  相似文献   

2.
Diversion of freshwater can cause significant changes in hydrologic dynamics and this can have negative consequences for fish populations. Additionally, fishes can be directly entrained into diversion infrastructure (e.g. canals, reservoirs, pumps) where they may become lost to the population. However, the effect of diversion losses on fish population dynamics remains unclear. We used 15 years of release and recovery data from coded-wire-tagged juvenile Chinook Salmon (Oncorhynchus tshawytscha) to model the physical, hydrological and biological predictors of salvage at two large water diversions in the San Francisco Estuary. Additionally, entrainment rates were combined with estimates of mortality during migration to quantify the proportion of total mortality that could be attributed to diversions. Statistical modeling revealed a strong positive relationship between diversion rate and fish entrainment at both diversions and all release locations. Other significant relationships were specific to the rivers where the fish were released, and the specific diversion facility. Although significant relationships were identified in statistical models, entrainment loss and the mean contribution of entrainment to total migration mortality were low. The greatest entrainment mortality occurred for fish released along routes that passed closest to the diversions and certain runs of Chinook Salmon released in the Sacramento River suffered greater mortality but only at the highest diversion rates observed during the study. These results suggest losses at diversions should be put into a population context in order to best inform effective management of Chinook Salmon populations.  相似文献   

3.
North American green sturgeon, Acipenser medirostris, was petitioned for listing under the Endangered Species Act (ESA). The two questions that need to be answered when considering an ESA listing are; (1) Is the entity a species under the ESA and if so (2) is the “species” in danger of extinction or likely to become an endangered species in the foreseeable future throughout all or a significant portion of its range? Green sturgeon genetic analyses showed strong differentiation between northern and southern populations, and therefore, the species was divided into Northern and Southern Distinct Population Segments (DPSs). The Northern DPS includes populations in the Rogue, Klamath-Trinity, and Eel rivers, while the Southern DPS only includes a single population in the Sacramento River. The principal risk factors for green sturgeon include loss of spawning habitat, harvest, and entrainment. The Northern DPS is not considered to be in danger of extinction or likely to become an endangered species in the foreseeable future. The loss of spawning habitat is not large enough to threaten this DPS, although the Eel River has been severely impacted by sedimentation due to poor land use practices and floods. The two main spawning populations in the Rogue and Klamath-Trinity rivers occupy separate basins reducing the potential for loss of the DPS through catastrophic events. Harvest has been substantially reduced and green sturgeon in this DPS do not face substantial entrainment loss. However there are significant concerns due to lack of information, flow and temperature issues, and habitat degradation. The Southern DPS is considered likely to become an endangered species in the foreseeable future. Green sturgeon in this DPS are concentrated into one spawning area outside of their natural habitat in the Sacramento River, making them vulnerable to catastrophic extinction. Green sturgeon spawning areas have been lost from the area above Shasta Dam on the Sacramento River and Oroville Dam on the Feather River. Entrainment of individuals into water diversion projects is an additional source of risk, and the large decline in numbers of green sturgeon entrained since 1986 causes additional concern.  相似文献   

4.
The green sturgeon (Acipenser medirostris), which is found in the eastern Pacific Ocean from Baja California to the Bering Sea, tends to be highly migratory, moving long distances among estuaries, spawning rivers, and distant coastal regions. Factors that determine the oceanic distribution of green sturgeon are unclear, but broad-scale physical conditions interacting with migration behavior may play an important role. We estimated the distribution of green sturgeon by modeling species-environment relationships using oceanographic and migration behavior covariates with maximum entropy modeling (MaxEnt) of species geographic distributions. The primary concentration of green sturgeon was estimated from approximately 41–51.5° N latitude in the coastal waters of Washington, Oregon, and Vancouver Island and in the vicinity of San Francisco and Monterey Bays from 36–37° N latitude. Unsuitably cold water temperatures in the far north and energetic efficiencies associated with prevailing water currents may provide the best explanation for the range-wide marine distribution of green sturgeon. Independent trawl records, fisheries observer records, and tagging studies corroborated our findings. However, our model also delineated patchily distributed habitat south of Monterey Bay, though there are few records of green sturgeon from this region. Green sturgeon are likely influenced by countervailing pressures governing their dispersal. They are behaviorally directed to revisit natal freshwater spawning rivers and persistent overwintering grounds in coastal marine habitats, yet they are likely physiologically bounded by abiotic and biotic environmental features. Impacts of human activities on green sturgeon or their habitat in coastal waters, such as bottom-disturbing trawl fisheries, may be minimized through marine spatial planning that makes use of high-quality species distribution information.  相似文献   

5.
In rivers, lakes, and other aquatic systems throughout the world, intake pipes withdraw huge volumes of water for industrial purposes, including power plant cooling. During this process, large numbers of small-bodied, early life-stages of fish are pulled into pipes (i.e., entrained) and may be subjected to physical, thermal and chemical stress. As a result of such entrainment, these organisms can suffer direct or indirect mortality. However, given that the vast majority of larval fish are likely to die during early life due to natural processes, it is not obvious that entrainment-related mortality will have a strong influence on subsequent adult population sizes. The ability to evaluate if larval fish are dead on arrival, moribund, or in poor condition (i.e., likely to die through natural processes) at the time of entrainment could shed light on likely population-level impacts. To this end, we review the potential use of RNA:DNA ratios to index condition of entrained larval fish. Through a meta-analysis of published research studies, we demonstrate that RNA:DNA ratios of larval fish are responsive to starvation stress, with effect size increasing with duration of starvation. We relate these results to a surrogate measure of irreversible long-term negative impacts to fish populations, and demonstrate that the timescale over which RNA:DNA ratios respond to stress may not be long enough to reflect before-and-after entrainment stress. We also highlight the diverse factors contributing to variation of RNA:DNA ratios, including methodological, ontogenetic, and thermal influences. We believe that the need to account for these influences when comparing among RNA:DNA values limits the utility of broadly using RNA:DNA ratios to evaluate entrainment effects. However, the method shows promise as a quick and efficient means of determining fish condition and, used in proper context (e.g., specific to a given set of environmental conditions; in conjunction with other assessment techniques), may provide a powerful tool in assessing the effects of entrainment on fish populations. Assuming that researchers can account for sources of background variation, RNA:DNA analyses may be most useful for assessing the condition of fish larvae susceptible to entrainment (i.e., physically in the vicinity of the water intake) and/or evaluating whether fish larvae are likely to die from natural processes independent of entrainment.  相似文献   

6.
Habitat use can be complex, as tradeoffs among physiology, resource abundance, and predator avoidance affect the suitability of different environments for different species. Green sturgeon (Acipenser medirostris), an imperiled species along the west coast of North America, undertake extensive coastal migrations and occupy estuaries during the summer and early fall. Warm water and abundant prey in estuaries may afford a growth opportunity. We applied a bioenergetics model to investigate how variation in estuarine temperature, spawning frequency, and duration of estuarine residence affect consumption and growth potential for individual green sturgeon. We assumed that green sturgeon achieve observed annual growth by feeding solely in conditions represented by Willapa Bay, Washington, an estuary annually frequented by green sturgeon and containing extensive tidal flats that harbor a major prey source (burrowing shrimp, Neotrypaea californiensis). Modeled consumption rates increased little with reproductive investment (<0.4%), but responded strongly (10–50%) to water temperature and duration of residence, as higher temperatures and longer residence required greater consumption to achieve equivalent growth. Accordingly, although green sturgeon occupy Willapa Bay from May through September, acoustically-tagged individuals are observed over much shorter durations (34 d + 41 d SD, N = 89). Simulations of <34 d estuarine residence required unrealistically high consumption rates to achieve observed growth, whereas longer durations required sustained feeding, and therefore higher total intake, to compensate for prolonged exposure to warm temperatures. Model results provide a range of per capita consumption rates by green sturgeon feeding in estuaries to inform management decisions regarding resource and habitat protection for this protected species.  相似文献   

7.
Loss of cryptophyte cells entrained in the Surry Power Plant cooling water was significantly correlated with discharge water temperature in the range 27.2–37.5 °C. Entrained Skeletonema costatum and benthic diatom populations experienced losses of 25–80% in the summer, but correlations between % loss and discharge temperature were insignificant. Cropping by benthic filter feeders in the intake and discharge canals could account for the summer removal of diatoms. Shortening of entrained S. costatum chains was detected in both winter and summer, indicating a mechanical effect of turbulence.Benthic diatoms were vulnerable to entrainment only during daylight hours, when they migrated to the sediment surface at low tide. Skeletonema costatum was most vulnerable in the summer, when elevated salinities permitted it to range upstream to the intake area. Cryptophyte populations peaked in the summer when entrainment loss was greatest.The composition of the entrained phytoplankton community was altered by the species specific interactions of factors affecting vulnerability and entrainment loss. At Surry the discharged cooling water mixes rapidly with the main stem James River, and the selective effects of entrainment are not detectable in phytoplankton samples taken beyond the immediate discharge zone. More persistent modifications of the phytoplankton could be expected at sites where power plants discharge into creeks or embayments.Contribution No. 1106, Virginia Institute of Marine Science.Contribution No. 1106, Virginia Institute of Marine Science.  相似文献   

8.
Many populations of migratory fish species, including white sturgeon (Acipenser transmontanus Richardson), are threatened due to modification of riverine systems and may experience downstream displacement or mortality at water intake structures. Efforts to reduce the impacts of these structures are beginning to incorporate behavioural guidance, where the sensory capabilities of fishes are exploited to repel them from high-risk areas or attract them towards desirable paths. Artificial lighting has been tested before, but consisted of single-spectrum lights. Using a new programmable LED-based light guidance device (LGD), we exposed age-0 white sturgeon to light strobing at 1 Hz, 20 Hz, or constant illumination with colours (green, red, blue) matching the absorbance maxima of their retinal photopigments. The behavioural responses of the sturgeon were assessed using y-maze dichotomous choice tests under both day (light) and night (dark) conditions. Sturgeon demonstrated positive phototaxis under both day and night conditions, and approached the LGD more often when light was continuous or strobing at 20 Hz compared to strobing at 1 Hz. Green light elicited the greatest rates of attraction overall. The combination of strobing and colour may help to protect imperiled fish from waterway development and serve as an effective form of mitigation at hydropower facilities and other human infrastructure where fish may be entrained or impinged.  相似文献   

9.
Regulation of river flow and the amount of winter rainfall are the major factors affecting the water temperature of the spawning grounds, for green sturgeon in the Klamath River. During the primary spawning period of green sturgeon, mid-April to June, the water temperature may vary from 8 to 21°C. To estimate the potential implications of this modified thermal regime, we examined the survival and development in three progeny groups of green sturgeon embryos from zygote to hatch, at constant incubation temperatures (11–26°C). Temperatures 23–26°C affected cleavage and gastrulation and all died before hatch. Temperatures 17.5–22°C were suboptimal as an increasing number of embryos developed abnormally and hatching success decreased at 20.5–22°C, although the tolerance to these temperatures varied between progenies. The lower temperature limit was not evident from this study, although hatching rate decreased at 11°C and hatched embryos were shorter, compared to 14°C. The mean total length of hatched embryos decreased with increasing temperature, although their wet and dry weight remained relatively constant. We concluded that temperatures 17–18°C may be the upper limit of the thermal optima for green sturgeon embryos, and that the river thermal regime during dry years may affect green sturgeon reproduction.  相似文献   

10.
The endogenous circadian timing system has evolved to synchronize an organism to periodically recurring environmental conditions. Those external time cues are called Zeitgebers. When entrained by a Zeitgeber, the intrinsic oscillator adopts a fixed phase relation to the Zeitgeber. Here, we systematically study how the phase of entrainment depends on clock and Zeitgeber properties. We combine numerical simulations of amplitude-phase models with predictions from analytically tractable models. In this way we derive relations between the phase of entrainment to the mismatch between the endogenous and Zeitgeber period, the Zeitgeber strength, and the range of entrainment. A core result is the “180° rule” asserting that the phase varies over a range of about 180° within the entrainment range. The 180° rule implies that clocks with a narrow entrainment range (“strong oscillators”) exhibit quite flexible entrainment phases. We argue that this high sensitivity of the entrainment phase contributes to the wide range of human chronotypes.  相似文献   

11.
Anthropogenic water management projects and facilities that alter the local and regional hydrology of riverine environments greatly influence the behavior, physiology, and survival of native fishes. To mitigate for losses of native fishes at these structures, many are outfitted with fish-exclusion screens to reduce entrainment. The effect of fish size and age on behavior near fish screens, however, is largely unknown. Therefore, we tested two size classes of juvenile green sturgeon (Acipenser medirostris; small, early juveniles: 9.2 ± 0.2 cm fork length [FL], 6.9 ± 0.3 g; intermediate juveniles: 18.8 ± 0.2 cm FL, 36.9 ± 0.8 g) near fish-exclusion screens in a laboratory swimming flume. Although size was a significant factor influencing the way in which fish contacted the screens (i.e., proportion of body contacts, p = 2.5 × 10?9), it did not significantly influence the number of times fish contacted screens or the amount of time fish spent near screens. We also compared the performance of these two size classes to that of older and larger sturgeon that were tested previously (29.6 ± 0.2 cm FL, 147.1 ± 3.1 g), and documented a clear difference in the behavior of the fish that resulted in disparities in how the large fish contacted screens relative to small- or intermediate-sized juveniles (p = 0.005, 5.4 × 10?4, respectively). Our results further our understanding of how ontogeny affects fish behavior near anthropogenic devices, and are informative for managers seeking to identify the most susceptible size and age class of juvenile green sturgeon to water-diversion structures to potentially develop size-specific conservation strategies.  相似文献   

12.
Summary The circadian locomotor activity rhythms of 7 species of lizards can readily be entrained (synchronized) toLD12: 12 (30–50 lux: 0) fluorescent light cycles after complete surgical removal of both eyes. Removal of the parietal eye and pineal organ does not prevent entrainment of blinded lizards. Appropriate control experiments established that lightper se, and not low amplitude temperature cycles or other obvious environmental variables, was the entraining stimulus for blinded lizards. In some cases, blocking the penetration of light to the brains of blinded lizards caused them to free-run (express their endogenous circadian rhythm) in the presence of a dim green light cycle, to which they had previously entrained, suggesting that the brain is the site of the extraretinal photoreceptor(s) mediating entrainment. The extraretinal photoreceptor(s) is capable of intensity discrimination since changing the intensity of aLD 12: 12 fluorescent light cycle caused a change in the phase-relationship between the entrained activity rhythm and the light cycle in a blinded gekko. The lateral eyes are also involved in mediating entrainment since removal of the lateral eyes of thoseSceloporus olivaceus which previously entrained to a dim green light cycle [LD 12: 12 (0.05 lux: 0)] caused them to free-run. Also, blinding had noticeable effects on the entrained activity patterns of some species of lizards.I thank Michael Menaker, Jeffrey Elliott, Sue Binkley, Joseph Silver, Ed Kluth, George Wyche, Bruee Rouse, Nancy Leshikar, Lili Mostafavi, Janet Alvis, Celeste Cromack, A. L. Mackey and Jean Rogers for their suggestions and technical assistance. Support for this work was provided by NIH grant HD-03803-02 (to M. Menaker); NSP grant GB-8138 (to M. Menaker); NSF traineeship GZ-1336 (to H. Underwood); and MH traineeship 5T01GM00836-09 (to H. Underwood).  相似文献   

13.
The Rogue River, Oregon represents one of three important spawning systems for green sturgeon, Acipenser medirostris, in North America. In this paper we describe the spawning migration, spawning periodicity, and size at maturity for green sturgeon caught in the Rogue River during 2000–2004. Green sturgeon were caught by gill net or angling; 103 individuals were tagged with radio or sonic transmitters (externally or internally). Green sturgeon caught by gill net and angling ranged from 145 cm to 225 cm total length. Histological and visual examinations of gonad tissues indicated that most green sturgeon were spawning or post-spawning adults that entered the Rogue River to spawn. Ripe individuals were caught when water temperature was 10–18°C. Specimens carrying transmitters migrated 17–105 km up river; reaches consisting of likely spawning sites were identified based on sturgeon migratory behavior. Most green sturgeon remained in the Rogue River until late fall or early winter when flows increased, after which they returned to the ocean. Eight green sturgeon (males and females) returned to the Rogue River 2–4 years after leaving, entering the river during March, April, and May when water temperatures ranged from 9°C to 16°C. None of the 103-tagged individuals entered the Rogue River during successive years. There appear to be few known natural threats to adult green sturgeon in the Rogue River. However, our data suggest that a high percentage of adults that spawn in the Rogue River (particularly males) were susceptible to harvest by commercial, Tribal, and sport fisheries after leaving the system because they were not adequately protected by maximum size limits during the period of this study. The implications of maximum size limits (or lack of size limits) to green sturgeon are discussed, and recent actions taken by Oregon and Washington Fish and Wildlife Commissions to manage green sturgeon more conservatively are presented.  相似文献   

14.
An experiment was designed to test whether age‐0 shovelnose sturgeon (Scaphirhynchus platorynchus) exhibited predator avoidance behaviour in response to a channel catfish (Ictalurus punctatus) predator. It was hypothesized that shovelnose sturgeon would not exhibit any innate predator avoidance behaviour because previous reports have shown a congener of the shovelnose sturgeon, the pallid sturgeon (S. albus), to be an unfavourable prey item for channel catfish. The results, however, indicated that shovelnose sturgeon generally avoided space occupied by the catfish predator and spent a greater proportion of time in the predator avoidance zone within the experimental tank. Bitten fish, in particular, spent a greater period of time in the predator avoidance zone. Of all sturgeon used in this experiment (N = 30), 73% swam within the fork length (350 mm) of the catfish predator. The results seem to indicate that shovelnose sturgeon were initially oblivious to the risk of predation by the catfish predator, but after interaction (e.g. being chased or bitten) appeared to display predator avoidance behaviour. Predator avoidance behaviour in shovelnose sturgeon may thus be suggested as a learned rather than an innate behaviour.  相似文献   

15.
This study reports the only direct evidence of spawning of green sturgeon, Acipenser medirostris, in the upper Sacramento River, CA. Two green sturgeon eggs were collected with substrate mats immediately below Red Bluff Diversion Dam. One green sturgeon larva was collected with a larval net at Bend Bridge. We concluded that green sturgeon spawn in the upper Sacramento River, both above and below RBDD. Temperature ranges in the study area (10–15°C) are similar to conditions used in successful artificial rearing of green sturgeon and do not appear to be a limiting factor to successful spawning of green sturgeon; however, suitable habitat upstream of RBDD is inaccessible when dam gates are lowered.  相似文献   

16.
This study investigated the entrainment of a larval release rhythm by determining whether a tidal cycle in hydrostatic pressure could entrain the circatidal rhythm in larval release by the crab Rhithropanopeus harrisii (Gould). Ovigerous females were collected from a non-tidal estuary. The time of larval release by individual crabs was monitored under constant conditions with a time-lapse video system. Crabs with mature embryos at the time of collection had a pronounced circadian rhythm in larval release with a free running period of 25.1 h. Crabs with immature embryos that were maintained under constant conditions from the time of collection until larval release retained a weak circadian rhythm. Other crabs with immature embryos were exposed to a tidal cycle in step changes in hydrostatic pressure equivalent to 1 m of water. This cycle entrained a circatidal rhythm in larval release. The free-running period was 12.1 h and larvae were released at the time of the transition from low to high pressure. Although past studies demonstrated that a tidal cycle in hydrostatic pressure could entrain activity rhythms in crustaceans, this is the first study to show that pressure can entrain a larval release rhythm.  相似文献   

17.
The suprachiasmatic nucleus (SCN) is a circadian oscillator entrained to the day/night cycle via input from the retina. Serotonin (5-HT) afferents to the SCN modulate retinal signals via activation of 5-HT1B receptors, decreasing responsiveness to light. Consequently, 5-HT1B receptor knockout (KO) mice entrain to the day/night cycle with delayed activity onsets. Since circulating corticosterone levels exhibit a robust daily rhythm peaking around activity onset, we asked whether delayed entrainment of activity onsets affects rhythmic corticosterone secretion. Wheel-running activity and plasma corticosterone were monitored in mice housed under several different lighting regimens. Both duration of the light∶dark cycle (T cycle) and the duration of light within that cycle was altered. 5-HT1B KO mice that entrained to a 9.5L:13.5D (short day in a T = 23 h) cycle with activity onsets delayed more than 4 h after light offset exhibited a corticosterone rhythm in phase with activity rhythms but reduced 50% in amplitude compared to animals that initiated daily activity <4 h after light offset. Wild type mice in 8L:14D (short day in a T = 22 h) conditions with highly delayed activity onsets also exhibited a 50% reduction in peak plasma corticosterone levels. Exogenous adrenocorticotropin (ACTH) stimulation in animals exhibiting highly delayed entrainment suggested that the endogenous rhythm of adrenal responsiveness to ACTH remained aligned with SCN-driven behavioral activity. Circadian clock gene expression in the adrenal cortex of these same animals suggested that the adrenal circadian clock was also aligned with SCN-driven behavior. Under T cycles <24 h, altered circadian entrainment to short day (winter-like) conditions, manifest as long delays in activity onset after light offset, severely reduces the amplitude of the diurnal rhythm of plasma corticosterone. Such a pronounced reduction in the glucocorticoid rhythm may alter rhythmic gene expression in the central nervous system and in peripheral organs contributing to an array of potential pathophysiologies.  相似文献   

18.
The mole crab Emerita talpoida migrates with the tide in the swash zone of sand beaches. A circatidal rhythm in vertical swimming underlies movement, in which mature male crabs show peak swimming activity 1-2 h after the time of high tides at the collection site. In addition, there is a secondary rhythm in activity amplitude, in which crabs are maximally active following low amplitude high tides and minimally active following high amplitude high tides. The present study determined the phase response relationship for entrainment of the circatidal rhythm with mechanical agitation and whether the cycle in activity related to tidal amplitude could be entrained by a cycle in the duration of mechanical agitation at the times of consecutive high tides. After entrainment with mechanical agitation on an orbital shaker, activity of individual crabs was monitored in constant conditions with a video system and quantified as the number of ascents from the sand each 0.5 h. Mechanical agitation at the times of high tide, mid-ebb and low tide reset the timing of the circatidal rhythm according to the timing relationship to high tide. However, mechanical agitation during flood tide had no entrainment effect. In addition, a cycle in duration of mechanical agitation entrained the rhythm in activity amplitude associated with tidal amplitude. Both rhythms and entrainment effectiveness over the tidal cycle may function to reduce the likelihood of stranding above the swash zone.  相似文献   

19.
20.
The aim of the study was to determine the susceptibility to predation of Atlantic sturgeon larvae (Acipenser oxyrinchus) reared under traditional hatchery conditions. Experiments were conducted to determine whether predators would prey on Atlantic sturgeon if alternative prey was available and if the presence of substrate on the tank bottom impacted the number of Atlantic sturgeon consumed. European perch (Perca fluviatilis) was used as the predator, and the alternative prey were three‐spined stickleback (Gasterosteus aculeatus) or gudgeon (Gobio gobio). The predators and alternative prey were obtained from the wild. The mortality of sturgeon (n = 10) and alternative prey (n = 10) caused by four predators was recorded during 15 min trials. Trials with three‐spined stickleback and gudgeon as alternative prey were performed separately. Each experimental trial was repeated five times. The predators consumed significantly more Atlantic sturgeon than alternative prey in both the experimental setups when the bottom of the tank was covered with gravel and stone substrate and when there was no substrate. In trials with three‐spined stickleback the mortality of Atlantic sturgeon in both experimental setups was 94 ± 8.94%, while that of three‐spined stickleback in the setup with substrate was 20 ± 19.23%, and without substrate it was 22 ± 10.00%. European perch also consumed more Atlantic sturgeon than they did gudgeon, and the mean Atlantic sturgeon mortality in the experimental setup with substrate was 94 ± 5.48%, while for gudgeon it was 48 ± 8.37%. In the experimental setup without substrate the predators also consumed substantially more Atlantic sturgeon than gudgeon, with a mean Atlantic sturgeon mortality of 94 ± 8.94%, while for gudgeon it was 76 ± 5.48%. The study indicated that hatchery reared Atlantic sturgeon larvae are susceptible to predation by European perch. Predation could impact the survival of juvenile Atlantic sturgeon in the natural environment, and it could be one of the factors that is impeding the restoration of this species in the Baltic Sea basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号